
Model based clustering for multivariate count data 18th IWSM, Leuven, July 2003✬

✫

✩

✪

Model based clustering for multivariate count data

Dimitris Karlis

Department of Statistics

Athens University of Economics

and

Loukia Meligkotsidou

Department of Mathematics and Statistics,

Lancaster University



Model based clustering for multivariate count data 18th IWSM, Leuven, July 2003✬

✫

✩

✪

Outline

• Motivation

• Model Based Clustering

• Multivariate Poisson models

• Multivariate Poisson mixtures

• Finite Multivariate Poisson mixtures

• Application to crime data

• Conclusions -Open problems



Model based clustering for multivariate count data 18th IWSM, Leuven, July 2003✬

✫

✩

✪

Motivation

Multivariate data are usually modelled via

• Multivariate Normal models

• Multinomial models (for categorical data)

What about multivariate count data?

• Small counts with a lot of zeros

• Normal approximation may not be adequate at all

Idea: Use multivariate Poisson models
Attractive idea but the models are computationally demanding.
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Multivariate Count data

• Incidences of different diseases across time or space

• Different type of crimes in different areas

• Purchases of different products

• Accidents (different types or in different time periods)

• Football data

• Different types of faults in production systems

• Number of faults in parts of a large system etc
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Clustering

Purpose: To find observations with similar characteristics

Methods used

• Hierarchical Clustering

Large storage demands,dependence on the distance measure and the linkage
method,not solid theoretical background

• K- Means

Heuristic algorithm, computationally feasible, dependence on the initial
solution, not solid theoretical background.

• Model Based Clustering

Probabilistic method, strong theoretical background,inferential procedures
available
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Model Based Clustering

(see, e.g. Banfield and Raftery, 1993)

• The population consists of k subpopulations

• For the q-dimensional observation yi from the j -th subpopulation we have

yi ∼ fj(yi | θj), (1)

(θj unknown vector of parameters related to the j-th subpopulation)

• Unconditional density :

f(yi|Θ) =
k∑

j=1

pjfj(yi | θj) (2)

Questions to be answered:

– What is the value of k or how many clusters?

– Estimate θj , i.e. estimate the characteristics of each cluster
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Multivariate Poisson model

Let X = (X1, X2, . . . , Xm) and Xi ∼ Poisson(θi), i = 1, . . . , m. Then the general
definition of multivariate Poisson models is made through the matrix A of
dimensions k × m, where the elements of the matrix are zero and ones and no
duplicate columns exist.

Then the vector Y = (Y1, Y2, . . . , Yk) defined as

Y = AX

follows a multivariate Poisson distribution.
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Complete Specification

A = [A1 A2 . . . Ak]

where Ai is a matrix of dimensions k ×

 k

i


 where each column has exactly i

ones and k − i zeroes.

Example k = 3

A1 =



1 0 0

0 1 0

0 0 1


 A2 =



1 1 0

1 0 1

0 1 1


 A3 =



1

1

1
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and then

A =



1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1




This correspond to

X1 = Y1 + Y12 + Y13 + Y123

X2 = Y2 + Y12 + Y23 + Y123 (3)

X3 = Y3 + Y13 + Y23 + Y123

where all Yi’s, are independently Poisson distributed random variables with
parameter θi, i ∈ ({1}, {2}, {3}, {12}, {13}, {23}, {123})
Note: Parameters θij are in fact covariance parameters between Xi and Xj .
Similarly θ123 is a common 3-way covariance parameter.
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Other cases

Independent Poisson variables

Corresponds to the case A = A1.

Example for k = 3

A =



1 0 0

0 1 0

0 0 1




i.e. product of independent Poisson probability functions.
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Full covariance structure

If we want to specify only up to 2-way covariances we take the form

A = [A1 A2]

Example k = 3

A =



1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1




This model is very interesting as it assumes different covariances between all the
pairs and thus it resembles the multivariate normal model.
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This correspond to

X1 = Y1 + Y12 + Y13

X2 = Y2 + Y12 + Y23

X3 = Y3 + Y13 + Y23

where all Yi’s, are independently Poisson distributed random variables with
parameter θi, i ∈ ({1}, {2}, {3}, {12}, {13}, {23})
the covariance matrix of (X1, X2, X3) is now

V ar(X) =




θ1 + θ12 + θ13 θ12 θ12

θ12 θ2 + θ12 + θ23 θ23

θ13 θ23 θ3 + θ13 + θ23
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Properties

For the general model we have

E(X) = AM

and
V ar(X) = AΣAT

where M and Σ are the mean vector and the variance covariance matrix for the
variables Y0, Y1, . . . , Yk respectively.

Σ is diagonal because of the independence of Yi’s and has the form

Σ = diag(θ1, θ2, . . . , θm)

Similarly
MT = (θ1, θ2, . . . , θm)
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Covariance Model

We concentrate on the 2-way full covariance model. A model with m variables has

m+


 m

2




parameters.

Bad news: The joint probability function has at least m summations!

