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1. INTRODUCTIORN

. ) f The concept of weighted distributions has been introduced and formalized
; recently, see for example, Rao (1965).  Although the situations that involve
y welghted distributions seem to occur frequently in various fields, the underlving
concept of weighted distributions as a major stochastic concept does not seem to ‘/
 have beeﬁ widelv recognized. This paper is intended to provide the needed focuse /
o to the notion of weighted distributions and the inference problems associated
, )  with them. To this end, some interesting and varied applications from a nurber /
- . of disciplines have been indentified. thile they may look quite unrelated at the
' firet glance, thev are all indeed natural examples of the single underlving the=e
of weighted distributions. .
Te begin with, the ‘paper defines and fllustrates the concept of weighted
. dietributions. “Situations ieading to weighted discrete distributions sre dis-
cussed first, These relate to the ;nalysis of familv data, the prodlem of family
aize and alcoheliam, thg aerial survey involving visibility blas in wildlife
ecology, and A discrete renewal system. The problems generating weighted contin-
uous dl-tributlons refer to computer generation of random variables usning rejection
technique, reneyal theory, continuou‘ waiting time paradox, cell kinetics and
. earlv disease dékectlon. forest products research, particle size distributions by
; “thin section methods and low density traffic streams. Lastly, the weight size
distributions used in small particle phvsics and sedimentology are recognized as

] the veighted distributicns. So also are recognized the moment distributions in
. ecogemice, Tt should de worthwhile to comment here that while the earlier exarples

involve veighted distributions essentially because of buflt in prodbability samp-

ling at scme stage {n the problem, the last two examples can not be explained on

1 :
} # - the probability sampling basis. These involve a distinctly different recording
i:! ) mechanism responsible for generating a clase of weipghted distriduticone,
F P
1 , : S e 2. NOTATION AND TERMINOLOZY

Conaider a natural mechanism generating a random variable X with ri~

R N S R e AP L ’ k i3



f(x; 2) where 9 ¢ NN, the parameter space. For drawing a rsndom sample of observa-
tio;e on X, we have to use a method of selection which gives the same chance of
fncluding fn the sample any observation produced by the original mechanism., But
in practice it mav so happen that the relative chances of inclusfon of two obser-

vations x and v are wix): w(y) vhere w(-) is non-negative valued function. Then
the recorded X to be denoted by x" has the pdf

£ (x; 0) = MAXE(x; O i!' 9) 2.1

vhere w = Elw(X)] = /u(x)f(x; 9)dx or = Iv(x)f(x; 6) depending on whether X is
continuous or discrete. Further, 1f 0 g w(x) £ 1, w 18 the probability of tnclud-
ing an observed value in the sample. ’

The distribution defined by (2.1) is called a weighted distribution with
weight function w(x) which can be arbitrary. When an investigator collects a
sample of obnetvutloﬁs produced by nature, according to a certain model, the orig-
inal distribution may not thus be reproduced. The main interest in any 1nvgst1ga—
tion is, however, to determine the characteristics of the original distribution.
Further, it also becomes important to assess the nature and amouﬁt of distortion
caused in the determination of these characteristics in case the change in éhe
underlying distribution due to sampling bini is ignored.

The following examples may help illustrate a few general situations fnvolving
"non~-response” responsible for generating weighted distributions.

(1) Trwncation: The distribution of a random variable truncated to a set
T is a weighted distribution with weight function w(x) = 1 for x ¢ T and zero
elsevhere, ‘

(i1) Miasing Data: 1If a proportion 1-w(x), o ¢ w(x) £ 1, out of the natural
frequency of x §s missing, that is if the probability of x missing is 1-w(x), the
pdf to use for the analysis of the observed:data is with the weight function w(x).

(111) Drmged Cheervations: Consider a damage model where an observation
X = x is reduced to y by a destructive process with pdf d(y|x) (See Rao (1965).
Then the probability that the observation X = x is undamaged 1s d(x|x), and the
distribution of the undamaged observation is the weighted distribution with w(x) =
d(x|{x). For example, under binomial survival model, d(xjx) = 6", 0 ¢« o < 1. An
investigator recording only undamaged observations will need to work with a corres-
ponding weighted distribution.

The following table gives various weight functions used in litkrature that we
have come across.

We note that the weight functions in the table are all monotone functions,
either increasing or decreasing.

The assumptions of the implications of the relationships betveen the original

distribution of x and the weighted distribution obtained using some weight func-
tion w(x) can generate interesting and useful characterization results. See, for

example, Rao, Rao-Rubin (1964), Patil-Ord (197%), Gupta (1975), and sections 7 and

‘8 of this paper.

A TARLE OF WEIGHT FUNCTIONS USED

No xy O wix) references
1 General x most of the references in this
paper
2  discrete  x', a >0 Rao (1965), Pati1-0rd (1975)

3 continuous x“, a>0 Brown (1972), Patil-Ord (1975)

¥ Rao (1965)
1-(1-8) 0<B <1 Haldane (1938),
’ Neel-Schull (1966), Cook-
Martin (1974)

This paper

4 discrete

5 discrete x+1
6 discrete x(x-1)...(x~-r+1) Patil-Ord (1975), Gupta (1975)

Rao-Ruhin (1964), Rac (1965),
Remp (1973)

7" discrete $5,0 < ¢ <1

8 continuous ¥ Patil-Ord (1975)

PART I: DISCRETE MODELS AND SIZF-BIASED PROBABILITY SAMPLING

3. THE ANALYSIS OF FAMILY DATA

«

Various dvﬁégraphlc and social studies involve family sfze and sex ratio as
important factors which have some bearing on the main study. The following exam-
ples show as to how the weighted distributicns arise here as a result of the size-
blased probability sampling. This discussion is based on Rao (1965) and Neel and
‘Scholl (1966).

