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On the Implementation of the Principal
Component Analysis–Based Approach in
Measuring Process Capability
M. Perakisa*† and E. Xekalakib
The use of principal component analysis in measuring the capability of a multivariate process is an issue initially considered
by Wang and Chen (1998). In this article, we extend their initial idea by proposing new indices that can be used in situations
where the specification limits of the multivariate process are unilateral. Moreover, some new indices for multivariate pro-
cesses are suggested. These indices have been developed so as to take into account the proportion of variance explained
by each principal component, thus making the measurement of process capability more effective. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. Introduction

P
rocess capability indices aim at measuring the capability of a process to produce according to some assigned specifications
related to some characteristics of the items produced. In most of the cases, it is assumed that the studied process is described
through only one characteristic. However, sometimes the need arises for measuring the capability of processes described

through two or more characteristics, that is, multivariate processes.
Among the suggested approaches for measuring the capability of multivariate processes one may note are those by Chan et al.1,

Pearn et al.2, Taam et al.3, Chen4, Shahriari et al.5, Bernardo and Irony6, Wang and Chen7, Wang and Du8, Castagliola and Castellanos9,
and Shinde and Khadse10. The reviews of the abovementioned and some other proposals for capability indices for multivariate pro-
cesses are provided by Kotz and Johnson11,12, Kotz and Lovelace13, Pearn and Kotz14, and Wu et al.15, whereas Wang et al.16 and Zahid
and Sultana17 attempt a comparison of some of the suggested approaches. Furthermore, Spiring et al.18 and Yum and Kim19 provide
an extensive coverage of the bibliography on process capability indices, inclusive of all the important contributions to the measure-
ment of the capability of multivariate processes.

In this article, we consider the use of the principal component analysis in measuring the capability of a multivariate process. The
use of this multivariate technique concerning process capability was initially considered by Wang and Chen7. The idea is to base the
assessment of the capability of a process only on those of the first principal components that explain a large percentage of the total
variability, as the remaining ones carry negligible information. In the sequel, on the basis of Xekalaki and Perakis20, some alternative
ways of implementing this technique are proposed through the definition of certain new indices.

In the remaining of this section a brief description of the idea of principal component analysis is given, mainly for the purpose of
introducing notation and terminology that is used in the subsequent sections, and a presentation of the indices proposed by Wang
and Chen7 is made. In Section 2, extending Wang and Chen’s7 approach, some new indices are suggested for multivariate processes
with unilateral specification limits. In Section 3, some new indices are proposed for multivariate processes with unilateral or bilateral
specifications. These indices take into account the possibly unequal contributions of the individual principal components to the total
variability. In Section 4, we present the results of a study that we performed, aiming at examining the properties of the suggested
indices in various cases. Finally, some conclusions concerning the suggested indices are pointed out in Section 5.

A process that is described through r measurable characteristics is represented in the sequel by a random vector X= (X1, . . ., Xr)′,
with the ith element corresponding to the ith characteristic. The corresponding mean vector, variance–covariance matrix, and corre-
lation matrix are denoted by m, Σ, and r, respectively. When the elements of m, Σ, and r are unknown, they can be estimated by X
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and R, respectively. The specifications of X are determined through the vector l=(L1, . . ., Lr)’ of the lower specification limits for the r
variables, the vector u=(U1, . . .,Ur)’ of the upper specification limits, and the vector t=(T1, . . ., Tr)’ of the target values.

The implementation of principal component analysis can be based either onΣ or on r (see, for exampleMardia et al.21 andMorisson22).
If the r variables are expressed in similar measurement units, Σ has to be preferred, whereas if substantial differences in themeasurement
units are present, r is preferable.

If Σ is used, then denoting the r eigenvalues of Σ ordered in descending order by l1⩾ . . .⩾ lr and the corresponding normalized
eigenvectors by u1,. . ., ur, the r principal components are given by Yi= u1iX1 +⋯+ uriXr, i=1, . . ., r. When the matrix Σ is unknown, S is

used whence the resulting estimates of the eigenvalues are denoted by l̂1⩾ . . .⩾l̂r and the estimates of the eigenvectors are denoted
by u^1,. . .,u

^

r. If the correlation matrix r is used, the r principal components obtained are Yi= u1i Z1 + . . .+ uri Zr , i= 1 . . . r. Here, Zi=
(Xi� mi)/si and mi, si denote the mean and standard deviation of the ith initial variable. Again, if mi, si, li, and ui are unknown, they
are replaced by their sample counterparts.