Good news: One may use recurrence relationships (clearly need to find efficient
algorithms to do so)
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Mixtures of multivariate Poisson distribution

Several different ways to define such mixtures:

• Assume

(X1, . . . , Xm) ∼ m − Poisson(αθ))

α ∼ G(α)

• Assume

(X1, . . . , Xm) ∼ m − Poisson(θ))

θ ∼ G(θ)

• Part of the vector θ varies, while some of he parameters remain constant. For
example (in 2 dimensions)

(X1, X2) ∼ Biv.Poisson(θ1, θ2, θ0)

θ1, θ2 ∼ G(θ1, θ2)
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Dependence Structure

Consider the case

(X1, . . . , Xm | θ) ∼ m − Poisson(θ))

θ ∼ G(θ)

The unconditional covariance matrix is given by

V ar(X) = ADAT

where A is the matrix used to construct the conditional variates from the original
independent Poisson ones and
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D =




V ar(θ1) + E(θ1) Cov(θ1, θ2) . . . Covθ1, θm)

Cov(θ1, θ2) V ar(θ2) + E(θ2) . . . Cov(θ2, θm)

. . .

Cov(θ1, θm) . . . V ar(θm) + E(θm)
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Important findings

Remark 1: The above formula imply that if the mixing distribution allows for
any kind of covariance between the θ’s then the resulting unconditional variables
are correlated. Even in the case that one starts with independent Poisson
variables the mixing operation can lead to correlated variables.

Remark 2: More importantly, if the covariance between the pairs (θi, θj) is
negative the unconditional variables may exhibit negative correlation. It is well
known that the multivariate Poisson distribution cannot have negative
correlations, this is not true for its mixtures.

Remark 3: The covariance matrix of the unconditional random variables are
simple expressions of the covariances of the mixing parameters and hence the
moments of the mixing distribution. Having fitted a multivariate Poisson mixture
model, one is able to estimate consistently the reproduced covariance structure of
the data. This may serve as a goodness of fit index.
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Finite Mixtures of multivariate Poisson distribution

If we assume that θ can take only a finite number of different values finite
multivariate Poisson mixture arise. The pf is given as

P (X) =
k∑

j=1

pjP (X | θj)

where P (X | θj) denotes the pf of a multivariate Poisson distribution.

this model can be used for clustering multivariate count data Examples:

• Cluster customers of a shop according to their purchases in a series of
different products

• Cluster areas according to the number of occurrences of different types of a
disease etc
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Inference

Standard inferential procedures as those for known model based clustering:

• Estimation through an EM algorithm using the latent structure of the
mixture

• Choose the number of cluster via a standard method like AIC, BIC, NEC etc

• Allocate obsrvations to cluster using the posterior probability that an
observation belong to a cluster (readily available through the EM)
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Application

Multivariate Count data: number of 4 different type of crimes in Greece for the
year 1997, for 50 perfectures.

Crime type:

rapes, arson , smuggling of antiquities and general smuggling.

The population of each prefecture is used as an offset.

The aim is to cluster the prefectures according to their profiles in those types of
crimes.



Model based clustering for multivariate count data 18th IWSM, Leuven, July 2003✬

✫

✩

✪

Results (1)

• An EM type algorithm was used to fit the finite multivariate Poisson mixture
model. The number k of components was considered as known for using the
EM algorithm, but we fitted the model with increasing value of k in order to
decide about the number of components.

• AIC criterion is used to find the optimal number of clusters For a model with
k components there are 11k − 1parameters to estimate. We selected a 4
clusters solution
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Results (2)

Mixing proportions p̂ = (0.5915, 0.2266, 0.0638, 0.1181).

Parameters in matrix form:

Θ =




θ1 θ12 θ13 θ14

θ2 θ23 θ24

θ3 θ34

θ4




, (4)
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Results (2)

Θ1 =




17.339 0 4.772 0

2.530 0.198 1.977

34.112 2.398

6.171




, Θ2 =




0 0 3.675 0

9.897 1.925 1.938

5.320 0

2.172




,

Θ3 =




0 20.424 0 0

55.868 24.323 0

0 0

0




, Θ4 =




14.416 12.780 0 0

3.048 0 0

8.934 0

44.621
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Interesting things

• Standard model-based clustering procedures can be applied. for example,
estimation is feasible via EM algorithm, selection of the number of
components can be used in a variety of criteria etc

• Since, mixing operation imposes structure is not a good idea to start with a
model with a lot of covariance terms.

• Since we work with counts one may use the frequency table instead of the
original observations. This speeds up the process and the computing time is
not increased so much even if the sample size increases dramatically
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Figure 1: The loglikelihood and the AIC criterion (rescaled) for the crime data for
different values of k
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Summary

• Multivariate Poisson model similar in nature to multivariate normal were
considered.

• The model can be generalized to have quite large (but unnecessary) structure.

• Using up to 2-way covariance term suffice to describe most data sets

• Estimation can be accomplished via EM algorithms (or MCMC schemes from
the Bayesian perspective)
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Open problem -Future and Ongoing research

• Need to speed up estimation, including quick calculation of the probabilities
and improving the EM algorithm.

• Model selection procedure must be obtained that are suitable for the kind of
data (e.g. selection of appropriate covariance terms)