2 0. e Tpeie md hefghted Riw-=737p: The following data relate to brothers
and sisters in families of 104 boys who were admitted to a postgraduate course at
the Indfan Statistical Institute.

Let us assume that in families of given size n, the probability of a familv
with x hove coming into our record is proporticnal to x. Also, suppose that the

number of boys follow a binomial distribution with probability parameter -. Then



. e

. fxi = () " -9,

vw(x) = x, Efw(X)} » « = p=,
D I G B B L

E[Xv-l] ® (n-1) =,

E!lenV -4 Ai: s -y,

Er(Xv-l)/(n-l)? ..,

. 1f k bove representing families of nize “l' Moy vees n, report Xy xz. Cevs
x, bevs, Ef(xxi-k)l(:ni-k)) e r, and an unbiased estimate of ~ {s

LA ('xl—k))/(xn‘-k) v (416 - 106)/(726 - 104) = 310/622 - %. Whereas {f one
wrongly treats x!’s an ohservations on k randomly drawn familfes with at least cene

bov, f.e., as arising from a truncated binomial, then the estimate of - will have
a aerious ypward bias.

TABLE 111.1 ' '
based on Rao (1965), p. 325

Familv Size 1 2 3 & 5 6 71 8 9. 10 11 12 13 15 Total

No. of Familtes 1 6 6 13 12 7 14 11 12 8 6 5 2 1 106
Brothera: 1 8 12 3 3 29 59 50 S4 46 32 31 16 8 414
Slatera: 0 &4 6 18 26 13 39 38 S4 W W 29 0 7 12

ToEe Tremetris Metnitytion ap Weighted Log Serfop £on Freily Sine:

A peometric distribution {s sometimes found to provide a good fit to an ob-
served distributfon of family size, specially when data are obtained from children
attending a school. But this may be the effect of sampling with families of large
size having a higher chance of being recorded with w(x) proportional to x, and the

actval distribution may well be logarithmic series (Rao, 1965). What we have {s:

f(x: ) « L 0%/(-108(1-0)] @ 20¥/x x = 1.2,...

wix) = x, E{ (X)1 @ oy = 50 1= »
R b (2.2)
£(x: 0) = (1-9)a*"1 x=1,2,...
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Sod VTl o0 U e e f i Biv=" T Fisher (1934), Haldane
(1938), Rao (1965).

If we wish to study the distribution of albino children in families capahle
of producing such children, we may contact a large number of families and ascer-
tain from each family the number of albinos. The families with at least one
alhino child provide a truncated bincmial distribution and the probabiliity of a
child being an albine can be estimated from such a distribution. But this method
of {ovestigation f= wasteful an the proportton of abnormal familiea {e inveatigat~
ed. A convenient method {n such a case {s first to discover an albino child and
and through ft obtain the information about the family te which {t belonga. But
such a procedure may not give equal chance to all families fn which albinos have
occurred. The exact chance for a family with x albinos is that of detoctin; at
least one of {ts albino children, which mav be a function of x. The welght

functions of the following form have been studied.

vi(x) =t - -5, 0cr <1

vy(x) = x® : a.n

Rao (1965) observes that a = 1/2 seems to provide a pood fit.

fodo e luede of Freflu Drta Se e Hepedttu: Neel and Schull (1968),
p. 211-229,

A primary object in collecting family data {s to compare the proportion of
affected children actually observed with scme theoretical proporticn based upen
the tvpe of mting and the suspected mode of inheritance. To this end, we mav
select familien at rnnd&u without reference to the tvpe of offepring produced and
study only the families which contain at leést one affected child. 1If we are in-
tereated in a rare inherited trait;':hen a random selection of all families will
neceasarily leaa‘to a8 preponderance of families in the data which could vield no
information, since the majority of families would not possess the rare gene. Asx-
certatnment through affected individuals may then be the only reasonable wav of
going about the dats collection.

., YNeel and Schull consider bincmial distributione with weight function
wix) =1 - (-0, 0 e 1 (3.4

and estimate the eighting probability © to be 807100, and use this estimate further
in estimating the desfred common prebability parameter of the binomial distribu-

tione,
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P 4. ALCOHOLISM AND FAMILY SITE

T+ a social pevchological study relating to alcoholism Smart (lOL‘) testoed
varicia hopothesea on the basfs of data obtained from 242 alcoholics treated in
three aloahoalfam clinfca in Ontarfo, Canada. One of the vartahles recorded fs the
cize of the family to vhich an aleoholic belonge, What ts the appropriate theo-
retfral digtribution with which the observed distribution can be compared®