The choice of the number of principal components that should be included in the analysis can be determined either through some
“rules of thumb” or via some tests. Jackson23 and Wang and Chen7 suggest the use of a test proposed by Anderson24, which enables
one to test the null hypothesis H0: lq+1 = . . .= lr, against the alternative hypothesis that some of these eigenvalues are different. The
test is sequentially applied for q=0, . . ., r� 2, until the first time the null hypothesis is not rejected.

Wang and Chen7 considered the capability assessment of a process using the principle components extracted from the r initial
variables on the basis of the following indices

MCp ¼
Yr
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CYi
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 !1
r
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Yr
i¼1

CYi
pk

 !1
r

;MCpm ¼
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The use of these indices is meaningful when the distribution of the studied process is the multivariate normal, and thus the principal

components are independent and normally distributed. Here, CYi
p , C

Yi
pk , C

Yi
pm, and CYi

pmk denote the indices Cp, Cpk, Cpm, and Cpmk for the ith

principal component, respectively. These indices have been developed for univariate normally distributed processes and are defined as
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respectively, where L and U denote the lower and the upper specification limit, T is the target value, and m and s are the mean and the
standard deviation of the process.

In the assessment of the index values for the ith principal component, the specifications (L, U, and T) involved are linear combina-
tions of the initial specifications with the elements of the corresponding eigenvector as coefficients. Obviously, Wang and Chen’s7

indices are geometric means of the values of the four basic process capability indices for the r principal components.
Wang and Chen7 provide three examples and an actual data application that clarify the assessment of their indices. Note, however,

that in these examples the number of principal components used for the assessment of the indices is not equal to r, as stated in their
definitions, but is determined through the test procedure proposed by Anderson24. As the authors point out, the obtained values of
the indices in all the examples are in accordance to the indices by Chan et al.1, Taam et al.3, Chen4, and Shahriari et al.5. Moreover, they
argue that an additional appealing feature of their technique is its simplicity in comparison to the other approaches.
2. New indices for multivariate processes with unilateral specifications

The four indices suggested by Wang and Chen7 are applicable only to situations where the specifications of all the examined char-
acteristics are bilateral. However, often one may be faced with a process whose characteristics have only a lower (upper) specification
limit because their large (small) values may be desirable. In such cases, Wang and Chen’s7 approach can no longer be used. Moreover,
the assessment of the most widely used process capability indices for multivariate processes, such as those suggested by Chan et al.1,
Taam et al.3, Chen4, and Shahriari et al.5, becomes troublesome for processes connected with such specifications.

To overcome this limitation, we propose, following Wang and Chen’s7 rationale, the indices

MCPL ¼
Yr
i¼1

CPLYi
�� �� !1

r

and MCPU ¼
Yr
i¼1

CPUYi
�� �� !1

r

where CPLYi and CPUYi denote the values of the well-known indices CPL and CPU for the ith principal component. Recall that the
indices CPL and CPU are applicable to univariate processes with only a lower (CPL) or an upper (CPU) specification limit and are
defined as CPL= (μ� L)/3σ and CPU= (U�μ)/3σ, respectively.
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011
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The index MCPL has been developed for the case where all the characteristics of the studied process have only lower specification
limits, whereas the index MCPU is applicable to situations where all the characteristics have only upper specification limits.

The reason why absolute values of the indices CPL and CPU are considered is connected to the fact that sometimes, because of the
rotation of the axes that takes place in principal component analysis, the resulting linear combination of the initial lower (upper) spe-
cification limits for some principal components may take the place of an upper (lower) specification limit. Thus, if one does not take
the absolute values of the univariate indices, he may end up to negative index values. This issue is clarified in the examples given in
the following sections.

The introduction of the indices MCPL and MCPU is meaningful only if the r variables have unilateral specifications of the same
type—either lower or upper. If some of the variables have only a lower specification limit and the remaining variables have only
an upper specification limit, the assessment of the specifications of the principal components and consequently the measurement
of the capability of the entire process following the suggested approach becomes troublesome.

