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Abstract

The study of time series models for count data has become a topic
of special interest during the last years. However, while research on
univariate time series for counts now flourish, the literature on mul-
tivariate time series models for count data is notably more limited.
In the present paper, a bivariate integer-valued autoregressive pro-
cess of order 1 (BINAR(1)) is introduced. Emphasis is placed on the
special cases of bivariate Poisson and bivariate negative binomial in-
novations. We discuss properties of the Poisson BINAR(1) model and
propose estimation methods for its unknown parameters. A simu-
lation experiment provides evidence for the superiority of maximum
likelihood estimators. Issues of diagnostics and forecasting are consid-
ered and predictions are produced by means of the conditional forecast
distribution. Estimation uncertainty is accomodated by taking advan-
tage of the asymptotic normality of maximum likelihood estimators
and constructing appropriate confidence intervals for the h-step-ahead
conditional probability mass function. The proposed model is applied
to a bivariate data series concerning syndromic surveillance during
Athens 2004 Olympic Games.

Keywords: BINAR; count data; Poisson; negative binomial; bivariate
time series.

1 Introduction

Multivariate count data occur in several different disciplines like epidemiol-
ogy, marketing, criminology and engineering just to name a few. In many
cases the data are observed across time leading to multivariate time series
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data as, for example, when one studies the purchases of different products
across time, or the occurrence of different diseases across time.

In the literature there are several models to fit univariate count time
series models (see Davis et al., 1999). A commonly used class of such models
consists of the so-called integer autoregressive time series models, introduced
by McKenzie (1985) and Al-Osh and Alzaid (1987). The interested reader is
referred to McKenzie (2003) and Jung and Tremayne (2006) for a brief but
detailed review of such models. The literature on multivariate time series
models for count data is less developed. Some interesting attempts have been
made during the last decade but most of them do not arise in the context of
INAR processes (see Gurmu and Elder, 2000; Chib and Winkelmann, 2001;
Egan and Herriges, 2006). Among the models that have been built in the
aforementioned setting are those of Latour (1997); Bréannés and Nordstrom
(2000); Heinen and Rengifo (2007) and Quoreshi (2006).

The aim of this paper is to introduce and examine in detail a bivariate
Poisson integer-valued autoregressive model of order 1 (BINAR(1)). To moti-
vate the model consider the case of health surveillance systems and especially
syndromic surveillance. In such systems the number of patients with some
symptoms are counted in each hospital allowing for examining if there is a
sudden increase of some symptoms implying perhaps some epidemic or some
hazard for the public health. Syndromic surveillance is considered as more
efficient than diagnostic surveillance since it is based on symptoms rather
than diagnosis and thus is generally faster in creating alerts. Usually the
data are small counts and since a number of different symptoms is counted
we have multiple series of data. This leads to the need of creating appropri-
ate time series models to handle multiple time series together as the interest
is to examine if their concurrence implies a threat to public health.

The remaining of this paper is structured as follows. A general specifica-
tion of the BINAR(1) process and alternative methods for the estimation of
its unknown parameters are given in section 2. In sections 3 we concentrate
on the special cases of bivariate Poisson and negative binomial innovations
respectively. In section 4 we give a specification of the model residuals as
a diagnostic tool while issues of forecasting are discussed in section 5. The
advantages and drawbacks of the proposed estimators are presented in sec-
tion 6 using simulation. An application to real data concerning cause-specific
hospital admissions during Athens 2004 Olympic Games, follows in section
7. Some concluding remarks are presented in section 8.



2 The BINAR(1) Process

2.1 Model

Let X and R be non-negative integer-valued random 2-vectors. Let A be a
2 x 2 diagonal matrix with independent elements {c;;},;—12. The bivariate
integer-valued autoregressive process of order 1 can be defined as

S CRE I

where “o”is the binomial thinning operator defined as a0 X = Zfil Y, =
Y, where {Y;}:, is a sequence of 7#d Bernoulli random variables such that
P(Y;=1)=a=1—-P(Y;=0) and a € [0, 1] (Steutel and van Harn, 1979).
In the bivariate case, the Ao operation is a matricial operation which acts
as the usual matrix multiplication keeping in the same time the properties of
the binomial thinning operation. One can see that with the above definition
the jth element, j = 1,2 is given by X, = a0 X, + Rj;. The elements
R; which entered the system in the interval (¢ — 1,¢] are usually called as
innovations.

Assuming independence between and within the thinning operations and
{R;:} an 7id sequence with mean \; and variance 0]2- =vjAj, v, >0,7=1,2,
the unconditional first and second order moments based on second order
stationarity conditions are:

Aj

E(Xy) =px, = 2.2

(X3) =y, = 72 (2:2)
RERTRSY

Var(Xj) = 0%, = (o £ v)A UJZ) ! (2.3)

Cov (X, Xjn) = vx,(h) = oz?ag(j ; h=1,2,... (2.4)

Corr (Xji, Xji4n) = pXj(h) = a? . h=1,2,... (2.5)

Obviously, the mean, variance and autocovariance functions can take only
positive values, since Aj,ajz and «; are all positive. Depending on whether
v; > 1, v; € (0,1), or v; = 1, the variance may be larger than the mean
(overdispersion), smaller than the mean (underdispersion), or equal to the
mean (equidispersion) respectively.

Dependence between the two series that comprise the BINAR(1) pro-
cess is introduced by allowing for dependence between Ri; and Ry while



retaining all the previous assumptions fixed. Whatever the underlying joint
distribution of { Ry, Ry} is, it can be shown that the covariance between
the innovations of the two series at time ¢, totally determines the covariance
between the current value of the one process and the innovations of the other
process at the same point in time ¢ and vice versa (see Appendix I):

COV(Xlt, Rgt) = COV(RU, Rgt) (26)

As expected, the covariance between the sequences {X;;} and {Xy} at
time t is also affected by the corresponding “survival”parts of the two pro-
cesses. More specifically it can be shown that,

h
Cov(X1 t4n, Xot) = i Cov(Ry, Rey); h=0,1,... and  (2.7)

(]. — 0610é2>

afy/(1—af)(1 - a3)
(1 — 041042)\/(041 + Ul)(Oéz + U2))\1>\2

COYY(Xl,t+h, X2t) =
(2.8)

Covariances and correlations between Xj; and Xy444, h = 0,1,..., can be
defined analogously (see Appendix I).
Note that (2.7) presumes that {X;} is a strictly stationary process, i.e.

e e X . X
that the joint distribution of 1 > is the same as that of ( Li+h > , for

KXoy Xot+h
all h. Using the analytical representations
Xt a; 0 X1 Ry
= @) ’ + 29
< KXot > [ 0 ] { Xog1 } { Ry ] ( )
and
Xit4h a; 0 X141 Rytin
) p— ’ + ) 2.10
( Xotth ) [ 0 ap } ° [ Xot+h-1 Ro tin (2.10)

it is easy to see that strict stationarity does indeed hold for {X;} since the
variables involved in the right-hand sides of (2.9) and (2.10) have identical
distributions (see also Latour, 1997).

2.2 Estimation
2.2.1 Yule-Walker estimation

As already noted, the structure of the BINAR(1) model implies that the
two innovation series { Ry, Ry} follow jointly a bivariate distribution. Let
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GR,.r, (51, 52) be the joint probability generating function (jpgf) of { Rz, Rot}-
Then, the jpgf of X, = {X1;, Xoi} is given by

GXt (S) - GXu,th(Slﬂ 82) - GXl,o(l - O‘i + aisl)GXzo(l - O‘g + OéS?)
t—1
x [ Grim((1 = al +alsi), (1 - ah + ahss))
=0
(2.11)
which reduces to
o0
Gxt(s) = Gleth(Sl?SQ) = HGR17R2((1_O/1+O/181)7 (1_0/24_05%82)) (2'12)
1=0

The moment generating function Mx, (s) = Gx,(€®) can then be used to
obtain appropriate sample moments for the estimation of the unknown model
parameters.

2.2.2 Maximum-Likelihood estimation

The conditional density for the BINAR(1) model can be expressed as the
convolution of two binomials, namely

filzy) = ( X;vtl—l ) aft (1 — )Xo (2.13)
) = (7 Yo agpiee, (2.14)

and a bivariate distribution of the form f5(k, s) = P(Ry; = k, Ryt = s). Thus
the conditional density becomes

FOaulxi-1,0) =Y filwre — k) falwa — ) fa(k, ) (2.15)

where 0 is the vector of unknown parameters.
The conditional likelihood function is then given by

L(O1x) = [ [ f(xelxi-1,6) (2.16)

for some initial value x, and hence maximization provides with the ML esti-
mates. Numerical maximization is straightforward with standard statistical
packages.



3 Parametric Cases

In this section we discuss two specific BINAR(1) models. The first one comes
from the assumption that the innovations of the two series follow jointly a bi-
variate Poisson distribution. The second model assumes a bivariate negative
binomial distribution for the two innovation processes. The two represen-
tations can be viewed as appropriate tools for modeling equidispersed and
overdispersed bivariate time series respectively. Some additional specifica-
tions suited for time series data with negative correlation are also briefly
considered.

3.1 The Poisson BINAR(1) Process
3.1.1 Model

Let assume that the joint probability mass function (jpmf) of the two inno-
vation processes { Ry, Ro;} is a bivariate Poisson distribution given by

P(th =x, Ry Zy) =

R e :0 60 (m=amm ¢>);'”

where s = min(z,y), A1, Aa > 0 and ¢ € [0, min(A1, A2)). We will denote this
distribution as BP(\1, Ag, ¢). The bivariate Poisson distribution defined in
(3.1) allows for dependence between the two random variables. Marginally
each random variable follows a Poisson distribution with parameters A\; and
Ao respectively. Parameter ¢ is the covariance between the two random
variables. If ¢ = 0 then the two variables are independent and the bivari-
ate Poisson distribution reduces to the product of two independent Poisson
distributions. For a comprehensive treatment of the bivariate Poisson distri-
bution and its multivariate extensions the reader can refer to the books of
Kocherlakota and Kocherlakota (1992) and Johnson et al. (1997).

The above assumption leads to the equidispersion case, i.e. v; = 1, or
equivalently assume that Rj; are ud Poisson sequences with ajz =N\, ] =
1,2. Obviously, in this case the covariance function (2.7) remains unaffected
while the correlation function (2.8) is simplified due to the simplification of
the variances of the two processes. Hence, the Poisson BINAR(1) model is
characterized by the vector of expectations pux, = F(X;) with elements

Aj
1—(1/]'

px;, = ;g =1,2 (3.2)
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the variance-covariance matrix ~x,(h) with diagonal elements

Oéh/\j .
COV(Xj,t-Hw th) = ’ )= 17 27 h = 07 17 s (33)
1-— Q;
and off-diagonal elements
Cov( X epm Xit) = WO i =01 (3.4)
ov Jit+hs <Xit) — 1 Q0 ) J z, — Yy Ly .

and the correlation matrix px,(h) with diagonal and off-diagonal elements
equal to

Corr(Xjpn Xj) =al; j=1,2, h=0,1,... (3.5)

and

aly/(1—ar)(1 —az)e
Comeen Xa) = = Vo,

respectively. Note also that conditionally on the previous observations
X1 ={X14-1, X1}, the vector of conditional means KX, = E(Xy-1)
has elements pix,, , = a;X;1-1+ A;, j = 1,2, For h = 0, the conditional
variance-covariance matrix yx,, (h) has diagonal and off-diagonal elements
equal to Cov(Xjin, Xjt|Xji—1) = oa;(1 — o)X + A; and
Cov (X 44n, Xit| Xji—1, Xi1—1) = ¢ respectively, while otherwise it is the zero
matrix.

j#i, h=0,1,... (3.6)

3.1.2 Estimation

Yule- Walker estimation

For any h € Z, the autocovariance function of each one of the station-
ary processes {X;: ez at lag h is given by the formula ~;(h) = OzL.hlfyj(O),
Jj = 1,2. The Yule-Walker estimator for «; can therefore be found from
a; = vj(1)/7;(0) where v;(1) = Cov(X;, Xj—1) and ;(0) = Var(X;).
Thus, by replacing v;(1) and ~,(0) with their sample equivalents, we obtain:

T _ _
- 2@ — ) (@ — )
i = T —
> (e — T;)?
Estimation of A; is based on the moment condition arising from the corre-
sponding marginal distribution, E(X;;) = A\;/(1 — «;), j = 1,2 and has the
form

;o3 =12, t=1,....T (3.7)



The parameter ¢ can be estimated regarding its involvement in the covariance
function Cov (X1, Xo) = ¢/(1 — ayap):

ézgjgﬁﬁ (e —F) (o —To); t=1,....T  (3.9)

] =

t=1

Note that under the Poisson BINAR(1) model, the parameter «; can
alternatively be estimated as

T — _
- Do mp =T (@ — T)
4= Tz, ’
J

j=1,2 t=1,....T (3.10)

The estimators 5\]- and qg are also modified due to the involvement of the
new estimator (3.10) in the corresponding formulas. We refer to this group
of estimators as moment-based estimators.

The asymptotic distribution of the Yule-Walker estimators can be found
by taking advantage from their asymptotic equivalence to the conditional

least squares estimators in case of a Poisson AR(1) process (see Appendix I
and Freeland and McCabe (2005)).

PROPOSITION 1. Let {X;}iez be a Poisson BINAR(1) process. Then,
{X;}iez is an AR(1) process that can be written as

where {R}}iez has mean vector E(R}) = 0 and covariance matrix X g« =
A(I — A)px, + X g with X g denoting the variance-covariance matrix of
{tha R2t}'

Equation (3.11) can alternatively be written as

Xi=AX; 1 +pr+R;; teZ (3.12)
where pg is the mean vector of R (Latour, 1997).