1t fa rlear that the method of ascertalnment fa auch that §t glves preater

Tt ta famil en of fnrprr alze betng represented fn our sample.  Then the
TMunst fon arfses ae what fe the appropriate weipht function tn he applied to the
actanl dlatribotion of familv gize in the population to make {t comparable to the
ebaervod diatribatfon, :

Tt P, be the propertion of fam{ifes of size n in the populatien, and suppose
that earh fndividieal has a prebahtlity k, independently of the others, of becoming

an alcohalic, Then the distributfon of family sfze among familles having at least

nne 1lrohelle i

ot = 1. °, ,
|OTTSTATE, LAY

whi-h fe the limit s ¥ - -0, 18 of the fore

"pﬂ .
Y‘P“

P: - [EAS ]

v rav he peted that the prehab it ity of 2 familv boefag of <isc n oand & wing

r oatest Vea fag

LI & n-r
p (¥ - P, (.

nr

Sappece Aur eampling mechanism i8 such that 'a family with r alecholics pets a
chance preportfonal te r of heing selected. Then the probabiltity for a familv of

stze n with ralechelirs coning fnto oor. sarplo fo proportional te
” T
Par © T Por G

a~? the correspendine probabilfty for a family of size n i=

“r
= pnr -npn

r "m- “hop

*
pI‘l

n

whiih fa the same as (4,2, Thue the rethod of eclection nf a !arllf with prova-
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bilfew propnrfinnal to the number of alcoholics dees not alter the disrvibuticn of
farily size among families with at least one alcehrlic in the population.

Sprott (1964), following the work of Smart (1943), used the 1931 Canadian
Census data for finding Pn and fitted the weighted distribution (4.5) to the oh-
served distribution of family size. The chserved and expected values are given
tn the Table,

TABLF

Frequency Distribution of Family Size as Obeerved on
the 242 Alccholics and Fxpected op the Aseumed Hvpothesis

, Famfly Strze 1 2 3 4 5 6 7 2] L TOTAL
Observed 21 32 40 47 20 23 20 11 19 252
+ Expected 3402 51.4 -~ 47.3 37.6 16.4 17.9  12.1 7.4 f.2 242

The value of vagoodnvss of fit is 32.1 which is high for 8 degrees cof freedom, o
that the weight function w(n) = n in (4.5) does 6nt explain the observed data.
There 1& still excess of observed families with larger size over the experted
values indfcating the possibility that the weight functien is of a higher order of

mignftude than the familv size, which may have some sociological sfienificance.
S. AERTAL SURVEY AND VISIBILITY BIAS

Vigibility bias is a recognized problem in aerial survey techniques for ea-
timating wildlife pepulation density, ’Thls source of error {e penerally corceded
to be the main cause of inaccurate aerial census data and depending on varlovrs con-
‘trlhutlng environmental factors can produce severelv blased pepnlaticn denefre
eatimates, i

The visibility bias is précent because of the fnilufe to ohserve come antfrale,

Cook and Martin (1974) have presented a medel for quadrat marpling cf randemlvy

T occurring grnup§ vhose <ire follows a ainpgle parameter power series distributien

when there is a probability ¢ > 0 of riecing cingle animals.
The sarpling model i based on three main ascurptions:
(a) that anirals cccur within quadrats in groups of varving =ize,

(x) that each animal has a probakility 7 of being obeerved, and
() that, conditicnal on observing at least cone member of a group,
the eatire group is cobserved with certaintv.

For the puarpeses of the precent discuseion, the main rolnt‘o( fnterest being to
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B

eirtpwt- the mean group size u, let the random group sire X have rd’” f(x: o). It

may he eacily verified that the recorded group stze Xw has pdf

fv(x: 8) = wix; 0)f(x; #)
%v(x: f)f{n; ») {5.1)

© which, for small £, can be approximated by f*(x; 0) « xfgx; 8)/u, where
v = Yxf(x; 7), the mean group sfize,

Based on the data consisting of g grouﬁ nizes obaerved, Xys Xgo sevs Koo the
Rample mean X overestimates y as its expectation is u + ozlu vhere u2 ia the
variance of X.. We conafder the following two models:

(1) 1f we take X-1 - Pofsmon (7}, that =,
t(x; 9) = e 0% 1 (x-1)1, (5.2)

then the estimating equation for the maximum 1ikelihood estimate of  based on the
correaponding fA(x: A) ia ) f

-1 -3, U (5.
1t

(i1) 1f we take X - Zero~truncated Poigson (9), that is,

-0 g% -9
f(x; #) = o 1 1{(l~e "), (5.4)
then the likelfhood equation hased on the corresponding *(x: 9) (s

(-D/-e"FVy 0 5o (5.5)

Cook and Martin (1974) report the follqﬁlng aerial moone census data collect-
ed over northeast of Minnesota in 1970. The number of groups observed is g = 113.