The estimation of the indices MCPL and MCPU is illustrated in the sequel using some examples taken from the article of Wang and
Chen7. These examples have been modified so as to become applicable to the case of processes with unilateral specifications.
2.1. Example 1

Wang and Chen7 analyzed the data of Chan et al.1 that refer to a bivariate process and represent measurements on the Brinell hard-
ness (X1) and tensile strength (X2). The specifications are given by l= (112.7, 32.7)′, u= (241.3, 73.3)′, and t= (177, 53)′, and the sample
size is 25. The sample data are given as follows:
C
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X1
 186
 172
 182
 177
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X2
 57
 49.4
 57.2
 50.6
 55.1
 50.9
 57.9
 45.5
 53.9
 51.2
 57.5
 55.6
From the data, onemay easily obtain estimates of themean vector and the variance–covariancematrix. In particular,�x ¼ 177:2 52:32ð Þ′

and s ¼ 337:8 85:3308
85:3308 33:6247

� �
, respectively. Moreover, the eigenvalues of s are l̂1 = 360.1269 and l̂2 = 11.3331, and their cor-

responding normalized eigenvectors are u^1 = (�0.9675, –0.2529)′ and u^2 = (0.2529, –0.9675)′. Wang and Chen7 argue that
according to Anderson’s24 test, only the first principal component should be used, and for this reason they assess the values of
their indices without taking into account the second principal component (the first principal component explains 96.95% of
the total variability).

Let us now assume that the two variables have only lower specification limits. In this case, one should proceed to the estimation of

the value of MCPL. Actually, keeping only the first principal component, the index MCPL is given byMCPL ¼ CPLYi
�� �� ¼ mY1�LY1

3sY1

��� ���, withmY1
,sY1, and LY1 denoting the mean, the standard deviation, and the lower specification limit for the first principal component. In this case,

the estimated values of mY1 and LY1 are �xY1 ¼ 177:2� �0:9675ð Þ þ 52:32� �0:2529ð Þ ¼ �184:67 and ‘̂Y1 ¼ 112:7� �0:9675ð Þ þ
32:7� �0:2529ð Þ ¼ �117:31, respectively, whereas that of sY1 is sY1 = 18.977. Thus, the value of the index MCPL is estimated to be

MCPL
∧ ¼ �184:67� �117:31ð Þ

3�18:977
��� ��� ¼ 1:18:

It should be remarked that the linear combination of the lower specification limits of the two initial variables becomes, after the
rotation of the axes, an upper specification limit for the first principal component. Actually, the estimated mean of the first principal
component is �184.67, whereas the specification limit is equal to �117.31. Thus, the use of MCPL without taking its absolute value
would lead to a negative value.
2.2. Example 2

Let us now consider the second example given by Wang and Chen7, in which the data of Example 1 are used, but the specifications
now are l= (86.15, 24.75)′, u= (214.75, 65.35)′. Obviously, in this case the specification area, that is, the area containing all the accep-
table process values, has been relocated, keeping, however, its area and its shape fixed. The initial (Example 1) and the relocated
(Example 2) specifications are depicted in Figure 1. Because the mean vector is closer to the center of the initial position of the spe-
cification area, one would expect, in the bilateral case, to result in smaller index values. Actually, as shown by Wang and Chen7, the
indices, MCpk, MCpm, and MCpmk result in smaller values after the change of the specification limits, whereas the value of MCp remains
the same because this index is not affected from changes of the location of the process.

On the other hand, when only the lower specification limits have been assigned, the value of MCPL is expected to become larger
because the specification limits have become less strict and the process data remain unchangeable. Note that the initial (Example 1)
and the relocated (Example 2) specification areas in the unilateral case are the areas above the bottom and the left segments of the
two rectangles that determine the corresponding areas in the bilateral case (Figure 1). These areas are illustrated in Figure 2. Actually,
t. 2011
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Figure 1. The specifications of Examples 1 and 2 in the bilateral specification case
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in this case, the estimated values ofmY1 andsY1 are, as previously, –184.67 and 18.977, respectively, whereas an estimate of the value of
LY1 is given by