Under this notation, it can be seen that the error of the Poisson BI-
NAR(1) model is a martingale difference sequence. Thus, our model can be
regarded as member of the general class of multivariate time series models
of the form Y, = f(Z;_1;0y) + a; (Chabot-Hallé and Duchesne, 2008) where
Y = {Y,,t € Z} is a stationary and ergodic multivariate stochastic process,
7, is the sigma-field generated by {Y;,Y;_1,...}, f = (f1,..., fd)T is a known
real-valued function with values in R?, 8, corresponds to a k x 1 vector of



unknown parameters and a = {a;,t € Z} is the error term. For such mod-
els, the conditional least squares estimators can be found by minimizing the
criterion:

S.(0) = Y (Y1 —£(Z-1:0)} S Y1 — £(Zi-1:0)} (3.13)
t=7+1
where 7 is an appropriate integer. .
Under certain regularity conditions it can be shown that 8,, is asymptotically
normal:

B -1 -1
6, ~ AN (00, m) (3.14)
where,
- 8ftTl 18ft—1
U= E{ TR (3.15)
OfF of,
W:E{ 5012 LY, — ) (Y, — £, ']t a;;} (3.16)

with ft,1 == f(Itfl; 00)

For the Poisson BINAR(1) model, let 8y = (v, o, A1, Ao, #)7 be the vec-
tor of unknown parameters and let 6, = (&1,&2,:\1,5\2,gz~5)T be the vector
of the respective Yule-Walker estimators. Then, their asymptotic distribu-
tion can be found by equations (3.14)-(3.16) by replacing Y; by Xy, f;_; by
AX,; 1+ pr and X, by Xg-.

Mazimum-Likelihood estimation
The conditional density for the Poisson BINAR(1) model can be obtained
by substituting

e—(A1+A2—9) Zzi:nék,s)()\l — )Ny — BT P™
(k—m)!(s —m)!m!

fs(k, s) = (3.17)

in eq.(2.15). Then we get

g1 92 mzn(k s ()\ ¢>k—m(>\ o ¢)s—m¢m
f(Xt|Xt717a170527>\17)\27¢) — 67()\14»)\2 ¢)ZZ — :
—m)\(s — m)lm!
L £ (k —m)!(s —m)!m!
T141 e1s—k B w11 —x1e+k Tot—1 T2t —S o T2, t—1—x2t+S
y (wu - k) aT (1 — ay) (m - S) 05" (1 — an) (3.18)
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where g1 = min(zi, x14-1) and go = min(xe, Tat—1).

Remark: An alternative way to obtain the conditional density of the Pois-
son BINAR(1) model is by considering the construction of the two innova-
tion processes { Ry, Ro; } by means of the trivariate reduction technique (see
Kocherlakota and Kocherlakota, 1992). Under this approach, we let Wy, Ws,
W3 be independent Poisson random variables with parameters A}, A5 and ¢
respectively. We also let Ry = Wy 4+ W3 and Ry, = W5 + W3, 1t can be
shown that the joint distribution of {R;, Ro} is bivariate Poisson with pa-
rameters A\ = A} + ¢, Ay = A5 + ¢ and ¢. Then, the two series of counts
can be written as Xy, = Y3, + W3, and Xy = Yo, + W3, respectively, where
Yie = 0Xy00 + Wiy, Yoo = g0 Xoy 1 + Wy and Wy, are all indepen-
dently distributed. Hence, the joint conditional probability distribution of
{Xlt,XQt} is P(Xlt =T, th = S) = km;r:)(r,s) fl(T — k’)fg(S — ]{Z)fg(k?) where
fi(r—k) = P(r—k|X1,4-1, a1, A}) is the convolution of a Bin(X;;_1,a;) and
a Poisson(\}) distribution, fo(s —k) = P(s — k| Xa4—1, a2, A}) is the convolu-
tion of a Bin(Xs; 1, a2) and a Poisson(\3) distribution and f3(k) is Poisson
with parameter ¢.

3.2 A BINAR(1) Process with BVINB Innovations
3.2.1 Model

Assume that the jpmf of the innovations { Ry;, R, } is a bivariate negative bi-
nomial distribution of the following form (Marshall and Olkin, 1990; Boucher
et al., 2008; Cheon et al., 2009):

(' +z+vy)
Lz + 1)y + 1)

A1 ’ A2 Y gt o
X ()\1"‘)\24‘6_1) <)\1+)\2+6_1) ()\1"‘)\2"‘6_1) (319)

where A1, Ay, 5 > 0. We will denote this distribution as BVNB(\{, As, ).
Note that the marginal distribution of Rj; is univariate negative binomial
with parameters 5! and p; = 37'/(\; + 71), j = 1,2 and that the corre-
lation between the two count variables Ry, and Ry,

A1 A3
Corr(z,y) = \/(1 W TR W) (3.20)

P(th =z, Ry = Z/) =

10



must be positive. This assumption allows for more flexibility than the Pois-
son BINAR(1) model does, due to the involvement of the overdispersion
parameter § in the model’s specification.

Recall that in section 2.1, {R;;} was generally defined as an 4id sequence
with mean \; and variance 0]2- =vjAj, v; > 0,7 =1,2. For the BVNB model,
o7 = X\j(1+ 4);) implying that v; = 14 GX;,  A;,3 > 0. Consequently
v; > 1 which indicates the overdispersion case. However, the resulting model
is not a BINAR model with negative binomial marginals but a model that
effectively accounts for overdispersion. In specific, the statistical properties
of the BINAR(1) model with BVNB innovations are encompassed in the
vector of expectations px, = F(X;) with elements

Aj
1—O{j

i, = L =12 (3.21)
the variance-covariance matrix ~x,(h) with diagonal and off-diagonal ele-
ments equal to

(14 BN\ + oy
Cov(Xjpin, Xji) = — i B; J); i=12, h=0,1,... (322

1—ozj

and

a" B\
Cov(X;p4n, Xit) = ﬁ

1— (658D

;o J#i, h=0,1,... (3.23)

respectively, and the correlation matrix px,(h) with diagonal elements

Corr(Xjpn Xp) =o'y j=1,2, h=0,1,... (3.24)

and off-diagonal elements

i 1—ad)(1—ad)MA
Corr (X p4n, Xit) = o \/( s L ;o J#FL, h=0,1,...

(1 —agag) | (1+6M\ +a1)(1+ Bl +az)
(3.25)
Conditionally on the previous observations X;_; = {Xj,_1, X2,-1}, the
vector of conditional means px,, , = F (Xyt—1) has elements
Bx, = ;X1 + Ay, j = 1,20 For b = 0, the conditional variance-
covariance matrix yx,,_, (h) has diagonal and off-diagonal elements equal to
Cov(Xjppn, Xje| Xjeo1) = a1 — ;)X + A(1 + B))) and
Cov (X p4n, Xit| Xji—1, Xit—1) = BA Ao respectively, while otherwise it is the
zero matrix.

11



3.2.2 Estimation

Yule- Walker estimation

Using the moments pix;,, Corr(Xjs, Xj;-1) and Cov(Xy;, Xy ), as defined
in the previous section, and equating them to their sample equivalents, we
get

G- E:ZLQ(xJ;-— fj)(xjf—l'—’fj) (3.26)
2 i=a (it — 75)?
A= (1 — &)z, (3.27)

T
- 1 —0a
6 1 2 Z Tt — .1'1 th — I’Q) (328)
Ao P

Note that for a negative observed covariance there is a danger to obtain
non-admissible estimates. This deficit concerns both the Poisson BINAR(1)
model and the BINAR(1) model with BVNB innovations.

Maximume-Likelihood Estimation
For the BINAR(1) model with BVNB innovations it holds that

T +Ek+s) A : A2 ’ 5! o
falk, ) = L(B-1)k!s! (Al + X+ 6—1> (Al + X+ 5—1> (/\1 + X+ 5—1) (3:29)

Thus the conditional density (2.15) becomes

f(Xt|Xt 1705170527)\17)\276) =

igzzﬁ—kk—l—s) At b Ay )( B! )51
k"S' )\1 + )\2 + 5_1 )\1 + )\2 + ﬁ_l /\1 + )\2 + ﬁ_l

k=0 s=0

xl,t—l r1:—k Ty 1—1—T1¢+k Tot—1 Tot—S T2 t—1—T2t+8
X )@ (1 —ayq)™ T a1 = ag)™
L1t Lot — S

(3.30)

where g1 = min(zyy, x1,4-1) and go = min(xe, To4—1).
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3.3 Other distributional choices

As mentioned before, the choice of the joint distribution for Ry; and Ry; deter-
mines the properties of the underlying process. While the bivariate negative
binomial provides overdisperison, it is interesting to note that a selection of a
distribution with negative correlation can also produce negative correlation
between the two series (see 2.7). The literature on bivariate count distribu-
tions with negative correlation is limited. One of the reasons is that negative
correlation in bivariate counts occurs rather infrequently. However there are
such models in the literature, as for example the bivariate Poisson-lognormal
model of Aitchinson and Ho (1989) (see also Chib and Winkelmann, 2001),
the finite mixture model developed in Karlis and Meligkotsidou (2007) and
models based on copulas see, e.g. Nikoloulopoulos and Karlis (2009) and
the references therein. Finally, note that while we used a certain bivariate
negative binomial distribution, there are certain other alternatives in the
literature which could have been used. We have selected this one mainly
because of its relative simplicity.

4 Diagnostics

In this section we describe diagnostics for assessing the goodness of fit. Usu-
ally, in model fitting, this is accomplished by means of residual analysis.
However, due to the structural distinctiveness of INAR-type models, the
classical definition of residuals as differences between the observed and fitted
values, may prove to be inadequate as a diagnostic tool. We follow Free-
land and McCabe (2004a) by introducing a definition for residuals for count
data that distinguishes between a set of residuals for the survival process
ri; = a o X;_1 — aX;_; and another for the arrival component roy = Ry — .
In this section we attempt to extend the ideas of Freeland and McCabe
(2004a) to the BINAR(1) model.

For each one of the two series {Xy;, Xo;}, we define two sets of resid-
uals; one for each random component. So, for the survival components
we let rgjt) = oj o X1 — ;X1 and for the arrival components we let
rg? = Ry — \;, 7 = 1,2, In order to arrive at a sensible and practical
form of the above definitions, the unobservable quantities o; 0 X, and Ry
should be replaced with Eyja; o X;, 1] and Ei[Rj;| respectively, i.e. with
their conditional expectations given the observed values of Xj; and X .

PROPOSITION 2. Let E;|-] denote the conditional expectation to the
sigma field, 3¢ = o(Xj0, Xj1,...,Xjt), j = 1,2. For the BINAR(1) model

13



with bivariately distributed innovations the following equalities hold:

a1y 1 Py — 1 X100 — 1, Xo49)

E.lajo X, 4] = 4.1
tlen Lo P(x14| X101, Xo4-1) (4.1)
Qoo 1 P(xey — 1| X7 11, Xoy1 — 1)
FEilaso Xo; ] = : ’ : 4.2
t[ ? 2t 1] P($2t|X1,t—17X2,t—1) ( )
g1 g2
Zkzo Zokfl(xu — k) fo(xor — ) f3(k, 5)
B[R, = 2525 4.3
t[ 1t] P(xlt\Xl,t—sz,t—l) ( )
g1 g2
2.2 2 shiw — k) faze — ) fa(k, 5)
Ey[Ry] = 222 (4.4)

P (| X121, Xoj1)

where the densities fi(-) and fo(-) are given in (2.13) and (2.14),
fa(k,s) = P(Ry =k, Ry = 5), g1 = min(z1y, 21,4-1) and ga = min(wa, v24-1)-
Using Proposition 2 we can now define the residuals as

i = Bl = Blog o Xjem] = 0;Xje, and (45)

r* = B = B[Ry — ), for j=1,2 (4.6)
Regarding separately each one of the two series that comprise the BI-
NAR(1) model, it is noted that adding the components of the two new sets
of residuals gives the usual definition of residuals, i.e.
"+ = Elag o Xjua] — X0 + B[R] =
= Elog o Xjpo1 + Rjr] — a; Xj1 — A
= Ajt — Oéij’t,1 — )‘j = Tt(J). (47)

Thus, the adequacy of each component of the model may by assessed by
plotting the aformentioned sets of residuals.

5 Forecasting

The usual way to produce forecasts in time series models is via the conditional
forecast distribution. Freeland and McCabe (2004b) established the h-step-
ahead conditional distribution of the Poisson INAR(1) model, based on the
remark of Al-Osh and Alzaid (1987) that

h—1
(Xe, Xen) 2 <ah oXin+ Y a'oR Xth) (5.1)

1=0
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where R; is a sequence of uncorrelated non-negative integer-valued random
variables with finite mean and variance.

The above result holds also for the marginal distribution of each one
of the two series (X, Xo¢) that consist a BINAR(1) model. As in the
univariate case, a? o Xjin | Xji—n, j = 1,2, has a binomial distribution
with parameters (a?,ijt,h). Moreover, the joint and marginal distribu-
tions of Z 0 o} o Ry, ; and Z?:_ol aly o Ry, ; are determined by the joint
and marginal distributions of Xy; and Xs,. This relation can be described

h—1 h—1
in terms of the jpgf of {Z @io Ry i Y, aho R27t_7;}. Denote by S; the
i=0 i=0

h=1
quantity » ajo Ry, j, j = 1,2. Then,
i=0
Csy.51(51.52) H Crom((1— o} +als), (1 - af +abss))  (5.2)

Hence, the joint distribution of {Xy:, Xo;} given {Xi;p, Xorpn} is a
convolution of two binomial distributions with parameters (o, X7, 1) and
(ad, X5, 1) respectively, and a bivariate distribution with jpgf of the form
(5.2). Obviously, if (5.2) has not a closed-form expression, then neither the
h-step-ahead forecast distribution can be specified in closed-form. However,

it is straightforward to evaluate it numerically.
For the Poisson BINAR(1) model, it can be proved that

Gsi55(s1,82) = exp Ki — Z?) Ai(si— 1) + G — Oéh) Aa(s2 — 1)
+ (%ﬁ) (51— 1)(s2 — 1)] (5.3)

while the corresponding jpgf for the BINAR(1) model with BVNB innova-
tions is given by

h
Gs,.5,(51,82) = [1 — B} (51 — 1) — BAoad(sy — 1)]%7 (5.4)

7

I
—

Il
=)

which is not of a convenient form.

h—1 h—1
Note however that irrespective of the jpgf of Z ol o Ry teis D ab o Ry i Z}
=0 =0
closed-form expressions are available for their Condltlonal expectations and
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variances (conditional on X, Xo;). More specifically, it can be proved that

FE E i G| = 2Dy )
(ioagORN Z) (1_aj> ' >
and

h—1 2h h 2h

- 1 — o 1—a" 1—-a°
Vv E LoRi | = J i S X (5.6
ar(ioa]o N) (1_aj2>vjj+<1_&j 11— a2 J( )

J

Theorem 1 summarizes the h-step-ahead conditional jpmf and jpgf and the
corresponding conditional means and variances for the BINAR(1) model.
Specific expressions for the Poisson BINAR(1) and the BINAR(1) model
with BVNB innovations follow in corollaries 1 and 2 respectively.