Group size x: 1 2 3 4 5 6
Observed pf: .398 .407 133 . 064 .009 .009
We obtain % = 1.84. Based on the model for X-{ - Polsson {2), the maximun

ltkelfthood estimate of 1 is 1,505, vhereas for X  zero-truncated Pofason (0),
the maximum likelihood estimate of ¢ is 1.478,

6. FOREST DISEASE AND LINE TRANSECT SAMPLING

Consider a forest stand of trees. Suppose that an investigator ie interested
in estimating the proportion of diseased trees in the stand using a line transect

for sampling.  For logistic reasons, the investigator uses forest paths to get to

THE WEICGHTED DISTREBUTIONS 1)

the line transect and recorde the run length x of healthy trees on the traneect
acress the path intersectien. The following drawing may provide a schemtic

pleture,

forest path

LA o 1 2/3 & 5§ X o
* diseased tree ¢ "’, line transect
m————

¢ healthy tree

tf 1 represents the random distance between successive trees on the line
traneect, the probability that the investigator records a healthy run length x i«

‘proportional to w(x) = E(Lx L+t Lx’ll = (x+1)E[L]. Without loss of

-~ penerality, onc may take E{L]= 1 and w(x) = x+1.

Now, §f X - Geometric (?), that s,

f(x; 0) = (1-)%s, x = 0,1,2,...

E[X] = uv = (1-8)/8, (5.1)

E[x+1] = 1/9.
~Alro,
f,(xs ®) = (e+1) (1-r) %02 |
E(X ] = 2-(1-7)/n = 2E[X],
) ‘(6.2)
1
E!;—;TI -0,
w
Note that Xv ~ Negative Binomial (2, °).  To estimate 1 on the basis of xl. Xy

ceew X observed at intersections of n paths with the transect, the best unbiased
“estirmate for u is % X and =" X as seen from (6.2).

Further, based on these n observations on Xv. the best unbiased estimate for
° f{a given by 1/(x+1}), However, a random sample on X does not provide anv un-

hiacrd estimate for o,
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» 7. DISCRETE WAITING TIME PARADOYX

Feller (1965) states continuous waiting time paradox, and this is discu<sed
in thie paper in Part 17 on continuous modela. A discrete veraion of {t arises {n
the rontext of the line transect sampling on one side of the forest paths for the
prurpoees of estimrting incidence as discussed in the previous section. Using the
terminology there, let the run length between diseased trees follow a peometric
procegas with mean Jength unity, that is, let p = %, and E{X] = q/p = 1 be the ex-
pected length of the healthy patch on the line transect asrcere a forest path, If
'V denntes the healthy patch length on the line transect on one side of a forest
path, a question arises as to what is E(V]?" Is E[V] = 1/2, because the intersec-
tion of the forest path with the line transect has a random location relative to
the healthy patch? Or, is E{V] =« 1. The initial reasoning leading to E!V] = 1/2
can be mndified by observing that what is observed is not V, but its size-biased
version V_ for which E[Vv} - 1/2 zfxv! - 1/2:2 =1,

More sftuations {nvolving discrete waiting time paradox may be fdentified.
Uppulurf and Patil (1976) discuss exact discrete analog of Feller's continubus
wniting time paradox {n connection with inferences about rare events. ‘

Now, we raire two further questions. Is the discrete waiting paradox Qn ex-
clucive property of the geometric process? Or, of the wefght function w(x) « x+1?
We have the following partial answers when X has a power serfes distribution (for
defi{ritions, see Patil and Joshi (1968)).

Theomew:  Assume that X has a power series distribution with series function
f(o) = ~a(x)e®, Let the weight function be w(x) = x+1 for the weighted version
Xv of X. Then £'¥'¥ * 2F'X] 1f and only {f f(r) = (l-")-‘. in which cane X bhas
the grometric distribution with parameter 1-n,

N %

I'pr We know that

,n.

ElX]) = @ flog () ].

-8

n

Further, we observe that X" can be shown to have the power series distribution
with revriee function 'w(ﬁ) - a% fag(n)} . The molution of

¢

n.'n.

< Tlog (7)1 = 2 4 1ok (7))’
gives £(°) = (1-7)77, -
The preof for "1f° part is obvious.

Jieopaw: Assume that X has a power series distribution with series function
£0) = Ta(x)s®,  Let Tf(“)'k - I'b(x, K)2®, Let w(x) : 0. and the corresponding
weighted version of X be X, Then zfx'J = kE'X1 {f and only 1f w(x) = b(x, k)/a(x).
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In particular, 1f X has a geometric distribution, Eixwl w 2ETX} 1f and onlv (f
wix) = x + 1.

Ty ~:  We observe that Xw has power series distribution with serfes functien

f (") = "v(x)n(x)“x. The rest of the proof is straightforward.
w .

PART TE. CONTINUOUS MODELS AND SIZE-BIASED PROBABILITY SAMPLING

8. RENEWAL THEORY AND ITS APPLICATIONS

Cox (1962) considers the following problem: Suppose that we have a number of
independent realizations of the same renewal process, for example a number qf com=
ponents of the same type in use on different machines. Suppose that to investigate
the distribution of fallure-time a survey is made at time t to obtain the ages of
the comynﬁents currently in use. The distribution of the observations will be
that of Vt. the backward recurrence time.

" Cox obtains the limiting pdf of Ut as t » = to be F{x)/u, vhere F(x) =
1 - F(x) with F(x) = ?f(x)dx, the distribution function of the 1ife length of a
component with exroctgd mean life 1en;th v, He also obtains the same result alter-
patively using the weighted-distribution-argument resultant from what he calls
length-biased sampling as follows: Consider for any renewal process a recurrence-
time R defined in the following way. First, we take a sampling point chosen at
random over a very long time interval. Then R is defined as the time measured
from the sampling point forward to the next renewal. Entirelv the same properties
would hold for the tfmelmeasured from the sampling point back to the previcus
renewal.