‘̂Y1 ¼ 86:15� �0:9675ð Þ þ 24:75� �0:2529ð Þ ¼ �89:61

Hence, an estimate of the value of the index MCPL is given by

MCPL
∧

¼ �184:67� �89:61ð Þj j
3�18:977 ¼ 1:669

which is in accordance to our statements, that is, in this case the process is found to be more capable in comparison to Example 1.
Let us now assume that only upper specification limits have been assigned. In Example 1, the specifications are u= (241.3,

73.3)′, whereas in Example 2, the specifications are u = (214.75, 65.35)′. Obviously, in this case the specification areas are the
areas below the top and the right segments of the two rectangles in Figure 1. In this case, one would expect to result in smal-

ler index value in the second case because the estimate of the mean vector �x ¼ 177:2 52:32ð Þ′ is located closer to the cor-
responding specification limits. Actually, for u = (241.3, 73.3)′, it follows that ûY1 ¼ 241:3� �0:9675ð Þ þ 73:3� �0:2529ð Þ ¼ �252; 00,
whereas for u = (214.75, 65.35)′, it follows that ûY1 ¼ 214:75� �0:9675ð Þ þ 65:35� �0:2529ð Þ ¼ �224:30 and the corresponding
estimates of the index MCPU are

MCPU
∧

¼ �184:67� �252:00ð Þj j
3�18:977 ¼ 1:18

and

MCPU
∧

¼ �184:67� �224:30ð Þj j
3�18:977 ¼ 0:70

Figures 3 and 4 provide some insight into the properties of the suggested indices for various values of the specification
limits and not only for a specific change. These depict contour plots of MCPL (Figure 3) and MCPU (Figure 4) for the process
defined in Examples 1 and 2. These plots cover a wide range of specification limits and illustrate the fact that the
values of the new indices are appreciably sensitive to changes in the specification area. Note that such changes in the
specification area do affect the capability of the process because they induce changes to the corresponding proportion
of conforming items.
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In particular, from Figure 3, we observed that the value of the index MCPL is high when both specifications are small, that is, when

they are far from the mean of the process (�x ¼ 177:2 52:32ð Þ′ ). On the other hand, when the specification limits move toward the
mean, the value of the index becomes close to zero. Therefore, the suggested index seems to perform rather satisfactorily.

Similar conclusions may be drawn for the index MCPU. Actually, from Figure 4, one may observe that the value of this index is high
when both specifications are large, whereas its value decreases as the specification limits move toward the mean.

Finally, some insight into the behavior of the index MCPL is provided by the following example referring to an actual data set con-
sidered by Wang and Chen7.
2.3. Example 3

The data in question come from a plastics manufacturer in Taiwan. The variables considered are the depth (X1), the length (X2), and
the width (X3) of a plastic product. The vectors of the specification limits are given by l= (2.1, 304.5, 304.5)′ and u= (2.3, 305.1, 305.1)′,
respectively. On the basis of a random sample of 50 pieces of the product, the mean vector and the variance–covariance matrix are

estimated to be �x ¼ 2:16; 304:72; 304:77ð Þ′ and s ¼
0:0021 0:0008 0:0007
0:0008 0:0017 0:0012
0:0007 0:0012 0:0020

2
4

3
5, respectively. Wang and Chen7 have implemen-

ted Anderson’s24 test and concluded that only the first two principal components should be used (they explain 89.04% of the total

variability). The estimated eigenvalues and the corresponding eigenvectors of the first two principal components are l̂1 ¼ 0:0037,

l̂2 ¼ 0:0015, u^1 ¼ 0:5222; 0:5824; 0:6230ð Þ′ , and u^2 ¼ 0:8385;�0:2172;�0:4998ð Þ′ .
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011
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Assuming that only the lower specification limits for the three variables have been assigned, we obtain �xY1 ¼ 2:16�0:5222þ
304:72�0:5824þ 304:77�0:6230 ¼ 368:4686, ‘̂Y1 ¼ 2:1�0:5222þ 304:5�0:5824þ 304:5�0:6230 ¼ 368:1409, and sY1 = 0.0608 for the first

principal component and �xY2 ¼ 2:16�0:8385þ 304:72� �0:2172ð Þ þ 304:77� �0:4998ð Þ ¼ �216:698 , ‘̂Y2 ¼ 2:1�0:8385þ
304:5� �0:2172ð Þ þ 304:5� �0:4998ð Þ ¼ �216:5657, and sY2 = 0.03873 for the second principal component. Therefore, an estimate of
MCPL is given by