THEOREM 1. The jpmf of {X1 r4n, Xorin} given {z17, zor} is given by

Po(Xa114n = 21, Xogn = To|21r, Tor) =

min(z1,x17) min(z2,z27)
1T _ T
< k ) (ail)xl k(l O/ll)ml otk

T —

% ( ToT > (Oégl)m275<1 _ O{g,)mg'rf:l‘g+8

To — S
h—1 h—1
j j
X f E aj o Ryrip—i =k, E a5 0 Ry pyn—i = S|T17, Tor
=0 =0

with means,

1—ah
E(xjrnlTor, xar) = ofja;r + (1 - Oj{) E(Rj); j=12 h=12,...
j
(5.7)
and variances,
1—a?
Var(z;rinzir, vor) = o (1 —a®)zr + | Var(R;)
3, T+h|41T £2T j 3 )T 1 —052 J
j

1—ah 1—a? ,
+ J _ | E(Ry); j=1,2, h=12...

(5.8)
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The corresponding jpgf of { X1 71n, Xorin} given {x1r, xor} is of the form

GX1,T+h,X2,T+h (31’ S2|$1T’ x2T> = (1_a}11+a}1131)X1T(1_ag+a332)X2TG31,SQ (317 52)
(5.9)
where G, s,(51, $2) is given in (5.2).

Corollary 1. For the Poisson BINAR(1) model, the jpgf and jpmf of
{XI,T+h7X2,T+h} given {IlT,I'QT} are given by

GX1,T+h,X2,T+h (817 32’$1T’ x2T) = (1 - O/ll + O/llsl)XlT(l - 0/21 + OC}QLSQ)XQT

1—al 1—al 1 —afad
X eXP{<1_a1) As1 + (1_02) A2s2 + (1——a11a2) P(s1—1)(s2 — 1)}

and
Po(X114n = 21, Xorin = To|lvir, xor) =
min(x1,z17) min(re,xor) T
(.57, ) b —ayrres
Ty
k=0 s=0
Xor h\z2—s h\Tor—x2+s
()b a

—_ ol _ . h _ _h, h
« expd— 1—aof At 1 — a5 Ny — 1 —afas é
1—aoy 1—as I —ajan
) _ah _ahah k—m _ah _ahah s—m _ahah m
mintko) [ () v - (et o] () 2o - () o T () o]

(k. —m)!(s —m)!m!

(]

respectively, with means,

1—al
E(zjrinlzir, vor) = o'z + — Oj{ Ao j=1,2 h=12... (510)
j
variances,
h h 1—of ,
Var(zjrin|oir, var) = of (1 — af )z + . Oé')\j o j=12 h=1,2,...

' (5.11)

and covariance,
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1—alal
COV(ZEI,T—HMx2,T+h|x1T7$2T) = m gb ) h = 1, 2, e (512)
— (e

Corollary 2. For the BINAR(1) model with BVNB innovations, the jpgf
and the jpmf of {Xy1in, Xorin} given {x1r, xor} are given by

GXl T+h, X2, T+h(817 52|x1T7 xQT) = (1 - O‘? + aiLSl)XlT(l - 0/21 + O‘SSQ)XQT

H [1— Bhad(s1 — 1) — BAac(ss — 1)}_5
1=0

and

Ph(Xl T+h = 3317X2,T+h = 1‘2\$1T7$2T) =
min(x1,z17) min(ze,ror) (

<L)

h—1
X f<§ o Rypin =k, E ab o Rypin z—S|$1T7$2T>

T - _
L )ty

)7 e(1 = afyrarete

o

h—1 h—1

respectively, where f | Y- al o Rypip i =k, >, abo Rorini = s|zir, x2T>
=0 =0

can be numerically calculated.

The means and variances of this process are given by,

h 1—af
E(xjrinlzir, vor) = o + T a‘)\j ;o J=12, h=12, (5.13)
J
and
e
Var(zjron|vir, xar) = af(l— o)z + - sz (14 BA))A
J

+ Ll A DU TP
1_()4]‘ 1_0[? ] .]_ » < et et
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whereas the covariance function is not of a closed-form.

The marginal probabilities Py, (z1 |17, zor) and Py (xs|z17, x27) can be cal-
culated directly as, Ph<I1|JI1T7 .TQT) = Zz2 Ph<.T1, (L’2|Z‘1T, (L’QT) and
Py (xo|z17, X07) = le Py (1, xo|T17, X27) TESpECtively.

Given the fact that the vector of parameters @ is unknown, in practice
we are only able to compute Py, (xy, 22|17, Tor; é) where 6 are typically the
maximum likelihood estimators introduced in section 2.2. Lack of knowledge
about the true values of the model parameters and the need to estimate them
introduce uncertainty in the estimation of the h-step-ahead jpmf’s. Estima-
tion uncertainty, i.e. the error made in estimating these probabilities, can be
assessed by taking advantage of the asymptotic normality of ML estimators.
Under standard regularity conditions, the ML estimator 8, denoted by é,
is asymptotically normally distributed around the true parameter value, i.e.
VT (0 — 0y) ~ N(0,i71), where ¢! is the inverse of the Fisher information
matrix (Bu and McCabe, 2008). The §-method can then be used for finding

A

the asymptotic distribution of a random variable g(€). An application of the
§-method to g(8) = Py (x|xr;0) provides us with a confidence interval for
the probability associated with any fixed value of x = (x1,23) in the fore-
cast distribution. Obviously, these intervals may be truncated outside [0,1]

(Freeland and McCabe, 2004b).

THEOREM 2 (Freeland and McCabe, 2004b): The quantity P, (x|x7; 6)
has an asymptotically normal distribution with mean Py (x|x7;6) and vari-

ance
oi(x;00) =T " OFn it a—PAh (5.15)
6=0, 80 0=06

00’
It is apparent that analytical expressions for (5.15) are only available
in cases where P, (x|x7) has a closed-form expression as is the case for the
Poisson BINAR(1) model (see Appendix I).

Closing this section, it is worth noting that summarizing the forecast
distribution by means of conditional expectations, while ensures a minimum
mean square error, it has drawbacks with respect to data coherency since the
integer-valued property of the time series is not taken into account. Free-
land and McCabe (2004b) suggest instead the use of the median of this
distribution which always lies in the support of the series and is therefore co-
herent. Also, Pavlopoulos and Karlis (2008) propose a parametric bootstrap
approach which guarantees both integer-valued predictions and prediction
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intervals with integer-valued ends. In our case, since the distributions are
discrete, it is relatively easy to find the median to use as prediction instead
of the mean, since the median will satisfy the discrete nature of the data.

6 Simulations

6.1 Simulation Design

The small sample properties of the Moment-based (MoM), Yule-Walker (YW)
and Maximum Likelihood (ML) estimators under the Poisson BINAR(1)
model, were assessed by conducting a series of simulation experiments. Count
series were generated assuming that the two innovation processes { Riy;, Ro }
follow jointly a bivariate Poisson distribution. For the various estimators
outlined in section 3.1, we derived the biases and computed the ratios of
MoM to ML and YW to ML standard deviations under different scenarios
for the model parameters o; j = 1,2 and A}, A5, ¢ (where A\j + ¢ = A\; and
A5 4+ ¢ = A\o). Simulations were carried out using R.

The sample sizes n considered were 50, 200, 500 and 1000. The pa-
rameters oy, ao designating the marginal dependence structures of the se-
ries Xy, and Xy respectively, were allowed to alternate between 0.3 and
0.5. The parameters A}, A3, ¢ which govern the correlation between the
innovations Ry;, R of the two processes at time t, were chosen as fol-
lows. The parameter ¢ was fixed at 0.5 or 1 while A} and \; were al-
lowed to be either 1 or 3. Some combinations were omitted since the per-
mutation between A} and A; makes in fact no difference. Thus, we fi-
nally considered the following configurations of the parameters: (A\f, A3, ¢) =
{(1,1,0.5);(1,1,1);(1,3,0.5); (1,3,1); (3,3,0.5); (3,3,1)}. The alternative com-
binations of the design parameters «;; 7 = 1,2 and A}, A5, ¢ resulted in a
total number of 24 simulation experiments per sample size and for each ex-
periment 500 iterations were conducted.

The simulated data sets that produced MoM or/and YW estimates in an
inadmissible range were disregarded and iterations were continued till reach-
ing the prespecified number of 500 per experiment. The number of invalid
results that were disregarded has also been recorded. For the optimization of
the likelihood function, we employed the nlm function in R adopting suitable
parameter transformations.

The main discussion below focuses on the medium sample size of n = 200
since in this case, the parameter estimators show a representative behavior
under the various simulation designs. For smaller sample sizes, higher biases
and lower SD ratios are obtained but no differences are observed in terms of
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inference. For n = 500 and n = 1000 all estimators generally show minimal
biases while the SD ratios clearly indicate the superiority of ML estimators.
Full details regarding the simulation design are available from the authors
upon request. Results are presented in detail in Appendix II.

6.2 Simulation Results

The degree of numerical instability problems encountered during the simula-
tion procedure, varied depending on the sample size. More specifically, the
tendency of MoM and/or YW methods to produce inadmissible estimates
was markedly greater for smaller sample sizes. In the 24 simulation experi-
ments of n = 50, the percentage of extra data sets needed to be sampled in
order to gather an array of admissible estimates ranged from 19% to 55%.
This percentage decreases rapidly as the sample size increases. For n = 200
it does not exceed the 15% while for n = 500 it hardly reaches the 3%.
For n = 1000 the higher observed precentage was about 0.8% but in the
vast majority of the simulation experiments no inadmissible estimates were
generated.

The biases of the estimates &;, j = 1,2 and 5\’1‘, 5\’5, gg of the Poisson
BINAR(1) model and the ratios of MoM to ML and YW to ML standard
deviations are presented in Table 1. All estimators perform well and exhibit
a downward bias for oy, as. Regarding the parameters A}, A}, ¢, biases
are mainly upward and clearly elevated in absolute value, especially in the
case of MoM and YW estimates. Increasing n to 500 or 1000 dramatically
decreases all biases while reducing the sample size to n = 50 has inverse
consequences. However, the performance of all the three estimators remains
poorer for A}, A5 and ¢ in comparison to aq, oy, independently of the sample
size. Furthermore, while the superiority of ML estimators in terms of bias
is clear for a;’s, j = 1,2, the picture is more vague for A}, A5 and especially
for . Comparison between the biases of MoM and YW estimators yields
similar conclusions. In particular, the biases of the estimators &;, j = 1,2,
are usually lower in absolute value when adopting the MoM but the same
does not hold with clarity for the estimators A%, A3 and even more for ¢.

Regarding the ratios of MoM to ML and YW to ML standard deviations
for alternative parameter configurations and simulated data sets of n = 200,
the advantages of ML estimators in terms of precision clearly emerge, since
all ratios are greater than 1. It is also worth noting that the ratios of MoM
to ML standard deviations are greater than the respective YW to ML ratios,
indicating that the YW method usully leads to more precise estimates than
those produced by MoM. However, this behavior is consistently reversed
when estimating the parameter ¢. Similar conclusions hold for shorter and
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larger count series.

The effect of sample size on the performance of the group of MoM, YW
and ML estimators is depicted in Figure 1. This figure also provides a graph-
ical inspection and comparison of the results obtained by employing differ-
ent estimators. We present graphically only one representative case i.e.,
(v, a9, AT, A5, 0) = (0.3,0.5,1,3,1). In view of a confrontation between the
different methods of estimation and conditionally on a limited sample size
(e.g. n = 50), the median estimates obtained by adopting the method of
maximum likelihood are apparently closer (and indeed impressively close) to
the real parameter values, than the median MoM and YW estimates. For
larger samples, all estimators perform well in terms of location. Regarding
dispersion issues, both the interquartile ranges and the overall range of the
produced values are narrower for the ML than for YW and even more for
MoM estimators. The only case in which dispersion differences are not defi-
nite, is in the estimation of the parameter ¢ but all its estimators should at
least be considered as equivalent.

Summing up, according to our results the ML, YW and MoM methods
are recommended in order of priority. The ML estimators are undoubtedly
superior while the inferiority of MoM to YW estimators is less discernible.
Finally, all the three methods of estimation yield more precise and less biased
estimates for the parameters oy, ay than for A7, A5 and ¢.

7 Applications

The data are part of a large database related to syndromic surveillance dur-
ing Athens 2004 Olympic Games and they refer to eleven different symp-
toms recorded during the period from March 2004 until end of September
2004 covering the period of Olympics and Paralympics games. For the pur-
poses of the present application we selected a dataset of moderate length
(n = 94) and considered two particular symptoms: “gastroenteritis (diar-
rhea, vomiting), without blood”and “other syndrome with potential interest
for public health”. The latter was a general category including all symptoms
that could not be classified in any of the following prespecified categories:
respiratory infection with fever, bloody diarrhea, gastroenteritis (diarrhea,
vomiting) without blood, febrile illness with rash, meningitis, encephalitis
or unexplained acute encephalopathy / delirium, suspected viral hepatitis
(acute), botulism like syndrome, lymphadenitis with fever, sepsis or unex-
plained shock and unexplained death with history of fever. From now on, we
will use the brevities “gastroenteritis”and “other symptom”accordingly for
the two symptoms under consideration. The series and their autocorrelations
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Table 1: Bias for the estimators &y, as, 5\{, 5\3 and qg and SD ratios of the
MoM and YW estimators to the respective ML estimators of the Poisson
BINAR(1) model at n = 200.