It 1= clear that one samples from a population of failure-times distributed
aceording to f(x) while the probability of seléction of any individual in the
population is proportional to its length x. If Xw,denotes the fatlure time of the
compenent in whose life the sampling point falls, then X  has the ¢ 7 fv(x) =

xf(x)/-. Conditionally on Xv il the r 7" of R is chtangulat over (0, xv).

which leads to its marginal 1 {" at x to be / %— . fv(x)dx - F(x)u.
~ x

Cox (1969) gives the following example fo: length-biased sampling. An ideal-
{zed model of a textile varn is an assembly of parallel fibers, with ;{7 of fiber
length f(x). The fiber left-ends are arranged at random along a line. Take a
particular cross-section of the varn, that is, a particular point on the line, and
conaider the fibere that {ntersect thie rross—ncctloﬁ. This is length-biased
sampling; the " of length of the fibers ie xf(x)/u. For discussions on similar
problema, reference mav be made to papers bv Coleman (1972), Daniels (1942),

Palmer (194R), Kriens (1963), and Moran (1966, 1969),
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© It may be instructive to record a few more examplesn.

(1) Morrison (1973): Size-biased sampling has implications for rertain sur-
vev re<earch data that {s gathered at an arbitrary point in time. When vou ack a
person, "When did vou last purchase Product A?", or "When did you last attend a
haschall game?”, etc., vou are obtaining particular outcomes of a random varfahle
Vt vhere "t is the time elapned slnce the last purchase until the randomly sclected
interview time t.

(2) Rohaon (197%)

[parke and other recreational facilities, an {nvestigator asks an individual present

In asmenning the rxtent of utf{ltzation of the nationn?

on anch & Jocation as to since when he has been there. The data recorded on a

number of such surveyed individuals have the size-biased feature.

9. WAITING TIME PARADOX

Feller, p. 11-13, introduces the waiting time paradox as follows: 'Buses
arrive in accordance with a Poisson process, the expected time between consecutive
buara being n e (»1, ray). I arrive at an eporh t say noontime shnrp. What is
the expectation E{Ht1 of mv waliting time "t for the next bus? Two rnntrndigtnrv
answers stand to reason:

(a) The lack of memory of the Polsson process implies that s{wt1 should be
inderendent of t, that is, E{HtJ - E[Ho] - 1.

(b) The epoch of my arrival is °‘chosen at random' in the interval between
twn ronsecutive buses, and for reasona of symmetry Efutl - %.

lLet X be the inter-arrival time between two consecutive buses, It {s given
that X hae the ri” f(x) = e ™ of a atandard exponential with E{X] = 1. Then it
can be ahown that the Inter-arrival time X% between two condecutive buaes that
cover mv epoch t has p Jf fR(x) = xe'x. &0 that FIX*] = 2,

It is clear that FIW ] = srn(wt|x¢)1 -‘E{% X#t] - % + 2 = 1. Ve note that
using X instead of X* in the preceding equation leads to the wrong answer of
discussed in (b) above.

tgj—-

Now, in what follows, we prove a theorem that characterizes exponential dis-

tritution within the setup of the continuous waiting time paradox resnltlng from
A IR I N8 AN

e e wes

Let the inter-arrival timees have a distribution belonging te the
linrar exponential family defined by the I f(x) = expinox 4+ a(x) - b(#)}!, where
ElY] = h'(2) < = ., Let X* have ;7€ f*(x) = xf(x)/E'X}]. Then X ts”exponential If

and only 1f E(X#*] « 2ETX],

fr--F: From Theorem, E{X*] = E'X) + V(X)/E!X], and therefore E{X*' « 2F'X]
tfmplice V(X) = {E'X' 12 which relation characterfizes the exponential distrihution
within linear exponential family, as proved in Want and Patil 7107,
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Now for the exponential distribution within the setup of the continucus waft-

ing time paradox resulting from E[X*! = 2E7X], we characterize the weight function

to be w(x) = x, as followsa,

-\ f
Sl o= Let X have rdS f(x) = e X Let X* have rdf f*(x) = %$§%§§§).

where w(x) > O with Elw(X)] < = . Then EfX*) = 2E[X] {f and only if w(x) = x.

Ppoaf: The conditfon that E[X*] = 2E[X] in this stimplifies to

-\x ¢

Ixvw(x)e ~“dx _ 2
)

fw(x)e” =

.

X

We note that LHS reﬁresents the mean value function for a linear exponiﬁtlgl
family with exponent parameter \. Following Patil and Shorrock {71, the mean
value function has to be of the gamma distribution with index parameter 2, impley-~
ing that w(x) = x.

<0 Before we conclude this section, we note that Kotz and Johnson (1978) char-
acterize the exponential distribution to be the distribution of the inter-arrival
time X by requiring the waiting time “t to be identically distridbuted like X, when

t ia chosen at random.

10. CELL CYCLE ANALYSIS AND PULSE LABELING

The following is based on Takahashi (1966) and Zelen (1974). The idealized
cell cvcle model for a proliferating cell consists of four phases. After mitoeis,
a cell which is destined to proliferate enters a (i) pre-DNA svnthesis phase
called Gl, i) DNA-synihosla or S-phase, ({i{{) po=t-DNA syntheais or C: rhase,
and finally (1v) mitosis durfng which time cell divisfon occurs.