MC
∧
PL ¼

Y2
i¼1

CPLYi
∧����
����

 !1
2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
368:4686� 368:1409j j

3�0:0608 � �216:698� �216:5657ð Þj j
3�0:03873

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:7966ð Þ 1:1386ð Þp
¼ 1:43:

Let us now assume that the (unilateral) specifications for the three variables become stricter and determined by l= (2.15, 304.6,
304.6)′. In this case, we would expect to find a smaller (estimated) value of MCPL because the probability of producing outside the
specification area becomes now higher (the mean is now closer to the specification limits and the variability, as expressed by s
remains unchanged). In this case, the values of �xY1 , sY1 , �xY2 , and sY2 remain unchanged because they are affected only from the data

and not from the specifications. On the other hand, the lower specification limit for the first principal component becomes ‘̂Y1 ¼
2:15�0:5222þ 304:6�0:5824þ 304:6�0:6230 ¼ 368:288 , and the lower specification limit for the second principal component

becomes ‘̂Y2 ¼ 2:15�0:8385þ 304:6� �0:2172ð Þ þ 304:6� �0:4998ð Þ ¼ �216:595.
Therefore, an estimate of MCPL is given by

MC
∧
PL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
368:4686� 368:288j j

3�0:0608 � �216:698� �216:595ð Þj j
3�0:03873

r
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9925ð Þ 0:8828ð Þp
¼ 0:936

and thus the change of the specification limits is reflected by the decrease of the value of the index.
The contour plot of Figure 5 reflects a behavior by the index MCPL consistent with that revealed in Example 2 for various values of

the specification limits. Note that without loss of generality, it was assumed in this case that L2 = L3 for ease in the construction of a
contour plot. One may observe that, as in the case of Example 2, the value of the index is high when all the specifications are low and
decreases as the specification limits move toward the mean.
3. New indices that take into account the variance explained by the principal components

A drawback of the indices defined by Wang and Chen7 is the fact that they assign the same importance to all the principal compo-
nents that are found to be significant and are thus used in their assessment. To illustrate this, consider again Wang and Chen’s7 actual
data used in Example 3 of the previous section.

To decide how many principal components to include in their analysis, they implemented Anderson’s24 test. They initially tested
the hypothesis H0: l1 = l2 = l3. The value of the test statistic (37.96) exceeded w25;0:95 ¼ 11:07; hence, they proceeded with testing the

hypothesis H0: l2 = l3. Again, the value of the test statistic (9.94) was in the 5% critical region (w22;0:95 ¼ 5:99). Hence, taking into
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Figure 5. Contour plot of MCPL for various values of L1 and L2 and L3 for the process of Example 3
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account the fact that the first two principal components explained the 89.04% of the total variability, they based the assessment of
their indices solely on the first two principal components.

It is obvious, however, that the first two principal components are treated as having the same importance in terms of the indices
(they are geometric means of the corresponding indices for univariate processes). However, the first principal component explains
63.93% of the total variability, whereas the second principal component explains only 25.11% of it. Furthermore, Anderson’s24 test

of the hypothesis H0: l1 = l2 yields Τ ¼ � 50� 1ð ÞP2
j¼1 lnl̂ j þ 2ð Þ 50� 1ð Þ ln P2

j¼1 l̂ j=2
� 	� 	

¼ 9:66.

This is in the 5% critical region (w22;0:95 ¼ 5:99). Therefore, the fact that the first two principal components differ significantly in their

associated eigenvalues, and hence in the percentages of the variance explained by them, is completely disregarded by the indices
MCp, MCpk, MCpm, and MCpmk.