Bias SD ratios
(a1, az, X5, 5, @) MoM YW ML  MoM/ML YW/ML
(0.3,0.3, 1,1, 1) & | -0.006 -0.009 -0.004 1.499 1.172
&z | -0.003 -0.006 -0.001 1.493 1.159
Ar | 0011 0017 0.005 1.796 1.541
A3 | 0.007  0.009  0.000 1.771 1.522
é | 0.004 0009 0.008 1.333 1.396
(0.3,0.3, 1, 3, 1) &1 | -0.006 -0.007 -0.002 1.340 1.078
&s | -0.008 -0.009 -0.005 1.363 1.106
Ar | 0029 0029 0011 1.521 1.353
5| 0048  0.050  0.026 1.505 1.262
é | -0.012 -0.009 -0.001 1.162 1.191
(0.3, 0.3, 3, 3, 1) &1 | -0.011 -0.011 -0.004 1.349 1.075
&z | -0.007 -0.009 -0.003 1.413 1.106
Ar | 0049 0049  0.007 1.368 1.186
A3 | 0.027 0033 -0.002 1.432 1.236
é | 0.004 0007 0018 1.130 1.147
(0.3, 0.5, 1, 1, 1) & | -0.012 -0.013  -0.008 1.488 1.175
as | -0.022  -0.017 -0.005 1.990 1.241
Ar | 0034 0034 0.009 1.648 1.470
A5 | 0085 0059  0.007 2.215 1.587
é | -0.006 -0.003 0.013 1.209 1.270
(0.3, 0.5, 1, 3, 1) &1 | -0.015 -0.014 -0.007 1.292 1.075
&z | -0.013 -0.017 -0.007 2.345 1.323
Ar | 0041 0033  0.019 1.313 1.227
A5 | 0.065 0089  0.031 2.337 1.464
é | 0.001 0.004 0.005 1.161 1.193
(0.3, 0.5, 3, 3, 1) &3 | -0.012 -0.014 -0.009 1.440 1.104
&s | -0.017  -0.020 -0.008 2.290 1.291
Ay | 0046  0.051  0.054 1.412 1.243
A5 | 008 0101 0.054 2.100 1.401
é | 0.028 0034 0.010 1.133 1.163
(0.5, 0.5, 1, 1, 1) & | -0.016 -0.014 -0.002 2.138 1.243
&z | -0.023 -0.019 -0.008 2.092 1.272
Ar | 0069 0053 0.004 2.270 1.662
A5 | 0091 0070 0.023 2.223 1.678
é | -0.012 -0.005  0.006 1.192 1.289
(0.5, 0.5, 1, 3, 1) &1 | -0.022 -0.020 -0.007 2.032 1.238
&s | -0.007 -0.011 -0.001 2.394 1.308
Ar | 0069 0.055  0.004 1.739 1.408
A5 | 0028 0053 -0.015 2.256 1.448
é | -0.005  0.003  0.012 1.197 1.229
(0.5, 0.5, 3, 3, 1) & | -0.014 -0.017 -0.005 2.270 1.263
&z | -0.012 -0.015 -0.003 2.179 1.263
Ar | 0025 0037 0.020 1.995 1.396
A5 | 0017 0.027  0.014 1.942 1.391
é | 0.058 0069 0.012 1.198 1.240
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Figure 1: Boxplot with results from the simulation experiment with initial
parameter values (aq, ag, AT, A3, @) = (0.3,0.5,1,3,1).
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can be seen in figure 2. The gastroenteritis and other symptom series have
mean values (variances) equal to 1.29 (1.24) and 9.52 (16.53) respectively
implying overdispersion. The frequent zero frequencies in the gastroenteritis
series implies the appropriateness of fitting a count data model. The auto-
correlation functions for both series present a rather exponential decay with
a few exceptions. The first order autocorrelation coefficient is 0.24 and tends
to decrease as passing through higher lags.

Gastroenteritis Gastroenteritis

ACF
| | | |

0.2 04 06 08 1.0

number of cases
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|

T T T T T T T T T T T
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10
]
ACF

0.2 04 06 08 1.0

number of cases

0
L
-0.2
1

T T T T T
0 20 40 60 80 0 5 10 15 20 25

Observation Number Lag

Figure 2: Time series plots for the series of gastroenteritis and other symp-
tom.

In Table 2, ML estimates obtained by fitting a BINAR(1) model with
BVNB innovations are contrasted to the corresponding estimates that are
produced by fitting a Poisson BINAR(1) model, two independent Poisson
INARs (ignoring correlation between the series) and a bivariate Poisson
model (ignoring the time dependence). Compared with the independent
INAR(1) estimates, the Poisson BINAR(1) model produces lower values for
a1, Q9 and higher values for 5\1 and 5\2. This seems to be a reasonable result
since the correlation between the two series is ignored by the INAR approach.
Thus, the explanatory ability of the parameters A1, Ay is underestimated by
the two independent INAR(1) processes, a fact that naturally also affects the
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Table 2: Maximum Likelihood Estimates from fitting alternatively a BI-
NAR(1), two independent INAR(1) models and a simple bivariate Poisson
model.

BINAR(1) Independent INAR(1) Biv. Poisson Neg.Bin BINAR(1)
Estimate SE Estimate SE Estimate SE Estimate SE
A 0.2172  0.1075  0.2423F 0.11217 0.2760 0.1058
Qo 0.1539  0.0656  0.1544% 0.0689* 0.2650 0.0889
5\1 0.9993 0.1663  0.9669f 0.16567 1.2796 0.1173 0.9234 0.1651
As 8.1259  0.6857  8.1211% 0.7144* 9.6021  0.3214  7.0602 0.9323
¢ 0.9502  0.2878 1.1103  0.3147
B 0.1610  0.0673
Log-Lik -394.2857 -399.2293 -398.6475 -387.3354
AIC 798.5714 806.4586 803.2950 784.6709
Tgastroenteritis

¥

other symptom

estimation of the parameters aq, as. Comparing the log-likelihoods, one can
see that both the time series context and the correlation between the series
are needed. The BINAR(1) model with BVNB innovations can also model
the overdispersion and thus it provides the better fit.

It is clear that the time series models are better than the models that
neglect this. In addition the BINAR(1) model with BVNB innovations is
much better as it captures the overdispersion in the dataset together with the
correlation between the two series but also the autocorrelation within each
series. The standard errors of the estimates obtained by the two approaches
(standard errors are derived numerically from the Hessian) show that fitting a
BINAR(1) model to the data generally improves the precision of the produced
estimates. On the other hand it is apparent that ignoring any form of the
correlation (either within or between) or the overdispersion leads to incorrect
standard errors and hence incorrect inferences.

In what follows we concern results obtained from fitting a BINAR(1)
model with BVNB innovations. However, similar conclusions are derived
regarding the Poisson BINAR(1) model. Figure 3 includes the plots of the
residuals of the two series. Since these residuals have not been standardized,
the survival and arrival residuals add up to the Pearson residuals. Moreover,
a large Pearson residual is comprised by a large survival and arrival residual,
while a small Pearson residual consists of a small survival and arrival residual.
The signs of survival and arrival residuals may also differ in some cases.
However, they still keep their similarity in pattern.

Another interesting point is the reflection of the model structure in the
correlation between different pairs of residuals. More specifically, the sam-
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ple correlations between the survival and arrival residuals of each series are
very high: 0.51 for the gastroenteritis series and (.82 for the series of other
symptom. The arrival residuals of the two series are also significantly corre-
lated at 0.30 while the survival residuals exhibit a weak correlation at 0.10.
Those results are in accordance with the structural assumption underlying
the BINAR(1) model that the correlation between the two series has been
introduced by using correlated innovation terms.
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Figure 3: Non-standardized residuals of the gastroenteritis and other symp-
tom series.

Figure 4 shows the one-step-ahead marginal predictive distributions
P(xy 41|17, xor) and P(xo 1|17, xor) where X corresponds to the se-
ries of gastroenteritis and X, corresponds to the series of other symptom.
The last observation was equal to 1 for the series of gastroenteritis and equal
to 3 for the series of other symptom. The usefulness of such predictive dis-
tributions is that they permit the recognition of an unexpectedly large ob-
servation and thus alarm for a more thorough examination of the situation
under surveillance. As one can see in figure 4, both distributions are skewed
to the right which is in accordance with the shapes of the Poisson and nega-
tive binomial distributions. According to the BINAR(1) model with BVNB
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innovations, the most probable one-step-ahead predictive value is equal to
1 for the gastroenteritis series and equal to 6 for the series of other symp-
tom. The larger dispersion of the series of other symptom compared with the
gastroenteritis series is also reflected in the plot of its predictive distribution.
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Figure 4: The one-step-ahead predictive distributions P(xyri1|Tir, Zor)
P(xo741|17, 2o7) Of the series of gastroenteritis and other symptom respec-
tively. The last observed values (T = 94) are equal to 1 and 3 accordingly.

Application of Theorem 2 provides us with appropriate confidence in-
tervals for the estimated one-step-ahead probability forecasts obtained from
both BINAR(1) models under consideration. Some representative results are
presented in Table 3 for both bivariate (lower panel) and univariate prob-
ability forecasts (upper panels). Most of the intervals are narrower when
prediction is implemented through the BINAR(1) model with BVNB inno-
vations confirming the superiority of the aformentioned model for our data.

Two examples of the contours of the joint probability density functions of
the estimated one-step-ahead jpmf’s for pairs of possible counts are shown
in figure 5. Since the d-method has been used for the calculation of the
conditional probability forecasts, their joint probability density functions are
asymptotically bivariate normal (Bu and McCabe, 2008). It is obvious from
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Table 3: 95% C.1.’s for some one-step-ahead probability forecasts.

Poisson BINAR(1) Neg.Bin BINAR(1)
i P(XT+1 - ’l) P(XT+1 S Z) P(XT+1 - ’L) P(XT+1 S Z)
0 (0.053, 0.170) (0.053, 0.170) (0.205, 0.407) (0.205, 0.407)
1 (0.183, 0.314) (0.235, 0.484) (0.360, 0.371) (0.565, 0.778)
2 ((0.265, 0.279) (0.501, 0.762) (0.169, 0.251) (0.816, 0.947)
J P(Yr41 =j) P(Yr41 < Jj) P(Yr41 = j) P(Yri1 <)
5 (0.028, 0.066) (0.046, 0.125) (0.089, 0.114) (0.284, 0.333)
6 (0.052, 0.098) (0.099, 0.224) (0.086, 0.130) (0.414, 0.419)
7 (0.081, 0.125) (0.179, 0.348) (0.081, 0.132) (0.500, 0.546)
i,j PXprpi=4,Yrp=j) PXpp<i,Yp <j) PXpp=i,Yrp=35) PXpp <i,Yp <)
0,5 (0.007, 0.009) (0.002, 0.030) (0.035, 0.037) (0.106, 0.130)
1,6 (0.021, 0.024) (0.028, 0.127) (0.040, 0.042) (0.207, 0.329)
2,7 (0.028, 0.030) (0.105, 0.282) (0.021, 0.023) (0.447, 0.515)

the contours presented in figure 5 that the estimated forecast jpmf’s for
different pairs of counts are more or less correlated. For example, the first
contour suggest that P(XTH =1,Yr1 =6) and ]S(XTH =1,Yr 1 =5) are
highly correlated at 0.875 while the correlation between P (Xr41=0,Yry =
5) and P(X7yq = 1, Y7y = 8) is negative and weaker (-0.408).

Figure 6 shows the observed values of the series of gastroenteritis and
other symptom together with the corresponding one-step-ahead predictions.
The divergence between real data and forecasts is also portrayed. The hori-
zontal lines correspond to the observed mean values of the two series. Obvi-
ously, divergence is larger for observations that lie far away from the mean.
This seems to be expected since the one-step-ahead predictions have the
same mean but are less dispersed than the original series. Note also that the
correlation coefficient of the two series of forecasts is equal to the correlation
coefficient of the real data series.

8 Concluding Remarks

The main focus in this paper is on bivariate time series for count data. Gener-
ally, the desired BINAR(1) model can be constructed in two different ways:
The first approach prespecifies the form of the marginal distributions and
subsequently identifies the required form of the distribution of the innova-
tions in order for stationarity to hold. In the second approach it is the choice
of the form of the innovations distribution that leads to the specification of
the underlying marginal distributions. The models proposed in this paper
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Figure 6: Observed values of the series of gastroenteritis and other symp-
tom and the corresponding one-step-ahead predictions.The horizontal lines
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have been built following the last approach. In particular, we considered
two different BINAR(1) models, one with bivariate Poisson innovations and
another one with bivariate negative binomial innovations. The former spec-
ification has the facilitating property that the joint distribution of the two
series under consideration is also bivariate Poisson. In the latter case, we
don’t end up with a bivariate negative binomial INAR(1) process but we
obtain a BINAR(1) model that effectively accounts for overdispersion. De-
viations from the equidispersion restriction could alternatively accounted for
by assuming another distribution for the innovations, e.g. mixed Poisson, or
by the inclusion of appropriate regressors. Results on such extensions will be
reported elsewhere.

It is of course self-evident that the proposed model is not a panacea. For
example, when significant correlation between the series under consideration
is present at lags higher than 1, fitting a BINAR(1) model proves to be rather
inadequate. Thus, extensions of the present model to higher orders would
be a useful contribution to the improvement of its flexibility. Moreover, the
structure of real-life data frequently implies need for the inclusion of both
autoregressive and moving average components (when for example seasonal
patterns are observed in time series of counts). So, extending the bivariate
INAR model to a bivariate INARMA model seems to be another interesting
challenge. Finally, generalization of the proposed process to the multivariate
case would provide a great opportunity for modelling more than two time
series of correlated count data. In this case, the definition of a multivari-
ate discrete distribution for the innovation process is needed. The existing
models have certain limitations and they do not lead to models with well
specified marginals. Hence inference can be difficult with standard methods
like maximum likelihood and some alternatives, like composite likelihood,
should be considered.
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Appendix 1.

PROOF OF EQUATION (2.6).

