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Abstract

An exponential-inverse Gaussian distribution is used to model the claim size distribution. The distribution has shorter
tails than the Pareto distribution and it is considered as a plausible model for data without large tails. We present the model
allowing for covariates. Properties of the model are discussed. An EM algorithm is provided to fit the model. The algorithm
is quite simple and programmable without need for any special functions. The model can be seen as a random effect model
for exponential survival times regression. A real data application using a car-insurance company portfolio data is provided.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Generalized linear models (GLM) have been used for actuarial purposes by several authors(see, e.g. Haberman
and Renshaw (1996) and references therein). In the framework of actuarial applications, there are several attempts to
use GLM in order to describe the claim frequency, the claim size or other characteristics of a portfolio. As far as the
claim frequency modelling is concerned, Poisson and negative binomial regression models have been used by many
authors(see, e.g. Apostolakis (1998) and references therein). Beirlant et al. (1991)examined via a logistic regression
model the probability that at least one claim will occur for a contract with given characteristics. In addition they
fitted an accelerated failure time model to examine the size of the claim. Loss distributions are described in depth
in the book ofKlugman et al. (1998). Parametric regression models are available for a range of distributions, like
the exponential, the Pareto and the Burr family. Many of them are popular in survival analysis, too.Beirlant et al.
(1998)used a Burr regression model for portfolio segmentation purposes.
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The aim of the present paper is to propose a new model which is similar in nature to the Pareto model. In fact
the model differs from the standard Pareto one by using an inverse Gaussian mixing distribution for the parameter
of the exponential density instead of the gamma one, as the derivation of the Pareto distribution is based on. It is
important to note that different parameterizations of the exponential distribution may lead to other models. The
model is fitted to data from a large Greek insurance company, concerning the size of car accident claims. An EM
type algorithm is provided that facilitates the estimation procedure. Model diagnostics are provided.

To motivate further the new model, note that it can be considered as candidate model for data with moderate
tails. In order to have a picture for the tail of the distribution proposed, we followWang (1998)and his right tail
index. Comparing with other densities(see Table 3 of Wang (1998)), the proposed model has an index 2.31. The
E-IG model of that table refers to a different model than ours. This value shows that the tail is not as large as the
one for the Pareto model, but larger than that of the gamma model for example. In addition, the proposed model
offers simple estimation procedures, it is always J-shaped and it has a decreasing failure rate. Interestingly, it offers
an interpretation based on mixed effects exponential regression model, having potential applications for survival
analysis models.

The remaining of the paper proceeds as follows. InSection 2, we derive the new model, while inSection 3we
fully describe ML estimation through an EM algorithm.Section 4contains an application to a dataset concerning
car-insurance claims. Diagnostics for the model, including goodness of fit, residual and influence diagnostics are
provided inSection 5. Some further issues are examined inSection 6, while concluding remarks can be found in
Section 7.

2. The model

Consider the amountyi paid for theith contract andxi a vector of covariates related to theith contract (i =
1, . . . , n), that may contain the characteristics of the insured person or the car. The model assumes that

yi|θiti ∼ f(yi|θiti), θi ∼ IG(γ, δ), ti = exp(x′
iβ), (1)

whereβ is a vector of regression coefficients,f(y|θ) = θ−1 exp(−y/θ), y, θ > 0, i.e. the density of the exponential
distribution with meanθ and IG(γ, δ) denotes the density of the inverse Gaussian distribution given by

f(z) = δ√
2π

exp(δγ)z−3/2 exp

(
−1

2

(
δ2

z
+ γ2z

))
, γ, δ, z > 0,

with mean and variance given asE(Z) = δ/γ and Var(Z) = δ/γ3 respectively. Note that there are several different
parameterizations of the inverse Gaussian distribution(see, e.g. Seshadri, 1993).

It can be verified that the resulting unconditional density foryi is given by

f(yi) = δ

ti

exp(−γ(φ(yi, xi, β, δ) − δ))

φ(yi, xi, β, δ)3
(γφ(yi, xi, β, δ) + 1), δ, γ > 0, yi > 0, (2)

whereφ(yi, xi, β, δ) = (δ2 + 2yi/ti)1/2, i = 1, . . . , n. In the sequel for brevity we will denoteφi = φ(yi, xi, β, δ)

but keep in mind thatφi is a function of the unknown parameters. This distribution will be referred to as the
exponential-inverse Gaussian distribution (denoted as E-IG). It is easy to see that

F(yi) = 1 − δ
exp(−γ(φi − δ))

φi
, δ, γ > 0, yi > 0. (3)

The density has always a mode at 0. The mean and the variance are given by

E(yi) = µi = δti

γ
, Var(yi) = t2i

(
2δ

γ3
+ δ2

γ2

)
,
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respectively. The hazard functionh(yi), assumingti = 1 and dropping subscripts, takes the form

h(yi) = γφi + 1

φ2
i

,

which is clearly decreasing (as expected for a mixture of the exponential density).
The E-IG distribution is not well-known among actuaries. An early derivation of the distribution for reliability

purposes can be found inBhattacharya and Kumar (1986)but since then there are quite a few references of it and
we are not aware of any application of it. Note, however, a misprint in that paper leading to a different distribution
function.Willmot (1993)used it as a mixing density to construct mixed Poisson distributions.