To overcome this deficiency, we suggest some new indices that allow for potential differences in the portions of the variance
explained by the principal components considered. These differences are taken into account by assigning unequal weights to the
index values corresponding to the principal components used and, in particular, proportional to the portions of the variance
explained by them, as determined by their respective eigenvalues. Specifically, if the studied process has bilateral tolerances,

we suggest the indices MC′
p ¼ 1

V

Pr ′

i¼1liC
Yi
p ;MC′

pk ¼ 1
V

Pr ′

i¼1liC
Yi
pk ;MC′

pm ¼ 1
V

Pr′

i¼1liC
Yi
pmand MC′

pmk ¼ 1
V

Pr′

i¼1liC
Yi
pmk whereas in the

case of unilateral specifications, we propose the index MCPL′ ¼ 1
V

Pr′

i¼1li CPL
Yi

�� �� if all of them are lower specification limits and

the index MCPU′ ¼ 1
V

Pr′

i¼1li CPU
Yi

�� �� if all of them are upper specification limits. Here, r′ denotes the number of the principal com-
ponents used, as determined through Anderson’s24 test or any other criterion, and V denotes the sum of the eigenvalues asso-

ciated with the selected principal components, that is, V ¼Pr′

i¼1li .
Obviously, the proposed indices are weighted averages of the indices for univariate processes for the selected principal com-

ponents, with weights on the basis of the proportion of variability explained by each of them. Alternatively, if one wishes to keep
all the principal components in the analysis, the formulae for the suggested indices can be modified by replacing r′ and V by r
and

Pr
i¼1li , respectively. If the variance–covariance matrix Σ is unknown, the values of the indices can be estimated using the

eigenvalues and the eigenvectors of the sample variance–covariance matrix S. Besides, in the case where the r variables that
describe the process are expressed in measurement units with substantial differences, one may alternatively assess the values
of the indices using the eigenvalues and the eigenvectors of the correlation matrix.

For the data considered previously in Example 3, l̂1 ¼ 0:0037 and l̂2 ¼ 0:0015. Therefore, V̂ ¼ 0:0052, and thus the corresponding

estimates of the suggested indices are MC’
∧

p ¼ 1:94;MC’
∧

pk ¼ 1:60;MC’
∧

pm ¼ 1:26 and MC’
∧

pmk ¼ 1:06.

The corresponding estimates of the indices by Wang and Chen7 are MC
∧
p ¼ 1:60, MC

∧

pk ¼ 1:42, MC
∧
pm ¼ 1:22, and MC

∧

pmk ¼
1:08. As one may observe, the estimates of the new indices vary from those of the corresponding indices by Wang and Chen7,

especially for the first two indices, that is, MC’
∧

p and MC’
∧

pk. The cause of this discrepancy is the fact that the univariate indices

Cp and Cpk result in distant values for the first two principal components. Specifically, the estimated index Cp is 2.27 for the first
principal component and 1.13 for the second. The corresponding estimates of Cpk are 1.80 and 1.12, respectively. However, the
first principal component explains 63.93% of the total variability whereas the second only 25.11% of it. Thus, it is intuitively
reasonable to give more importance to the index values that have been assessed for the first principal component because
they carry a larger amount of information for the entire process examined. This issue is reflected by the values of the sug-
gested indices, which are closer to the corresponding value for the first principal component in comparison to the indices
by Wang and Chen7. The properties of the suggested indices and their advantages in comparison to the indices by Wang
and Chen7 are discussed in the next section.
4. Properties of the new indices

To investigate the performance of the indices proposed in Section 3 and to compare them to the indices suggested by Wang and
Chen7, we carried out a simulation study about bivariate processes for ease of illustration. In particular, our aim in this study is to
examine the behavior of the suggested indices, in the bivariate case, in situations where the values of the parameters of the process
change and to see if their behavior is in accordance to the capability of the process. Without loss of generality, it was assumed that the
specifications of the two processes are those given in Table I.

For the specification limits given in Table I, a wide range of process parameters (m and Σ) are considered. Thus, the values of the
mean vector considered, for both processes, range from 0 to 1 with increments of 0.1, that is, 0, 0.1, 0.2,. . ., 0.9, 1.0. It should be noted
that we considered only mean values greater than the target value, because the selected specifications are symmetric (i.e. each target
value coincides with the mean of the corresponding lower and upper specification limits), and the results for mean values smaller
than the target value are similar. The values of the parameters s21, s