COV(Xlt, R2t) = E<X1tR2t> - E(Xlt)E(R2t)
= E(XltRQt) — H1 A2

(Z Oéi o th—i) Ry

= Fk — p1 A2

1=0

= Z ozi {E(th,iRQt)} — N1>\2

1=0

= E(RyRy)+ Y oi {E(Ru_1Ra)} — e

i=1

= Cov(Rip, Roy) + Mo+ > ol {Mda} — i

=1
= Cov(Ry, Ry) + Y af {Aida} — ik
=0

= COV(th, RQt)
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PROOF OF EQUATION (2.7).

i. h=20

COV(Xlt, th)

E( X1 Xo) — papio

E{ X1 (g0 Xoy1 + Ro)} — papto

Qo B( X Xop—1) + E(X1 Roy) — papio

o B( X1 Xo—1) + puAe + Cov(Ryy, Ror) — puape

o (X1, Xo—1) — agpia iz + Cov(Ryy, Ray)

asCov(Xyy, Xog—1) + Cov(Rys, Roy)

ol {(ay 0 Xyy1 + Ru) X1} — agpapio + Cov(Ryy, Ryy)

a1 B( X1 1 X0 1) + aaB(Ry Xoy 1) — agpiapio + Cov( Ry, Roy)
a0 B( X1 1 X 1) — anaapapio + Cov(Ryy, Ray)
ayaeCov(Xqy_1, Xoy—1) + Cov(Ryy, Ray)

a1 B { X1 1(ag 0 Xopo + Rop1) } — ancapiapio + Cov( Ry, Roy)
a1a§E<X1t—1X2t—2) + 041612E(X1t—132t—1) — QpQofiy iy + COV(Ru, R2t>
OéloégE(Xltleme) — a1Oé§M1M2 + (1 4+ aqan)Cov(Ryy, Rat)
a10aCov(X 1, Xor—2) + (1 + ayag)Cov(Ryy, Ryy)

)+ (1 4 ayas)Cov(Ryy, Roy)

)+ (14 ajay + ajad)Cov( Ry, Ry)

)+ (

1+ aras + a2a2)Cov(Ryy, Ry)
h—1
OéiLOégCOV(Xlt,h, thfh) + COV(th, Rgt) Z(alOtz)j

Jj=0

2 2
OélOCQCOV(Xlt_Q, th_g

2 3
OéloéchV(Xlt,Q, thfg

3.3
aja;Cov(Xyy—3, Xor—3

Assuming that {X7,, X5} is a stationary bivariate process, it holds that

COV(Xlt—Hu X2t+h) = COV(Xlt—ha X2t—h)
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T
L

= alonCov(Xlt,th) COV(th,R2t> (Ozlalg)j:COV<X1t_h,X2t_h)

<.
Il
o

h—1 h—1
= a’fo/; {al%Cov(Xlt hy Xot—p) + Cov(Ryy, Rop) Z a103) } + Cov(Ryy, Ray) Z ayag)’! ‘
7=0 7=0

= Cov(X14—n, Xot—n)

T
L

= 041 a%hCov(Xlt,h, Xot—n) + Cov(Ryy, Roy)(1 + o/fag) (alag)j = Cov(Xi—n, Xot—n)

<.
i
=)

Cov(Ruy, Ror)(1 + afal) Y125 (anan)!

= Cov(Xyi_p, Xot—n) =

1= (afal)?
COV(R1 ,RQ ) Z (alag)J
= Cov(Xitn, Xor-n) = tl za a])g
- 1642
= Cov(Xy, Xop) = M
1-— (658D

i h=1,2,..

COV(Xlt-i-haXQt) = E(X1t+hX2t) — H1f2
= E{o10 Xy 1+ Ruan)Xor} — o
= o1 B(Xityn—1Xot) + E(RypnXor) — piapio
= a1 B(Xuppn—1Xo) + Aipte — papo
= a1 E(Xqppn—1Xot) — o figfiz
= Oé1COV(X1t+h71, th)
= E{oq o Xyppn—o + Ripsn—1)Xot} — aqpiafio
= alE(Xypyn2Xo) + a1 E(Rypn1Xot) — qupinfio
= 0FE(Xupyh2Xor) + a1 difia — aufinfin
= &%E(Xlt—&—h—QXQt - a%ulm
= afCov (X112, Xot)
= o/fCov(Xlt, Xot)

h
a
= —1—Cov(Ry, Ry)

1— 109
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PROOF OF THE EQUIVALENCE OF CLS AND YW ESTIMATORS FOR
THE POISSON BINAR(1) MODEL

The CLS estimators of the parameters a;, \;, 7 = 1,2 can be found by
minimizing the criterion

Qaj, N) = Y T(Xj—E(Xp|X;0))°

t=2

(Xje — (X1 + M)

] =

w
[|
N

S0, in evaluating the derivatives of ) with respect to a; and \;, j = 1,2, we
obtain:

GCLS — > i (X5 — X)) (Xj1 — X))
’ ZtT:Q (Xj,t—l - Xj)2

T T

~ 1 B

)\jCLS = ﬁ { E th - jCLS E Xjﬂf—l}
t=2 t=2

These estimators coincide with the corresponding ones for the Poisson INAR(1)
model. Freeland and McCabe (2005) prove the asymptotic equivalence be-
tween the YW and CLS estimators for the Poisson INAR(1) model and thus
this equivalence also holds for the BINAR(1) model. In order to accomplish
the proof we have to show that the equivalence also holds for the parameter
¢ of the BINAR(1) model:

For the evaluation of the CLS estimator for the parameter ¢, we define
the criterion

(Q(Oél, /\1)Q(Oé27 >\2) - 70|t—1)2

] =

S:

t=2

{[ Xt — (X1 o1+ M) [Xor — (@eXoso1 + A2)] — ¢}2

[M] =

t

||
N

Minimization of S with respect to ¢ yields
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_ 1 T
¢CLS = ﬁ{z Xlt_al Xlt 1) (X2t—042 X2t 1)
t=2
T T
Z Xlt—Oél Xlt 1 Z X2t—042 th 1)}
t=2 t=2

The YW estimator of ¢ is given by

~ (1 . dYWdYW) T T T
¢YW = lT 2 ZXltht - ZXlt Zth
t=1 t=1 t=1

Obviously,

T—
t=
T T
- Z(Xu—&l Xi-1) Y (Xo — af Xm_l)}
t=2 t=2

T T T
~ ~ 1
- T1/2(¢YW B ¢CLS) — m {Z X1 X — ZXMZX%}

agrsa CLSTl /2 {

> Xi1Xap 1—ZXM 1ZX2t 1}
~CLST1/2 T

+ —{let 1X2t_ZX1t IZXQt}
~CLST1/2

+ —{ZXltXQt 1—ZX1tZX2t 1}
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= TG - 5 = 0,1

and since,
T1/2($YW . ¢) o T1/2(QN§CLS _ ¢) _ T1/2(¢~)YW o &C’LS) P

it follows that both estimators have asymptotically the same distribution.

PROOF OF EQUATION (4.1).

min(x1g,x10—1) min(Tag,T2—1)
" (

E Xy
t[alo : 1] ($1t|X1t 17X2t 1 Z Z

s=0

onlf(l — al)f’flt—lfk ( ‘T2;—1 ) as(l — ag)™-17°
Xf(th =1 — k, Ry = oy — 8)

min(z1¢,21¢—1) min(cag,rat—1)

1 Ty — 1 )
= E g T1p—
P(wlt‘XltflaXthl) e ( k-1

Tt k=1 s=0

xalf (1 — ay )" n—17* ( ngl ) as(1 — ag)™—17¢

Xf(th =1 — k, Ryt = 29 — 5)

o min(xi¢,21¢—1) min(Tee,Tat—1) . 1
a 17111 -1 —
P14 X1p-1, Xor—1) Z Z Z ( k—1 >

T2t s=0

Xa’f 1(1 al)xlt—lflf(kfl) ( @;_1 > as(l — ag)™-17°

X f(Ry = x1 — k, Ry = w3 — 8)

min(x1:—1,216—1—1) min(xa,x2t—1)
- Q1131 Z Z ( Typ—1 — 1 )
P(xlt’XltflaX% 1 k

Tot s=

o
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xaf (1 — ay)“ 11k ( x2;_1 ) a5 (1 — ag)®=17°

Xf(th =21 — 1 —k, Ry = woy —S)

_ 0411751t71P($1t - 1‘X1t71 - 1,X2t71)
P($1t|X1t—1,X2t—1)

Equation 4.2 can be proved similarly.

PROOF OF EQUATION (5.6).

For the proof of eq.(5.6) we "Il make use of the following property of thinning
operation:
El(ao X)) =a*B(X?) +a(l — a)E(X)
= Var[(ao X)*] = a*Var(X) + a(l — a)E(X)

Thus,
h—1 h—1 h—1

Var (Z o Rj,ti> = Z(Q?)Zvar(Rjt) + Z (1 — %) E(Rj)
i=0 i=0 i=0

1—a?h 1—al 1-—a?h
- (1_(52>Var(Rj)+<1_aJA_ 1_032>E(Rjt)
j j

J

ESTIMATION UNCERTAINTY OF THE POISSON BINAR(1) MODEL

For the Poisson BINAR(1) model, we let Or = (G, G, A1 5\2,55) be the
ML estimators of @ = (a1, a2, A1, A2, @) based on a sample of size T'. Then,
eq.(5.15) can be written as
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where z,;}
oP,
8041 N

+
oP,
aag N

+

0P,

2 op 2
h -1
U9 5+ I35

990> ( Ol g 90)

2 2
0P, _ 0P, . 0P, 0P, ,_
o @4i + Zaé 2| 77— — 21,5
8)\2 0-0, 8(25 0—0, 8051 8042 =6y
49 8Ph (9Ph 1.9 @@ _1 (9Ph 8Ph i1
8041 8)\1 0=0, 13 8061 8)\2 0=0, 14 8041 8¢ 0=6, 15
0P, 0P, 0P, 0P, 0P, 0P,
+ o2 A s+ 2| 2 s+ 2| i
8042 8)\1 =6, 8&2 (9)\2 =6, 8042 8¢ =0,
RN LR N R X005 o [0Pu0R -
0N 0Nz gg, ) O 00 |g_g, 35 0N 00 |p_g, ) **
is the k, j-element of the matrix i~%, k,j = 1,2,...,5 and
h h—1
1 ahxlT {Ph($1 — L ag|wir — 1, 297) — a7 P21, 22|17, $2T)}
— o
M(L—hai™ — (1= h)at
1 (11 2( Jor) {Pu(z1, xo|21r, mor) — Pr(21 — 1, 220|217, Zo7) }
—af)
(1 — ha"tal™ — (1 — h)ala
20 (1 2@ o )<2 ) : 2> {Pu(x1, zo|217, T27)
— Q1Qp

Ph(ﬂvl - 17$2|$1T7$2T) - Ph($17$2 - 1|I1T,$2T) + Ph(xl — 1,29 — 1|$1T,$2T)}

h

-’ {Pu(@r, 22 = Urir, 2oy — 1) — 057" Py (21, 22297, 227) }

- Q3
Xo(1—hay™ —(1—h

! (21 2 () Joz) {Pn(x1, 22|17, Tar) — Pr(1, 29 — 1217, T2r) }
a1¢(1 — haf 'al™ — (1 — h)alhal)

P
(1 — aay)? { P21, 22|T17, To7)

Ph(xl - 1,$2|5E1T,I2T) - Ph($1,$2 - 1|5L‘1T7$2T) + Ph($1 — 1,29 — 1|$1T,$2T)}

O\

1-— ah
(1 — ) {Py(z1, 22|17, T2r) + Pp(21 — 1, 22|17, T2) }
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0P,
%

1—ah
— (1 a2> {Pr(@1, m2|2rr, war) + Pro(ay, 22 — Uz, 2or)}
—

op, (11— altal
d¢

- Oz1a2) {Py(x1, x2|T17, Tor) — Pp(21 — 1, 232|217, To7)

—  Py(z1, 20 — lzyr, wor) + Pr(xy — 1,29 — oy, ar) }

In order to obtain analytical expressions for the elements that comprise
the Fisher information matrix ¢i~' we follow the notation of Freeland and
McCabe (2004b) and denote by /g the second derivatives of the log-likelihood
of the Poisson BINAR(1) model with respect to @ = [ay, ag, A1, Ao, @]

EOCIOCI gamz €a1)\1 £a1>\2 €a1¢
gOéQC“Q gol2>\1 gaz)a ga%f)

lg = Oixi Oaxe e
Oxons gf\%ﬁ
Coo

Through ordinary algebra it can be shown that

T
7 B 1 Z {2$1,t1P($1t - 1,$2t‘331,t71 - 1,952,t71) "
= — — X141
o (1—on)? =1 P(z14, Tor|01,4-1, T20-1)
. o1 (1m0 — V) P@yy — 2, op|@1 021 — 2, 224-1)
P($1t,$2t|ﬂ?1,t—1,$2,t—1)
- ($1,t—1p($1t — 1L zy]ar -1 — 1, 5172,t—1))2
P(x1t, oty -1, T24-1)
T
J B {2$2t 1 P2y, w9 — a1, 2041 — 1)
asaz Z — Tot—1
1 - Oé2 1 ($1t, 1’2t’1’1,t—1, xz,t—1)
X $2,t—1($2,t—1 - 1)P(I1t7 Lot — 2|$1,t—17 Tot—1 — 2)

P($1t7$2t|$1,t717$2,t71)

_ (xz,t1p($1t,$2t - 1|371,t717x2,t71 - 1))2}

P(x1t7$2t|x1,t717x2,t71)
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T
/ . {P($1t -2, $2t|l’1,t71, x2,t71) (P(xu -1, $2t|5€1,t71, xz,t1))2}
)\1)\1 - Z J—

—1 P(xlt: $2t’$1,t71, $2,t71> P(xlt, $2t’$1,t717 x2,t71)

T
A {P(wltath —2[x1 -1, T24-1) (P(QTlt,iUQt — 1z, $2,t—1))2}
e =) -

P(x1y, o211, T24-1) P(x1y, Tor| @1 -1, T24-1)

1

T

loy = x

e ; {P(l‘lt, Tor|T1 -1, Tap-1)
{2

P(xlt — 1,29 — 1|$1,t—1,$2,t—1) - 2P($1t — 2,19 — 1|$1,t_1,x2,t_1)

1
— 2P(zyy — 1,90 — 2|@1 41, X2 4—1) + P21y — 2, 29 — 2|@14-1, T24-1)