The cell cycle of a populution of cells may be studied by exposing the cells
‘to pulse lubellng. Only those cells that are in S-phase get labeled. Further,
when a labeled cell divides, the label is generally passed on to the daughter cells.

Perfodically, the samples of cells from the cell population are observed

under a microscope. The information on the proportion of cells labeled and the

. proportion of labeled mitotic cells can he ured to eatimate important character-

fatics of the kinetics of the cell cycle. of particular interest is the mean
duratfon of the S-phase and the mean cell cycle time.

A difffculty i{s in the interpretation of the experimental data. A diversity
of opinions have been expressed in this connection. The data of Defendi and Man-
son (1963) or of Tolani (1965), 1f evaluated by Quastler's revised method (1963)
indicate nearly twice as large values for mean S-phase durations. Should
Quastler's original method (1959) be true, van't Hof's estimates (19@5) for mean
S-phase duration must be halved. A standardization of interpreting method {s
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therefore needed to render the published data comparable un a common basis.

A3 Zelen observes, it is not generally realized that the radioactive labeling
of cells is actually choosing a sample of cells by a length-biased sampling pro-
cedure. Cells with longer S-phase durations will have a higher probability of
being labeled. Hence, the parameters obtained from labeling experiments are dif-
ferent from those of the target population of cells under investigation. It is
both instructive and interesting to see that the following analysis using a limit-
ing size-biased sampling argument can explain the puzzle of double and half men-
tioned above for the mean S-phase duration.

Let X and T denote the durations of theys-phase and the cell cycle.
Joint rdf be f(x, t). Then, the observed x and t have the ;. given by

f"(x.t)-xg’x‘t) 0 s x5t =,

It foll B ; Cov(X,T)
ollows that E(X') = E(X)[1+C*] and ;(TU) = E(T) + _B%L_Lil where C s the co-

(X)
efficient of variation of X. Assuming that the coefficlent of variation of X is

unity which is the case when X is exponential, we get :

Let their

z[xH] = 2E[X] > E[X].
Further, if X and T-X are uncorrelated,
E[T,] = E[r] + E(x] > E[T].

Thus under the assumptions of X being exponential, and with X and T-X being un-
correlated, the mean duration of the S-phase at the label point will be larger

than the population mean by a factor of two and the cell cycle length will have a
bias of E[X].

11. EFFICACY OF EARLY SCREENING FOR DISEASE

Currently there is increasing emphasis on early detection programs which
identify individuals who are unaware that they have a parcticular chronic discase.
The hope is that earlier detection and treatment will result in an enhanced thera-
peutic benefit to the individual. Zelen (19%4) provides an illyminating discus-
sion of certain aspects of the problems involved. The following is taken from
this discussion. ’

Consider an individual to be in one of three disease states, S .: a disease
free state; S : a pre-clinical state; sc: e elxnxcai state. In tge state S_,
ladividuals do not have the disease, or have a form of the disease which clnngt
be found by the early detection program. The definition of the pre~clinical

state is tha; thf ;ndivtdnll has the dt.paac. but 1is unaware of this condition.
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The early detection program is capable of fdentifying the individual as being in
S . The clinical state is defined as one where the disease has become clinical
and has been diagnosed.

Now consider a population of individuals having a particular chronic discase.
There will be a probability distribution governing the duration of the pre-clini-
cal'dlsuase. At a particular point in time, this population is examined under an
early detection program, and those in § are identified. Thus an early detect;on
program identifies individuals by a size-biased scheme. Hence, 1f a tumor is slow
growing, the pre-clinical state is long, then the clinical course of the Udisease
will tend to be long, resulting in longer survival of the individual. Thus, re-
gardless of whether the therapy fs enhanced by carly detection, Individuals so
found will tend to live longer than the general population of individuals having
this same disease. Consequently, evidence of longer survival for an earlier de-
tected group of cases relative to a control group is not valid scientific evidence
of the effectiveness of the screening program.

Under suitable assumptions, it can be shown that

E(R,] = § (E[T] + V(D) /E[T]) (11.1)

where T is the duration of S , and R is the true lead time gained by earlier
diagnosis because of screening or the duration of the pre-clinical state until
screening. Rv is the observed R under size-bias. The time gained by early diag-
nosls cannot be observed directly. Once the disease is diagnosed, its course is
interrupted by treatment. However, the mean lead time can be estimated iundirectly
by

[}

a[aw} = E{T] - @, - AP). (11.2)

where Ap is the mean age of én individual when detected in S by screening, and
Ac is the mean age at transition into Sc if not screened, (Zelen and Feinleib
(1960)).