2
2, and s1, 2 = Cov(X1, X2) considered and the corresponding eigen-

values are given in Table II.
For the selected combinations of these parameter values, the indices MCp, MCpk, MCpm, and MCpmk by Wang and Chen7 and the

new indices MC′
p, MC′

pk, MC′
pm, and MC′

pmk proposed in Section 3 have been assessed. Figures 6–10 depict plots of the eight indices
for the four variance combinations and for 11 different (common) mean values corresponding to s1;2 = 0.1, 0.2, 0.3, 0.4, and 0.5.
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011



Table I. Specification limits for the studied processes

L T U

X1 � 2 0 2
X2 � 2.2 0 2.2

Table II. Values of the parameters s21, s
2
2, and s1;2 and the corresponding eigenvalues

s2
1 s2

2 s1;2 l1 l2

0.5 0.6 0.1 0.66 0.44
0.2 0.76 0.34
0.3 0.85a 0.25a

0.4 0.95a 0.15a

0.5 1.05a 0.05a

0.75 1.0 0.1 1.04 0.71
0.2 1.11 0.64
0.3 1.20 0.55
0.4 1.29 0.46
0.5 1.39 0.36

1.0 1.5 0.1 1.52 0.98
0.2 1.57 0.93
0.3 1.64 0.86
0.4 1.72 0.78
0.5 1.81 0.69

1.2 1.7 0.1 1.72 1.18
0.2 1.77 1.13
0.3 1.84 1.06
0.4 1.92 0.98
0.5 2.01 0.89

aCases where the first principal component explains at least 75% of the total variability. In these cases, the values of the indices sug-
gested in Section 3 are identical to those by Wang and Chen7 because only the first principal component is used.
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Figure 6. Plot of the indices MCp, MCpk, MCpm, MCpmk, MC′
p, MC′

pk, MC′
pm, and MC′

pmk for various common values m for m1 and m2 and various values of s21 and s22 with
s1;2 = 0.1
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Figure 8. Plot of the indices MCp, MCpk, MCpm, MCpmk, MC′
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pk, MC′
pm, and MC′

pmk for various common values m for m1 and m2 and various values of s21 and s22 with
s1;2 = 0.3
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In each case, for fixed values ofs1;2, m1, and m2, one would expect to end up with higher index values when the variances of the two

processes are small, that is, in the case where s21 ¼ 0:5 and s22 ¼ 0:6, and to lower values as the variances increase. As one may
observe, the four new indices possess this property in all the cases examined because the line corresponding to the case s21 ¼ 0:5
and s22 ¼ 0:6 is always above the other lines and the three other lines are positioned according to the variances of the respective

processes. Moreover, the differences in the four variance combinations examined, between the values of each of the indices MC′
pk

, MC′
pm, and MC′

pmk , are greater for values of m1 and m2 that are close to the target value and become smaller as the two processes
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011
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Figure 10. Plot of the indices MCp, MCpk, MCpm, MCpmk, MC′
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pk , MC′
pm, and MC′

pmk for various common values m for m1 and m2 and various values of s21 and s22 with s1;2 =0.5
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become off target. This is connected to the fact that for an on-target process, it is very important to have small variability because in
such a case the probability of producing near the target is very high. On the other hand, for an off-target process, it is not always
preferred to have small variability because in such a case the process produces within the specification area but the probability of
producing near the target is negligible. On the contrary, an off-target process with relatively high variability may produce outside
the specification area, but some of the produced items are near the target. This property of the suggested indices is quite appealing
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011
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Figure 11. Plot of the standard errors of the estimators of the indices MC′
p, MC′

pk , MC′
pm, and MC′

pmk for three sample sizes, various common values m for m1 and m2, and
various values of s21 and s22 with s1;2 = 0.1
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Figure 13. Plot of the standard errors of the estimators of the indices MC′
p, MC′

pk , MC′
pm, and MC′

pmk for three sample sizes, various common values m for m1 and m2, and
various values of s21 and s22 with s1;2 = 0.3
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Figure 14. Plot of the standard errors of the estimators of the indices MC′
p, MC′

pk , MC′
pm, and MC′

pmk for three sample sizes, various common values m for m1 and m2, and
various values of s21 and s22 with s1;2 = 0.4
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and is reflected mainly by the two indices that take into account the target value, that is, by the indicesMC′
pm andMC′

pmk. It should be

noted that the index MC′
p does not possess this property because it is not affected by the means of the processes. Therefore, the

suggested indices perform rather satisfactorily in all the cases considered.
Copyright © 2011 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2011