+ P(xi — 2,091 4-1, T2p—1) + P(x1, Tor — 2|1 421, T24-1)}
1
+ X
P2(371t7x2t|x1,t71,x2,t71>
X {2p(9€1t - 17x2t’x1,t717x2,t71)P(371t — 1,29 — 1|$1,t71, 1’2,1&71)
2P(x1e, xor — U@y i1, Tog—1) P(@yy — 1, 29 — 1@y 021, T24-1)
- QP(xlt - 171‘2t|ﬂ€1,t—1,$2,t—1)P($1t7$2t - 1|I1,t—1; I2,t—1)
- P2(331t — 1,29 — 1|9€1,t71, 1’2,%1) - P2(5U1t -1, x2t|x1,t717 5172,t71)
—  PYay,xn — w1, 0201) } }
T
é’ _ Z{ Ti1t—-1T2t—1 y
e —1 (1 —a1)(1 = az) P2z, I2t|I1,t—1, $2,t—1)
X AP(@1, vou|T14-1, T21) P(@1e — Lwor — L0 — 1,m901 — 1)
- P(-Tlt -1, $2t|l’1,t71 - 17%’2&1) P(l’ml’m - 1|$1,t71, Tot—1 — 1)} }
T
Z’ N = Z{ T1t—1 y
o (1 - 041)P2(I1t;I2t|$1,t—1;$2,t—1)

t=1
{P(fflt,$2t|$1,t—1,x2,t—1)P($1t -2, $2t|$1,t—1 -1, $2,t—1)

X

- P(l‘lt -1, x2t‘x1,t717x2,t71)P($1t - 17x2t’$1,t71 - 17352,1571)} }

44



T

7 o X2 t—1
gag)\g — Z{(l—OQ)P2< X

—1 T1e, Tog| 101, Top1)

X {P(ivmiU2t|iU1,t—1>iU2,t—1)P($1t7xzt - Q‘Il,t—laxz,t—l - 1)

- P($1t7$2t - 1\33'1,1571,552,1&71)]3(1'1“ Lot — 1’$1,t71, Tot—1 — 1)} }

T
e = 34 .
e —1 (1 — a1) P (21, 2o w111, T2,0-1)

X AP(x1y, vor|@1 i1, Tog—1)P(ay — 1,29y — L@y o1 — 1, 204-1)

— Pz, xo — Y11, 00-1) P — 1, 2| w1421 — 1, 294-1) } }

T
g N = Z{ T2 t—1 y
o (1 - 042)P2(I1t;$2t|$1,t—1;$2,t—1)

t=1
X {P(Zﬁt,$2t|$1,t—1,$2,t—1)P($1t — 1,29 — 1|$1,t—1, Tot—1 — 1)

- P(l’lt -1, $2t‘$1,t71,$2,t71)P($1t, Tot — 1’151,7;1; Tot—1 — 1)} }

Eomiﬁ

]~

T14-1 1
: P -2 —1 1—1 _
{(1 - 041) {p<x1tax2t‘x1,t—lax2,t—l) [ (ﬂﬁu o |$1’t ! T2 1)

t=1
- P(xlt -2, 96’2t|951,t71 -1, x2,t71) - P($1t — 1, w9 — 1\$1,t71 -1, x2,t71)]
P(xy — 1 oylri i — 1, 2941)

_ p . o ) )
P2(x14, ot|1,4-1, To4-1) [P(2 » L2t |$1,t 1, T2t 1)

—  P(xy — 1, zo|w1-1,T24-1) — P21y, oy — 1|@1 421, T24-1)] } }
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T
€a2¢ = E { 2 { [P(xlt — 1,29 — 2|$1,t71:$2,t71 - 1)

—1 1— 062 P($1t, x2t‘x1 t—1, $2,t71)
- (ImIQt - 2|$1ze 1, L2,t—1 — 1) P(l'ht — 1,29 — 1‘$1,t71,$2,t71 - 1)]
( Tit, Lot — 1|x1,t7175€2,t71 - 1)

— P -1 -1 _ _
P2(x14, og|x1,4-1, T24-1) [Pl o 11, T2e1)

— Pz, xo — U@y —1, 204-1) — Ploy — 1, 29|21 0-1, T2 4—1)] } }

P2(x14, Tog| 1 0-1, Ta 41

T

; 1

Uare = E { ) {P(z14, wot|w14-1, T2 p—1)P(z14 — 1, 09r — L|@1 421, T24—1)
t—

—  P(oy, o — Uwy4o1, wo1) P(r1e — 1, ot |71 421, T2 4-1) } }

T
. 1
14 :Z{ Plxy — 2,200 — a1 421, o
A1 - P($1t7$2t|$17t_17$27t_1){ ( 1t s L2t | 1,t—1, L2t 1)
— Pzt — 2, m9t|@14-1, 24-1) — P(w1e — 1, w9s — 1|@1 421, T24-1) }
(ﬁﬁu — 1, zot|T1 -1, T24-1)
— P —1 —1 _ _
P2 ($1t,$2t|$1,t—1,iv2,t—1) { (l‘lt » Lot |1’1,t 1, L2t 1)
- P(xlt -1, x2t’x1,t717 56’2,1#1) - P($1t75€2t - 1|$1,t717$2¢71)} }
. T 1
bop = Y P(ay — 1,9 — 2|14 _
A2 — {P(x1t7x2t|x1,t17372,t1>{ (331t y Lot ’331,1: 1, L2t 1)

- P(xlt, Lot — 2’351,7;17 56’2,1#1) - P(l’lt — 1,29 — 1‘1’1,75717-7;2,1671)}

Play, xor — 1|1, 224-1)
- 7 7 P(xy — 1,09 — 1@y 421, T -1
Pz(mlt,$2t’$17t_1,$27t_1) { ( t ’ t | =1 t )

— P(xy — 1 wylrim1,200-1) — P14, Xor — 2141, T20-1) } }

Note that, in contrast to the univariate case, the information (as well
as the scores) of the Poisson BINAR(1) model cannot be decomposed into
quantities associated with each component of the model seperately. This
barrier is just due to the model’s structure, i.e. to its bivariate nature.
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The Fisher information matrix ¢ can then be calculated as usual:

01] s o]

where £(0) is the log-likelihood of the Poisson BINAR(1) model.

i--5)|
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Appendix II. Simulation Results

Table I. Bias for the estimators &y, s, 5\{, 5\5 and (;3 and SD ratios of the
MoM and YW estimators to the respective ML estimators of the Poisson

BINAR(1) model at n = 50.

Bias SD ratios % Extra Datasets
(a1, a2, N}, A5, @) MoM YW ML MoM/ML YW/ML
(0.3,0.3, 1, 1, 0.5) a1 | -0.034 -0.036 -0.015 1.212 1.005 19.00
Go | -0.023  -0.029  -0.009 1.327 1.065
Ar | 0066  0.065 0.014 1.324 1.186
A5 | 0026 0035 -0.011 1.387 1.213
¢ | 0.003 0007 0.022 1.065 1.087
(0.3, 0.3, 1, 1, 1) &1 | -0.043 -0.042 -0.019 1.234 1.038 23.60
G2 | -0.031  -0.029  -0.007 1.225 1.039
Ay | 0150 0.146  0.035 1.343 1.198
A3 | 0124 0.116  0.008 1.361 1.210
¢ | -0.055 -0.051  0.009 1.045 1.061
(0.3, 0.3, 1, 3, 0.5) a1 | -0.029 -0.030 -0.011 1.197 1.002 39.40
Go | -0.025  -0.029 -0.012 1.231 0.996
Ar | 0.009  0.009 -0.049 1.122 1.039
X3 | 0.060 0.079 -0.006 1.254 1.056
6 | 0.052 0055 0.085 0.944 0.955
(0.3,0.3, 1, 3, 1) & | -0.051 -0.041 -0.014 1.053 0.951 24.60
G2 | -0.028 -0.031  -0.008 1.254 1.015
Ay | 0168 0140  0.031 1.095 1.041
A3 | 0159 0175 0.028 1.371 1.148
¢ | -0.060 -0.058 -0.007 0.975 0.984
(0.3, 0.3, 3, 3, 0.5) a1 | -0.025 -0.031 -0.009 1.257 0.982 42.40
Gs | -0.017  -0.026  -0.009 1.267 0.999
Ar | -0.160  -0.136  -0.192 1.225 1.043
A5 | -0.222  -0.182  -0.210 1.242 1.072
6 | 0263 0270 0249 0.961 0.979
(0.3,0.3,3, 3, 1) & | -0.034 -0.038 -0.016 1.207 0.962 22.20
G2 | -0.014  -0.027 -0.013 1.237 0.996
Ar | 0010 0019 -0.066 1.282 1.123
A3 | 0121 -0.056  -0.092 1.228 1.071
é | 0155 0167 0.158 1.010 1.031
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Table I (cont.). Bias for the estimators &1, s, 5\{, 5\5 and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 50.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.5, 1, 1, 0.5) &1 | -0.034 -0.035 -0.011 1.210 1.007 27.00
G2 | -0.083  -0.067 -0.020 1.580 1.123
Ar | 0041 0041 -0.031 1.229 1.116
A | 0179 0127 -0.018 1.735 1.348
$ | 0.023 0.024 0.060 0.964 0.980
(0.3, 0.5, 1, 1, 1) é1 | -0.040 -0.036 -0.007 1.162 0.974 29.20
do | -0.093  -0.072 -0.021 1.543 1.153
Ar | 0199 0.188  0.003 1.302 1.154
A5 | 0403 0318  0.043 1.856 1.476
¢ | -0.096 -0.096  0.015 1.015 1.032
(0.3, 0.5, 1, 3, 0.5) &1 | -0.046 -0.046 -0.028 1.179 0.986 44.00
G2 | -0.037  -0.050 -0.015 1.860 1.193
Ar | 0.005 0.000 -0.008 1.034 0.982
A5 | 0077 0164 0.012 1.831 1.247
é | 0.090 0.095 0.078 0.960 0.971
(0.3, 0.5, 1, 3, 1) 61 | -0.036 -0.033 -0.008 1.138 0.943 36.40
&2 | -0.071  -0.066 -0.016 1.738 1.150
Ar | 0156 0.144  0.001 1.139 1.049
A5 | 0517 0480  0.090 1.742 1.248
¢ | -0.067 -0.063  0.021 0.978 0.992
(0.3, 0.5, 3, 3, 0.5) &1 | -0.028 -0.035 -0.015 1.261 0.994 45.60
G2 | -0.055 -0.058 -0.019 1.609 1.086
Ay | -0.240 -0.221  -0.196 1.206 1.048
A5 | -0.071 -0.062 -0.163 1.584 1.188
$ | 0355 0.365 0.267 0.947 0.958
(0.3, 0.5, 3, 3, 1) 61 | -0.023 -0.032 -0.018 1.223 0.986 31.60
@o | -0.061  -0.064 -0.023 1.647 1.083
A | -0.097  -0.061  -0.050 1.202 1.073
A5 | 0187 0197  0.019 1.559 1.158
¢ | 0193 0208 0.148 0.945 0.966
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Table I (cont.). Bias for the estimators &1, s, 5\{, 5\5 and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 50.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5, 0.3, 1, 1, 0.5) a1 | -0.082 -0.067 -0.019 1.633 1.155 26.40
G2 | -0.041 -0.042 -0.017 1.210 1.000
Ay | 0188 0.141  -0.005 1.689 1.296
A3 | 0.058  0.061 -0.016 1.215 1.100
$ | 0.008 0.009 0.043 1.020 1.033
(0.5, 0.3, 1, 1, 1) &1 | -0.105 -0.081 -0.021 1.602 1.214 25.80
G2 | -0.046  -0.043 -0.013 1.175 1.026
Ar | 0447 0356 0.046 1.813 1.481
A5 | 0167 0159 -0.017 1.362 1.245
6 | -0.069 -0.071  0.037 1.058 1.071
(0.5, 0.3, 1, 3, 0.5) a1 | -0.096 -0.078 -0.026 1.572 1.155 50.00
G2 | -0.020  -0.027 -0.007 1.224 0.981
Ay | 0127 0.076 -0.066 1.326 1.098
A3 | -0.019  0.017 -0.077 1.220 1.030
$ | 0.088 0.088 0.108 0.911 0.912
(0.5, 0.3, 1, 3, 1) é1 | -0.108 -0.083 -0.027 1.510 1.110 36.60
Go | -0.041  -0.043 -0.019 1.253 0.983
Ar | 0384 0288  0.019 1.434 1.170
A5 | 0216 0228  0.039 1.328 1.109
6 | -0.011 -0.014 0.074 0.940 0.942
(0.5, 0.3, 3, 3, 0.5) a1 | -0.064 -0.068 -0.025 1.731 1151 44.20
G2 | -0.033  -0.037 -0.017 1.173 0.949
Ar | 0016 0029 -0.102 1.633 1.210
A3 | -0.232  -0.223  -0.196 1.137 1.019
é | 0361 0370 0278 0.963 0.979
(0.5, 0.3, 3, 3, 1) 61 | -0.069 -0.064 -0.018 1.646 1.116 29.20
Go | -0.024  -0.028  -0.008 1.176 0.970
Ar | 0278 0229  0.008 1.586 1.213
A3 | -0.120  -0.103  -0.121 1.157 1.045
6 | 0203 0212 0.150 0.987 1.004
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Table I (cont.). Bias for the estimators &1, s, 5\{, 5\5 and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 50.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5, 0.5, 1, 1, 0.5) a1 | -0.090 -0.073 -0.024 1.678 1.195 32.80
&z | -0.097 -0.076  -0.029 1.475 1.098
M| 0171 0122 -0.020 1.562 1.250
5| 0204 0143 0.002 1.555 1.248
é | 0036 0032 0.061 0.970 0.972
(0.5, 0.5, 1, 1, 1) &1 | -0.100 -0.078 -0.018 1577 1.157 37.80
&z | -0.098 -0.072 -0.017 1.603 1.172
Ar | 0427 0351 0.032 1.671 1.339
A5 | 0400  0.313  0.009 1.588 1.308
é | -0.064 -0.077  0.049 1.010 1.011
(0.5, 0.5, 1, 3, 0.5) &1 | -0.101 -0.079 -0.025 1.462 1.077 55.20
&z | -0.055 -0.053  -0.009 1.736 1.129
A | 0111 0.046  -0.044 1.311 1.113
A5 | 0148 0.144  -0.054 1.702 1.197
é | 0160 0157  0.120 0.905 0.903
(0.5, 0.5, 1, 3, 1) &1 | -0.111 -0.086 -0.029 1.476 1.084 41.20
&z | -0.078 -0.075 -0.029 1.662 1.103
Ar | 0357 0268  0.036 1.347 1.130
A5 | 0518 0.499  0.168 1.658 1.194
é | 0020 0012 0.054 0.931 0.923
(0.5, 0.5, 3, 3, 0.5) a1 | -0.060 -0.061 -0.018 1.694 1.136 52.80
&z | -0.058  -0.061 -0.022 1.667 1.085
Ar | 0113 -0.117  -0.138 1.616 1.221
A5 | 0115 -0.109  -0.106 1.511 1.138
é | 0441 0458  0.259 0.967 0.995
(0.5, 0.5, 3, 3, 1) &1 | -0.073 -0.070 -0.022 1.714 1.144 40.00
&z | -0.052  -0.060 -0.022 1.773 1.175
A | 0137 0.090 -0.051 1.508 1.182
A5 | -0.040  0.002  -0.057 1.647 1.277
é | 0367 038 0.230 1.016 1.021
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Table II. Bias for the estimators &, &s, 5\{, 5\5 and quS and SD ratios of the
MoM and YW estimators to the respective ML estimators of the Poisson
BINAR(1) model at n = 200.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.3, 1, 1, 0.5) &1 | -0.014 -0.015 -0.009 1.397 1.134 0.00
G2 | -0.008 -0.011 -0.007 1.298 1.081
Ar | 0019 0021  0.010 1.437 1.259
A3 | 0.008 0.012  0.007 1.440 1.261
$ | 0.007 0.008 0.009 1.178 1.210
(0.3, 0.3, 1, 1, 1) 61 | -0.006 -0.009 -0.004 1.499 1172 0.80
Gs | -0.003  -0.006  -0.001 1.493 1.159
Ar | o011 0017 0.005 1.796 1.541
A5 | 0.007  0.009  0.000 1.771 1.522
6 | 0.004 0.009 0.008 1.333 1.396
(0.3, 0.3, 1, 3, 0.5) &1 | -0.014 -0.015 -0.007 1.372 1.094 2.20
d2 | -0.010  -0.012  -0.006 1.391 1.108
Ar | 0040 0.041  0.020 1.359 1.227
A3 | 0.056 0.062  0.035 1.480 1.226
é | -0.017 -0.015 -0.007 1.125 1.145
(0.3, 0.3, 1, 3, 1) a1 | -0.006 -0.007 -0.002 1.340 1.078 1.00
Go | -0.008  -0.009  -0.005 1.363 1.106
Ay | 0020 0029 0011 1.521 1.353
A5 | 0.048  0.050  0.026 1.505 1.262
¢ | -0.012  -0.009 -0.001 1.162 1.191
(0.3,0.3, 3, 3, 0.5) a1 | -0.007 -0.010 -0.005 1.459 1.129 9.80
@2 | -0.005 -0.009 -0.005 1.392 1.073
A | -0.046  -0.035 -0.046 1.417 1.204
23 | -0.054  -0.039 -0.042 1.347 1.150
$ | 0.065 0.068 0.059 1.098 1.110
(0.3, 0.3, 3, 3, 1) 61 | -0.011 -0.011 -0.004 1.349 1.075 1.00
Go | -0.007  -0.009  -0.003 1.413 1.106
Ar | 0.049 0049  0.007 1.368 1.186
A5 | 0.027  0.033 -0.002 1.432 1.236
6 | 0.004 0007 0018 1.130 1.147