If T is exponential, (11.1) and (11.2) imply AP - Ac. which says that the
mean age of those detected early as well as of those who are routinely diagnosed
without the benefit of an early detection program are identical. This apparent
paradox arises because of two compensating features. Although those dfagnoscd by
an early detection procedure are found earlier, the size-blased feature of the
detection shows that the individuals tend to spend longer time in Sp. Furthermore,
1f the coefficient of variation T exceeds one, the mean age of individuals detected
in an early detection program will even be higher than for those detected through

routine medical care.
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12. FOREST PRODUCTS RESEARCH

The present discussion of s{ze-biased sampling in forést products research
is based on Warren (1975). The general problem here concerns identifying a distri-
bution from daeta collected by a method in which the probablility of an {ndividual
being included in the sample is a function of that individual's size. A particular
instance arises {n examining the size of wood cells. A convenient method consists
of mraeuring the size (cross-sectional area) of only those cells selected by a set
nf random points on a microscopic field. The probability of a cell being selected
s then proportional to {ts cross-sectional area size, in which case w(x) = x. In
effect, we have two distributions: (1) the underlying distribution of cell aize
about which we wish to make inferences, and (2) the distribution generated by our
sampl ing mechaniam.

The s{tuations where size-biased sampling is convenfently employed commonly
exhibit large numbers of small individuals, with declining numbers of large indi-
viduale., Under certain environmental condliions. the diameters of trees may have
a distribution of this form, and the forest then be economically iurveyed by an

analegous system.

13. PARTICLE SIZE DISTRIBUTIONS BY THIN SECTION METHODS

Particle size statistics is an {mportant subject area in several acientific
fields much as physics, geology, agricultural engineering, etc. The following
discussion is primarily based on Kendall and Moran (1963).

Consider a problem of determining the distribution of the sizes of particles
emhedded in an opaque medium from the measurement of the figures formed by their
intersections with a random plane, or from the segments formed by their intersec-
tions with a random line. For example, Taliis (1970) considers a problem as fol-
lows: A large block of Swiss cheese was thinly sifced and one hundred slices vere
drawn at random with replacement. Diameters of each hole appearing in the slices
were suitably obtained. It was required to estimate the distributfon function of
the dliameters of the spherical airspacea ln‘the cheene,

If R denotes the diameter of a sphere with pdf f(r), the probability of this
sphere being intersected by a random plane is proportional to r, and therefore

the : [” of the diameter of a sphere cut by a random plane is

£,(r) = vd(r)/ [ re(r)dr = rf(c)/u. (13.1)
]

Actually, the circular section of the sphere with the plane is what is observed
and ft« dfameter x recorded. One obtains {ts density as
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¢ = x [& e 0/ @lxd) dr, any
X

-~ and gets th2 sclution for f(r) as

£ = - 20 [ (22 4 Ty, RER))

2
x

In his pioneering paper, Krumbein (1935) applied the above theory to the nnaf-
ysis of thin sections of sediments in petrography, assuming the particles to be
apheres. His original theory neglected the fact that larger spheres have a‘larger
probability of being included in the section. Later work by Greenman (1951), ™
Rosenfelt et al. (1953), Packham (1955) alao use the Incorrect equation by wrongly
using f(r) where ('(r) given by (13.1) needs to be used. Interestingly, however,

Krumbein ohtained a closer fit to observed values with his simpler and incorrect

’tﬂpory when examining two samples of sand boty by this cross-section méthod and by

actual measurement of the particle size after separation.
We note that if a random line (linear probe) was used instead of a randem
plane (planar probe), the diameter of the sphere so detected will the el

£,(0) = P20(e)/ [ £2e(edr = e2ECe) /g (3.8
0

Further, 1f a sphere of volume v with pd” f(v) is selected by a sampling
mechanism with probability proportional to its surface area, the 177 of the obh-

served v will be

2/ 2/3

f(v) = v Gf(v)/] v g (v)dv. (13.%)
v 0

14. AERIAL SURVEY IN TRAFFIC RESEARCH

We have discussed an aerial survey problem in wildlife ecology in Sectfon 5.
In quite a different wav, a different kind of observational bias enters in the
aertal survey of low density traffic streams. This discussion i{s based on Brown
(1972).

Assume that vehicles enter the highway according to a non-homogeneous Poisseon
process of intensity 1. The vehicles choose velocities at random from a distribu-
tion of V with 177 f(v). Aseume that Ef1/V] ¢ =,

It turns out that the velocity of a vehicle in [a,b] at time t, as t + ~, hae
fts limiting * 77 as ‘ ’
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1 ol |
00 =3 f(v)/g 3 fvdv (s.1n

for all ‘a,b]l. Moreover, the velocities of vehicles which lie in [a,b) at time t
are independent. Thus {f one records the velocities of vehicles in [a,b] at time
t (for example through serial photographs) for t large, he will be observing a
random sample of Poisson size drawn from the r7° fv(V) and not the pdf f(v).
The main effect of this in that he will tend to observe an unduly high propor-
tion nf slower vehicles. This can be seen directly by comparing the two dirtribu-
“tion functions corresponding to £(v) and f£,(v). And this ts fntuitively plausible
since siower vehicles take longer to traverse [a3,b] and therefore tend to be
around vhen the Interval is samples. The problem, then, is to construct an esti-
mate nf the distribution function of f(v) hased on a sample of Poisson sire from
the diatribution function of f'(v) defined by (i14.1).

15. REJECTION TECANIQUE IN RANDOM VARIABLES GENCRATION

s

In this section we show that the rejeckion technique used Iin the peneration
of random varfables {a simply a computer cohnterpart of the concept of weighted
distributions. This discussiom 1is based on Patil-Boswell-~-Friday (1975).