1.00.50.0 1.00.50.0

0.12

0.08

0.04

0.12

0.08

0.04

0.12

0.08

0.04

1.00.50.0

0.12

0.08

0.04

1.00.50.0

MCp`; Var X1, X2 = 0.5, 0.6

µ

MCp`; Var X1, X2 = 0.75, 1.0 MCp`; Var X1, X2 = 1, 1.5 MCp`; Var X1, X2 = 1.2, 1.7

MCpk`; Var X1, X2 = 0.5, 0.6 MCpk`; Var X1, X2 = 0.75, 1.0 MCpk`; Var X1, X2 = 1, 1.5 MCpk`; Var X1, X2 = 1.2, 1.7

MCpm`; Var X1, X2 = 0.5, 0.6 MCpm`; Var X1, X2 = 0.75, 1.0 MCpm`; Var X1, X2 = 1, 1.5 MCpm`; Var X1, X2 = 1.2, 1.7

MCpmk`; Var X1, X2 = 0.5, 0.6 MCpmk`; Var X1, X2 = 0.75, 1.0 MCpmk`; Var X1, X2 = 1, 1.5 MCpmk`; Var X1, X2 = 1.2, 1.7

50

100

150

size

Sample

Figure 15. Plot of the standard errors of the estimators of the indices MC′
p, MC′
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pm, and MC′

pmk for three sample sizes, various common values m for m1 and m2, and
various values of s21 and s22 with s1;2 = 0.5
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On the other hand, the indices by Wang and Chen7 do not possess the appealing features of the new indices introduced in this
article. For instance, from Figure 6, we observed that the value of MCp is 0.64 when s21 ¼ 0:75 and s22 ¼ 1:0, whereas it is 0.57 when
s21 ¼ 0:5 and s22 ¼ 0:6, although in the second case the variability is smaller. Similar conclusions may be drawn from Figures 7–10.

Except for the properties of the new indices and their ability to measure process capability satisfactorily, we examined the accuracy
of their estimators. This can be achieved by assessing their standard errors. As already stated earlier, their estimators are obtained by

substituting X
�
, S, and R for m, Σ, and r, respectively.

The standard errors of the estimators of the indices MC′
p , MC′

pk , MC′
pm , and MC′

pmk are estimated, via simulation, using the so-
called parametric bootstrap technique (see, e.g. Efron and Tibshirani25). The cases examined in this simulation study are those used
earlier for examining the properties of the indices, that is, the bivariate normal distribution with values of s21, s

2
2, and s1;2 as given

in Table II and mean vector, for both processes, from 0 to 1 with increments of 0.1. For each of these cases, the parametric bootstrap
technique is implemented by generating 1000 random samples of sizes 50, 100, and 150. For each of the generated samples, the

values of MC′
p , MC′

pk , MC′
pm , and MC′

pmk are estimated. The standard deviation of the 1000 estimates, which has been assessed
for a specific index, can be used for estimating the standard error of its corresponding estimator.

The estimated standard errors are depicted in Figures 11–15. The basic findings are listed as follows:

• In all the cases, the value of standard error decreases as the sample size increases.
• The standard error of the estimator of MC′

p is not affected by the mean of the process because, by its definition, this index is
affected only by the variability of the process.

• The standard errors of the estimators ofMC′
pk, MC′

pm, andMC′
pmk seem to become smaller as the meanmoves further from the target

value.
5. Conclusions

In this article, extending the initial idea of Wang and Chen’s7, some alternative approaches have been proposed for using principal
component analysis in the measurement of the capability of multivariate processes. Some new indices have been suggested that
make possible the assessment of process capability for processes with unilateral tolerances. Moreover, new indices have been intro-
duced, which take into account the proportion of the variance explained by each principal component. For all the suggested indices,
illustrative examples have been provided.

The suggested indices constitute a useful tool for the practitioners in the case of multivariate processes because they perform
quite satisfactorily, as illustrated via the given examples and the study of their properties provided in Section 4. They can be used
for either unilateral or bilateral specifications, and their assessment is rather simple.
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