52



Table 1T (cont.). Bias for the estimators &1, s, 5\{, 5\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 200.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.5, 1, 1, 0.5) &1 | -0.004 -0.007 -0.004 1.395 1.125 1.00
és | -0.015 -0.014 -0.003 2.122 1.266
Ar | 0009 0012  0.003 1.496 1.338
A5 | 0035 0028 -0.001 2.161 1.513
é | -0.001  0.003  0.008 1.210 1.259
(0.3, 05, 1, 1, 1) & | -0.012 -0.013 -0.008 1.488 1.175 4.80
do | -0.022  -0.017  -0.005 1.990 1.241
Ar | 0034 0034  0.009 1.648 1.470
A5 | 0085  0.059  0.007 2.215 1.587
¢ | -0.006 -0.003 0.013 1.209 1.270
(0.3, 0.5, 1, 3, 0.5) &1 | -0.013 -0.014 -0.008 1.361 1.082 3.40
@s | -0.003  -0.012  -0.004 2.368 1.291
Ar | 0.004 0.000  0.005 1.320 1.248
A5 | -0.021  0.034  0.010 2.282 1.389
é | 0021 002 0.011 1.144 1.177
(0.3, 0.5, 1, 3, 0.5) &1 | -0.015 -0.014 -0.007 1.292 1.075 1.20
&2 | -0.013  -0.017  -0.007 2.345 1.323
Ar | 0041  0.033 0019 1.313 1.227
A5 | 0.065 0.089  0.031 2.337 1.464
¢ | 0001 0004 0.005 1.161 1.193
(0.3, 0.5, 3, 3, 0.5) &1 | -0.006 -0.008 -0.001 1.379 1.074 9.20
@s | -0.008 -0.014  -0.005 2.132 1.215
Ar | -0.068 -0.064 -0.064 1.338 1.170
A5 | -0.060  -0.027  -0.041 1.871 1.261
é | 0.084 0.088  0.059 1.142 1.158
(0.3, 0.5, 3, 3, 1) @& | 0012 -0.014 -0.009 1.440 1.104 1.60
@z | -0.017  -0.020 -0.008 2.290 1.291
Ar | 0046  0.051  0.054 1.412 1.243
A5 | 0.085  0.101  0.054 2.100 1.401
¢ | 0.028 0.034 0010 1.133 1.163
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Table 1T (cont.). Bias for the estimators &1, s, 5\{, 5\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 200.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5, 0.3, 1, 1, 0.5) &1 | -0.012 -0.014 -0.005 2.253 1.275 1.20
@2 | 0.000 -0.004 -0.002 1.391 1.094
Ar | 0.028 0031 0021 2.102 1.448
A\ | 0002 0006 0015 1.440 1.271
é | -0.003  0.001 -0.007 1.173 1.211
(0.5, 0.3, 1, 1, 1) @& | -0.012 -0.011  -0.002 2.128 1.251 3.60
@z | -0.011  -0.012  -0.007 1.352 1.112
Ar | 0063 0058 0.016 2.421 1.687
A5 | 0.054  0.052  0.029 1.576 1.426
¢ | -0.032 -0.028 -0.014 1.286 1.350
(0.5, 0.3, 1, 3, 0.5) &1 | -0.015 -0.014 -0.003 2.174 1.283 4.00
G2 | -0.016 -0.017 -0.011 1.266 1.052
Ay | 0025 0019 -0.004 1.820 1.371
5| 0058 0059  0.038 1.291 1.130
$ | 0018 0.020 0.019 1.173 1.190
(0.5, 0.3, 1, 3, 1) 61 | -0.020 -0.019 -0.009 1.959 1.174 6.20
@2 | -0.013  -0.016  -0.009 1.399 1.115
Ar | 0041 0.032  0.004 1.866 1.419
A5 | 0026 0.037 0011 1.544 1.313
¢ | 0031 0036 0034 1.228 1.264
(0.5, 0.3, 3, 3, 0.5) &1 | -0.011 -0.012 _ 0.000 2.212 1.232 13.40
@2 | -0.008 -0.011  -0.006 1.414 1.115
Ar | -0.028 -0.028 -0.053 1.956 1.299
A5 | -0.066 -0.054 -0.032 1.360 1.187
é | 0.095 0100 0.059 1.128 1.153
(0.5, 0.3, 3, 3, 1) 61 | -0.001 -0.010 -0.002 2.494 1.320 0.60
@2 | -0.009 -0.011 -0.005 1.287 1.049
Ar | -0.027  0.033  0.023 2.174 1.434
A5 | 0.036  0.035  0.039 1.428 1.272
¢ | 0005 0015 -0.014 1.211 1.252
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Table 1T (cont.). Bias for the estimators &1, s, 5\{, 5\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 200.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5, 0.5, 1, 1, 0.5) &1 | -0.013 -0.012 -0.003 2.093 1.247 3.00
G2 | -0.013  -0.014  -0.006 2.235 1.287
Ay | 0022 0014 -0.002 2.037 1.512
A5 | 0021 0020 0.007 1.997 1.470
é | 0012 0019 0.015 1.264 1.319
(0.5, 0.5, 1, 1, 1) @& | -0.016 -0.014 -0.002 2.138 1.243 8.80
do | -0.023  -0.019  -0.008 2.092 1.272
Ar | 0069 0053  0.004 2.270 1.662
A5 | 0.091 0070  0.023 2.223 1.678
¢ | -0.012 -0.005  0.006 1.192 1.289
(0.5, 0.5, 1, 3, 0.5) &1 | -0.020 -0.018 -0.006 2.114 1.231 4.60
G2 | -0.012  -0.014  -0.004 2.279 1.300
Ar | 0.000 -0.010 -0.008 1.616 1.268
A5 | 0018 0031  0.008 2.219 1.428
¢ | 0044 0049 0.021 1.182 1.211
(0.5, 0.5, 1, 3, 1) &1 | -0.022 -0.020 -0.007 2.032 1.238 8.20
@z | -0.007  -0.011 -0.001 2.394 1.308
Ar | 0069 0055  0.004 1.739 1.408
A5 | 0.028  0.053 -0.015 2.256 1.448
¢ | -0.005 0.003  0.012 1.197 1.229
(0.5, 0.5, 3, 3, 0.5) &1 | -0.005 -0.010 -0.002 2.016 1.188 15.40
G2 | -0.002  -0.009 -0.001 2.495 1.341
Ay | -0.130  -0.103  -0.052 1.824 1.278
A5 | 0147 -0.105  -0.059 1.914 1.275
¢ | 0141 0150  0.061 1.146 1.178
(0.5, 0.5, 3, 3, 1) &1 | -0.014 -0.017 -0.005 2.270 1.263 3.40
@z | -0.012  -0.015 -0.003 2.179 1.263
A | 0025 0037 0.020 1.995 1.396
A5 | 0017 0.027  0.014 1.942 1.391
¢ | 0058 0069 0.012 1.198 1.240
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Table III. Bias for the estimators &y, do, 5\{, 5\5 and ¢ and SD ratios of the
MoM and YW estimators to the respective ML estimators of the Poisson
BINAR(1) model at n = 500.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3,0.3, 1, 1, 0.5) &3 | -0.001 -0.002  0.000 1.468 1.169 0.00
&s | -0.004 -0.005 -0.004 1.413 1.132
Ar | 0.005 0.006  0.001 1.577 1.351
A | 0001 0.003  0.001 1.438 1.258
¢ | -0.001  0.000 0.001 1.210 1.237
(0.3,0.3, 1, 1, 1) &1 | -0.001 -0.002 _ 0.000 1.509 1.202 0.00
&z | -0.003  -0.004 -0.002 1.467 1.189
Ar | -0.001  0.001 -0.003 1.823 1.574
A5 | 0.007  0.007  0.001 1.788 1.546
é | 0.005 0.007 0.008 1.308 1.369
(0.3, 0.3, 1, 3, 0.5) &1 | -0.008 -0.008 -0.005 1.387 1.132 0.20
&s | -0.002  -0.003 -0.001 1.375 1.100
Ar | 0025 0024 0.016 1.402 1.282
A5 | 0023 002 0015 1.480 1.229
é | -0.014 -0.014 -0.009 1.176 1.188
(0.3, 0.3, 1, 3, 1) &1 | -0.007 -0.008 -0.006 1.342 1.100 0.00
&z | -0.002  -0.003 -0.002 1.414 1.122
Ar | 0015 0016  0.016 1.493 1.362
A5 | 0.005 0.010 0.011 1.513 1.266
é | 0.000 0.001 -0.002 1.179 1.206
(0.3, 0.3, 3, 3, 0.5) a1 | -0.004 -0.005 -0.003 1.348 1.084 1.80
&z | 0.002 0.001 0.003 1.424 1.107
Ar | 0010 0015  0.005 1.267 1.120
A5 | -0.022  -0.017  -0.031 1.330 1.150
é | 0.015 0016 0.019 1.081 1.087
(0.3,0.3, 3, 3, 1) &1 | 0.000 -0.001 0.001 1.359 1.100 0.00
&z | -0.007  -0.007 -0.004 1.448 1.124
Ar | 0.002 0.008  0.003 1.392 1.206
A5 | 0.044  0.044  0.034 1.421 1.226
é | -0.005 -0.003 -0.007 1.098 1.111
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Table III (cont.). Bias for the estimators &y, ao, 5\’{, 5\5 and ngS and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 500.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.5, 1, 1, 0.5) & | 0.003 0.001  0.001 1.447 1.153 0.00
&z | -0.003 -0.004 -0.001 2.398 1.343
Ar | -0.014 -0.012  -0.008 1.529 1.380
A% | -0.003  0.001 -0.003 2.307 1.545
é | 0.004 0007 0.004 1.230 1.278
(0.3, 0.5, 1, 1, 1) &1 | -0.004 -0.004 -0.001 1.373 1.122 0.00
&z | -0.013  -0.009 -0.003 2.335 1.331
Ar | 0013  0.011 -0.004 1.654 1.493
A5 | 0.048  0.033  0.002 2.551 1.769
é | 0001 0.001 0.009 1.291 1.371
(0.3, 0.5, 1, 3, 0.5) &1 | -0.005 -0.005 -0.003 1.397 1.121 0.40
&z | -0.008 -0.007 -0.001 2.266 1.289
Ar | 0.008 0.008  0.004 1.335 1.241
5| 0043 0032 -0.002 2.169 1.387
¢ | 0.001 0.001 0.002 1.199 1.214
(0.3,0.5, 1, 3, 1) &1 | -0.002 -0.004 -0.002 1.491 1.162 0.00
&z | -0.004 -0.006 -0.002 2.504 1.362
Ar | 0002  0.002 -0.004 1.631 1.505
A5 | 0.021  0.037  0.014 2.475 1.556
é | 0.000 0.005 0.005 1.264 1.323
(0.3, 0.5, 3, 3, 0.5) a1 | -0.00I -0.002  0.000 1.407 1.097 2.20
&z | -0.006 -0.006 -0.002 2.260 1.270
Ar | -0.020 -0.016 -0.010 1.367 1.206
A5 | 0022 0021 0.009 2.040 1.356
é | 0.018 0.020 0.006 1.184 1.203
(0.3, 0.5, 3, 3, 1) &1 | -0.008 -0.008 -0.005 1.426 1.126 0.20
&z | -0.002  -0.005 -0.002 2.393 1.318
A | 0062 0059  0.034 1.388 1.236
A5 | 0.032  0.057  0.032 2.088 1.375
é | -0013 -0.010 -0.003 1.177 1.196
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Table III (cont.). Bias for the estimators &y, ao, 5\’{, 5\5 and ngS and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 500.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5,0.3, 1, 1, 0.5) &3 | -0.004 -0.006 -0.003 2.260 1.302 0.00
&z | -0.006 -0.005 -0.002 1.368 1.109
Ar | 0.002 0.008  0.000 2.196 1.513
A% | 0.008 0004 -0.003 1.520 1.377
$é | 0002 0.003 0.005 1.287 1.323
(0.5, 0.3, 1, 1, 1) &1 | -0.006 -0.005  0.000 2.314 1.278 0.40
&z | -0.004 -0.004 -0.001 1.468 1.162
Ar | 0020 0024  0.003 2.531 1.702
A5 | 0012 0.011  0.000 1.667 1.475
é | -0.005 -0.004 0.001 1.268 1.336
(0.5,0.3, 1, 3, 0.5) &1 | -0.003 -0.005 -0.002 2.303 1.265 0.60
&z | -0.003  -0.004 -0.002 1.423 1.108
Ar | 0002 0.007  0.009 1.873 1.396
A5 | 0012 0017 0.016 1.447 1.205
é | 0002 0.004 -0.004 1.235 1.257