For, suppose we can generate a r.v. Y with p&f fy(y). and we want to generate
a r,v. X with pdf fx(x). The rejection technique consists of two parts: generate
an ohservation on Y (=y, say), and accept v to be the realization of X with proba-
hilfty w(y). Proceed until a realfzatfon of Y is accepted. Clearly, in order for

thia method to work, Y har to assume every value that X can assume, Further,

v(x)fy(x)
fel(x) =
w

where .. is the probability that & random generation of Y is accepted. Thus, the
acceptance probability w(x) is determincd by

w(x) = e £ (x) /1y (x)

frpiving that w(x) is proportional to the 1ikelthood ratic of r.v. X on r.v. Y
Further, w(x) and + are maximized by choosing 1/. = sup fx(x)/fv(x), which {f

bounded, the method works. If not bounded, w(x) > 1 for some x, afd {a no longer
a prohahility for such x. What can be done in such a case f< an interesting
rrehlem.  The following approach may have some use in certain sfituations.

et X have 177 fx). Let the weight functfon be arbitrary, that i=,
0 - w(x) - = with E'w(X)] - =, Let X_ have the r 2 f¥(x) = w(x)(x)/E w(X) ",
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1f X has to be computer-generated from available X, X' may be realized bv ueing

the formulation of

fz(x)'- vl(x)fltx)ltl!ul(x)1

and

£ (x) = v, (0, (D /E) v, ()]

- - , the least
~ where fl(x) - f(x), ul(x) = w(x)/n(x) ¢ 1, and wz(x) n(x) [w(x) ], the leas

integer not less than w(x).

Thus, the available x corresponding to pa If £(x) is selected with probability
v (x), and the selected x is recorded v, (x) times, TIf necessary, one may computer-
gcnrrate x also, and repeat the procedure a large number of times. The recorded
values then constitute a simulated population of values for !v. A random sample

of desired size on x" can be drawn as usual from this population of values of !v.

PART 11T. WEIGHTED DISTRIBUTIONS AS
MASS-STZE DISTRIBUTIONS IN CEOLOGY AND ECONOMICS

16. HEIGHT—SiZE DISTRIBUTIONS IN A BREAKAGE PROCESS

Problems relating to small particle statistics continue to be important in
physics, sedimentology, atmospheric science and air environmental research. This=
brief discussion here is based on Schultz (1975).

The distributlon of particles formed in a phveical breakage process fis usually
analvzed by mass rather than frequencv. Consider, for example, a sieve analvaie
of c;ushéd.stone after a standard drum test, where the weights, or masses, of all

particlee retained by sleves of va?gous sizes as shown in the following histpnr{?.

mass

.1 .2 .3 .4 .S .6 .7 .8 -9 .10 efre
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With referenre to results such as the above, Krumbein and Petttjohn (ree
Hpraan (1960), p. 291) remarked, "There is one conspicuous manner in vﬁlch the
atatistical data of coarse disperse snystems differ from the conventional statiat{-
ca) data ... frequency in coarse disperse systems s usually expressed by weight
inatead of by number. No éomplete investigations of this ... have heen made and
the problem of weight versus number iz still largely unsolved.”

let X be the diameter size with ;7" f(x; 9) with u; - E(xj). It is interest-
fng to nnte that the maas-size denaity §= nothing but f (x: ) = x]f(x: ﬂ)lua. the

'welvh!od ¢ 77 with weight function w(x) = x3 of the random variable X'. say. One
may wish to refer to Herdan (1960) for several interesting features and problems
related to the weight-size distributions. One problem is to estimate » = E[X].

Tt f{a raay to verify that u has an alternative interpretatfon in terms of x“ given
by i = N(xv3)ln(!vz). where H stands for the harmonic mean. This is rugrested to
be an ratimating equation for v in applied lfterature, It is clear that the obh-

served diameter mean will be estimating U;IUS and not u in general.

17. MOMENT DISTRIBVTIONS IN ECONOMICS

In the econcmice lPiterature, weighted distributions with weight functions
wix) = xJ are used. They have been called as moment distributfons. The following
dtecussion 1s based on Hart (1975), Klein (1962), and Ord (1975).

Income distributions at different points of time or location are frequently
rompared and ranked by mome measure of inequality, with low values beinp preferred
te higher vilues. An Income distribution usually follows a typical skew pattern.
A main descriptive feature of such a distribution is fts degree of fncqualfty.
Stilt another type of tabulation and graph diecussed below brings out the degree
of inequality.

The Lorenz curve associated with a distribution gives a joint cumulation,
both of the frequencies and of the varfables being distributed. For example, the
distribution of income may be cumulated to show the per cent of income received
by the bottom tenth class of spending unlt?. by the bottom two tenth classes, and
so on. In other words, {f X - F(x), wvhere X is the income of an individual having
distribution function F(x) and {f Fo(x) = ’:d F(x)/F [ XY, the Loren? curve {a the
graph of F*(x) on F(x). Clearly, F*(x) 5 F(x).

The diagonal line is the curve of equal distribution. The departure of the
actual curve from the line of perfect equality shows the degree of fnequalfty. A

merit of the Lorenz curve technique s that {t enables us to compare distributions
in diesimilar units (currencies).
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