(0.5, 0.3, 1, 3, 1) &1 | -0.011 -0.008 -0.002 2.318 1.307 1.20
&z | 0.000 -0.002  0.000 1.428 1.116
Ar | 0035 0.020 0.000 2.111 1.548
A5 | -0.003  0.005  0.002 1.485 1.280
é | -0001 0.001 0.001 1.266 1.313
(0.5, 0.3, 3, 3, 0.5) &1 | -0.003 -0.006 -0.003 2.103 1.210 2.60
&z | -0.005 -0.006 -0.004 1.389 1.091
Ar | -0.018  -0.003  -0.005 1.821 1.262
A% | -0.004  -0.002  0.000 1.321 1.166
é | 0.030 0032 0.020 1.184 1.195
(0.5, 0.3, 3,3, 1) &1 | -0.009 -0.008 -0.002 2.268 1.294 0.00
&z | -0.006 -0.006 -0.004 1.367 1.110
Ar | 0070 0055  0.007 2.030 1.386
A5 | 0.023  0.025  0.008 1.374 1.249
é | 0001 0.002 0.010 1.193 1.212
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Table III (cont.). Bias for the estimators &y, ao, 5\’{, 5\5 and ngS and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 500.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5,0.5, 1, 1, 0.5) a1 | -0.003 -0.004 -0.001 2.324 1.291 0.00
& | -0.007  -0.006 -0.001 2.314 1.324
Ar | 0015 0014  0.006 2.164 1.539
A5 | 0024  0.020 0.008 2.145 1.542
é | -0.014 -0.011 -0.010 1.280 1.353
(0.5, 0.5, 1, 1, 1) &1 | -0.009 -0.006  0.000 2.389 1.341 0.20
@z | -0.008 -0.006  0.000 2.268 1.315
Ar | 0028 0016 -0.005 2.435 1.738
A5 | 0.030 0.019  0.001 2.502 1.824
é | -0.002 -0.001  0.000 1.263 1.380
(0.5, 0.5, 1, 3, 0.5) a1 | -0.007 -0.007 -0.003 2.297 1.315 0.20
&z | -0.004 -0.007 -0.004 2.450 1.347
A | 0027 0023 0011 1.807 1.439
A5 | 0016  0.036  0.020 2.299 1.469
é | 0.002 0.005 0.006 1.263 1.296
(0.5, 0.5, 1, 3, 1) &1 | -0.004 -0.004 -0.001 2.326 1.290 1.20
@z | -0.005 -0.006 -0.001 2.428 1.344
Ar | 0003 -0.001  0.006 2.032 1.609
A5 | 0019  0.023  0.006 2.383 1.595
é | 0009 0.014 -0.003 1.296 1.351
(0.5, 0.5, 3, 3, 0.5) a1 | -0.005 -0.006 -0.002 2.418 1.321 3.20
&z | 0.001 -0.003  0.000 2.265 1.246
Ar | -0.007  -0.004  0.006 2.051 1.400
A5 | -0.051  -0.027  -0.005 1.904 1.314
é | 0.036 0041  0.007 1.238 1.271
(0.5, 0.5, 3, 3, 1) &1 | -0.005 -0.007 -0.003 2.237 1.251 0.20
@z | -0.004 -0.004  0.000 2.309 1.260
Ar | 0018  0.028  0.036 2.027 1.474
A5 | 0.005  0.002  0.006 2.032 1.457
é | 0016 0.022 -0.008 1.341 1.373
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Table IV. Bias for the estimators &y, do, 5\’{, 5\‘5 and ngS and SD ratios of the
MoM and YW estimators to the respective ML estimators of the Poisson
BINAR(1) model at n = 1000.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.3, 1, 1, 0.5) a1 | -0.003 -0.004 -0.003 1.393 1.135 0.00
&z | -0.002 -0.001  0.001 1.452 1.137
Ar | 0.007  0.008  0.004 1.510 1.305
A% | 0002  0.000 -0.006 1.541 1.315
¢ | -0.001 -0.001  0.002 1.187 1.212
(0.3,0.3, 1, 1, 1) &1 | -0.003 -0.003 -0.001 1.538 1.228 0.00
&s | -0.003 -0.002 -0.001 1.521 1.190
Ar | 0014 0015  0.005 1.826 1.578
A5 | 0012 0.011  0.003 1.799 1.537
é | -0.006 -0.005  0.000 1.321 1.378
(0.3, 0.3, 1, 3, 0.5) a1 | -0.00 -0.001  0.000 1.351 1.097 0.00
&z | -0.003 -0.003 -0.001 1.406 1.102
Ar | -0.001  0.000 -0.005 1.335 1.215
A5 | 0012 0.010  0.000 1.397 1.165
¢ | 0.001  0.002 0.005 1.147 1.158
(0.3,0.3, 1, 3, 1) &1 | -0.001 -0.002 -0.001 1.432 1.137 0.00
&s | -0.002 -0.004 -0.003 1.429 1.136
Ar | -0.001  -0.001  0.004 1.478 1.322
A5 | -0.004  0.005  0.008 1.582 1.299
é | 0.007 0.008 0.003 1.176 1.206
(0.3, 0.3, 3, 3, 0.5) & | 0.00I 0.000 0.000 1.440 1.122 0.40
&z | -0.004 -0.004 -0.002 1.393 1.088
Ar | -0.006 -0.002  -0.005 1.358 1.168
A5 | 0015 0014 0.005 1.309 1.135
é | 0.002 0.003 0.003 1.118 1.122
(0.3,0.3, 3, 3, 1) &1 | -0.003 -0.003 -0.001 1.406 1.102 0.00
&s | -0.001  -0.001  0.000 1.378 1.096
Ar | 0014 0012  0.003 1.370 1.184
A5 | 0.002  0.003 -0.005 1.375 1.182
é | -0.004 -0.003 -0.001 1.131 1.146
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Table IV (cont.). Bias for the estimators &y, do, 5\{, ;\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 1000.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.3, 0.5, 1, 1, 0.5) a&; | -0.00 -0.001 -0.001 1.432 1.144 0.00
&z | 0.000 -0.002 -0.001 2.286 1.256
Ar | -0.002  -0.003  0.000 1.499 1.336
A5 | -0.002  0.002  0.004 2.233 1.499
é | 0.003 0.004 0.000 1.236 1.271
(0.3,0.5, 1, 1, 1) &1 | -0.003 -0.003 -0.002 1.526 1.214 0.00
&z | 0.000 -0.002  0.000 2.451 1.354
Ar | 0012 0011  0.008 1.630 1.489
A5 | 0.007  0.011  0.005 2.544 1.719
é | -0.005 -0.003 -0.001 1.235 1.309
(0.3, 0.5, 1, 3, 0.5) &1 | -0.00 -0.002 -0.001 1.346 1.103 0.00
&z | -0.001  -0.004 -0.003 2.393 1.283
Ar | 0.002 0.003  0.004 1.310 1.241
A5 | 0006 0022 0.021 2.244 1.374
é | -0.005 -0.004 -0.006 1.213 1.222
(0.3, 0.5, 1, 3, 1) &1 | 0.003 0.00I  0.000 1.557 1.207 0.00
&z | 0.001 -0.001  0.000 2.483 1.375
Ar | -0.014  -0.012  -0.002 1.577 1.447
A5 | -0.024  -0.006  -0.005 2.500 1.547
é | 0.007 0.010 0.004 1.212 1.258
(0.3, 0.5, 3, 3, 0.5) &1 | -0.001 -0.002 -0.001 1.394 1.111 0.40
&z | -0.005 -0.004 -0.001 2.144 1.206
Ar | -0.008 -0.004  0.007 1.355 1.232
A5 | 0014 0008  0.004 2.004 1.382
é | 0.015 0015 0.003 1.243 1.251
(0.3, 0.5, 3, 3, 1) & 0.00 -0.001 -0.001 1.380 1113 0.00
&z | -0.002  -0.003 -0.001 2.430 1.334
Ar | 0.004 0.008  0.001 1.421 1.291
A5 | 0017  0.026  0.008 2.222 1.479
é | -0.007 -0.005  0.000 1.221 1.249
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Table IV (cont.). Bias for the estimators &y, do, 5\{, ;\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 1000.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5,0.3, 1, 1, 0.5) & | 0.003 0.000 0.001 2.322 1.307 0.00
&s | -0.003 -0.004 -0.002 1.430 1.141
Ar | -0.005  0.001  -0.002 2.258 1.499
A5 | 0007 0.007  0.002 1.425 1.277
¢ | -0.003 -0.002  0.000 1.183 1.217
(0.5, 0.3, 1, 1, 1) &1 | -0.002 -0.003 -0.001 2518 1.386 0.00
&s | -0.002 -0.002  0.000 1.527 1.178
Ar | 0012 0015  0.008 2.750 1.845
A5 | 0016  0.013  0.008 1.781 1.579
é | -0.006 -0.005 -0.003 1.276 1.367
(0.5,0.3, 1, 3, 0.5) &1 | -0.004 -0.003 -0.001 2.333 1.341
&z | 0.002 0.000 0.001 1.477 1.160
Ar | 0.009  0.007  0.001 1.782 1.369
A5 | -0.014  -0.007  -0.009 1.462 1.243
é | 0.001 0.002 0.003 1.192 1.203
(0.5, 0.3, 1, 3, 1) &1 | 0.001 -0.002 -0.001 2.387 1.333 0.00
& | 0.000 0.000 0.001 1.403 1.125
Ar | -0.002  0.004  0.003 2.151 1.574
A5 | -0.001  0.000 -0.002 1.576 1.350
é | -0.003 -0.001 -0.001 1.286 1.342
(0.5, 0.3, 3, 3, 0.5) &1 | -0.002 -0.002  0.000 2.366 1.297 0.00
&s | -0.003 -0.003 -0.002 1.458 1.117
Ar | 0.000 0.000 -0.015 2.037 1.376
A5 | 0.004 0003 -0.001 1.415 1.259
¢ | 0.008 0.008 0.007 1.235 1.244
(0.5, 0.3, 3, 3, 1) &1 | -0.002 -0.003 -0.001 2.364 1.284 0.00
& | 0.000 -0.001 -0.001 1.394 1.112
At | -0.005  -0.002  0.000 2.108 1.435
A5 | -0.014  -0.008  0.007 1.422 1.276
é | 0.010 0013 -0.001 1.221 1.241
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Table IV (cont.). Bias for the estimators &y, do, 5\{, ;\’2* and ¢ and SD ratios
of the MoM and YW estimators to the respective ML estimators of the
Poisson BINAR(1) model at n = 1000.

Bias SD ratios % Extra Datasets
(a1, o, X5, N5, ¢) MoM YW ML MoM/ML YW/ML
(0.5, 0.5, 1, 1, 0.5) &1 | -0.005 -0.005 -0.002 2.184 1.248 0.00
@2 | -0.001  -0.002  0.000 2.393 1.354
Ar | 0010 0.007  0.000 2.073 1.506
A3 | 0.000 0.001 -0.003 2.115 1.528
é | 0.003 0.005 0.005 1.298 1.364
(0.5, 0.5, 1, 1, 1) &1 | -0.001 -0.002 _ 0.000 2.545 1.397 0.00
Gs | -0.001  -0.002  -0.001 2.499 1.382
Ar | -0.012  -0.011  -0.009 2.404 1.718
A5 | -0.009 -0.007  -0.001 2.548 1.826
¢ | 0.009 0013 0.005 1.243 1.352
(0.5, 0.5, 1, 3, 0.5) &1 | -0.006 -0.005 -0.003 2.424 1.343 0.00
G2 | 0.000 -0.002 -0.001 2.491 1.375
Ar | 0.004 0.000 0.000 1.709 1.372
A3 | -0.017  0.001  0.004 2.447 1.539
é | 0010 0.012 0.005 1.304 1.330
(0.5, 0.5, 1, 3, 1) é1 | -0.002 -0.003 -0.001 2.365 1.350 0.00
Gz | 0.002 -0.002 -0.001 2.525 1.349
At | -0.006 -0.009  -0.005 1.944 1571
A5 | -0.029  -0.007  0.001 2.578 1.619
6 | 0014 0019 0.011 1.307 1.390
(0.5, 0.5, 3, 3, 0.5) &1 | -0.003 -0.004 -0.002 2.329 1.289 0.80
G2 | 0.002 -0.002 -0.001 2.401 1.319
Ar | -0.014  -0.011 -0.006 1.920 1.380
A3 | -0.041  -0.019  -0.007 1.999 1.415
é | 0031 0.034 0017 1.295 1.315
(0.5, 0.5, 3, 3, 1) &1 | 0.002 -0.001 _ 0.000 2.431 1.323 0.00
Gz | 0.003  0.000  0.000 2.391 1.291
Ar | -0.036  -0.023 -0.010 2.142 1.534
A5 | -0.042  -0.023  -0.004 2.056 1.467
6 | 0016 0.022 0.005 1.311 1.354
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