Hesselager et al. (1998)refers to an exponential-inverse Gaussian model which is different than ours since it
assumes an inverse Gaussian density forθ−1 and notθ as in the present paper. This density is also cited inWang
(1998)andGenest et al. (2002). Bivariate and multivariate versions of the E-IG distribution have been described by
Whitmore and Lee (1991)andAl-Mutairi (1997).

In (1) we need to impose the constraintγ = δ, in order the model to be estimable, i.e. we set the mean of the
mixing distribution equals 1, since, otherwise, identifiability problems exist. Note that the model(1) is in fact an
exponential regression model with random effects. Namely it can be written in the equivalent form

yi|θiti ∼ f(yi|θiti), log(ti) = x′
iβ + θi,

where the random effectsθi are related to the inverse Gaussian distribution since exp(θi) ∼ IG(γ, δ) (note that this
density appear inKanefuji and Iwase (1996)under the name exponential-inverse Gaussian distribution). Under the
restrictionE(θi) = 1, the overdispersion relative to the simple exponential distribution isδ−2. Hence, ifδ → ∞
the distribution tends to the simple exponential distribution.

Another interesting connection is the following. It can be seen that both models (the E-IG and the Pareto distribu-
tion) are special cases of the general model with a generalized inverse Gaussian mixing distribution. The probability
density function of the generalized inverse Gaussian (GIG) distribution is given by

f(z; λ, δ, γ) =
(γ
δ

)λ zλ−1

2Kλ(δγ)
exp

(
−1

2

(
δ2

z
+ γ2z

))
, z > 0, λ ∈ R,

whereγ, δ ∈ Θλ, and

Θλ =



γ ≥ 0, δ > 0 if λ > 0,

γ > 0, δ > 0 if λ = 0,

γ > 0, δ ≥ 0 if λ < 0.

We will denote this distribution as GIG(λ, γ, δ). More details about the GIG distribution can be found inJorgensen
(1982). The moments around the origin of the GIG(λ, γ, δ) are given by

E(zr) =
(
δ

γ

)r
Kλ+r(δγ)

Kλ(δγ)
, (4)

and this formula holds for negative values ofr, i.e. for inverse moments, too. The inverse Gaussian distribution is a
special case of the GIG distribution forλ = −1/2, while the gamma distribution arises forλ > 0 andγ = 0.

Assuming that there are not covariates in the model, i.e. settingti = 1 then a GIG mixture of the exponential
distribution has density function given by

f(y) = Kλ−1(γ
√
δ2 + 2y)

Kλ(δγ)

γ

δλ
(δ2 + 2y)(λ−1)/2, γ, δ, y > 0, λ ∈ R.
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This distribution contains as special cases both the E-IG distribution and the Pareto distribution. It also contains the
model ofHesselager et al. (1998)since the reciprocal inverse Gaussian distribution is also a special case of the GIG
distribution.

3. Estimation for the E-IG model

Consider a sample(yi, xi), i = 1, . . . , n of independent observations, whereyi is the response andxi a vector of
covariates. Assume that the data are produced according to model(1) and hence, their density is given in(2) with
the additional restrictionE(θi) = 1. Then, the log-likelihood can be written as

L = n logδ −
n∑

i=1

log ti − δ

n∑
i=1

φi + nδ2 − 3
n∑

i=1

logφi +
n∑

i=1

log(δφi + 1). (5)

Maximization of the above function with respect to the vector of parametersw = (δ, β) is not easy. Fortunately the
mixture derivation of the model can be used for maximum likelihood (ML) estimation via an EM type algorithm. The
EM algorithm is a powerful algorithm for ML estimation for data arising from mixtures, since the mixing operation
can be considered as producing missing data. Thus in our case, the missing data are simply the realizations of the
unobserved mixing parameterθi for each data point. If one augments the unobserved dataθi to the observed data
(yi, xi), for i = 1, . . . , n, then the complete data log-likelihood takes the form

Lc = −
n∑

i=1

logθi −
n∑

i=1

log ti −
n∑

i=1

yi

θiti
+

n∑
i=1

logf(θi|δ),

wheref(θi|δ) denotes the mixing distribution, the inverse Gaussian with mean equal to 1 in our case. It is easy to
see that the log-likelihood factorizes in two terms. Parameterδ is involved only in the second term which in fact
corresponds to the likelihood of the inverse Gaussian component. Thus, one needs to obtain the sufficient statistics
for the parameters of the inverse Gaussian distribution, which for our parametrization are given as

∑
θi and

∑
θ−1
i .

On the other hand, the regression coefficients are involved only in the first part, which is equivalent to fitting an
exponential GLM. Care must be paid on the fact that the observations are now of the formyi/θi and thus we need
to obtain the expectations ofθ−1

i .
A quite useful result is the following. It can be shown that the GIG distribution is conjugate distribution in the

Bayesian sense for the parameterθ of the exponential distribution. The same is true for the corresponding parameter
of the gamma distribution. Note that the GIG distribution has been shown to be conjugate also for the parameter
of the Poisson distribution and the variance parameter of the normal distribution. This result is summarized in the
following lemma.

Lemma. Let f(x|θ) = θ−1 exp(−x/θ) and let the prior distribution of the parameter θ be the GIG(λ, γ, δ) distri-
bution. The posterior distribution θ|x is a GIG(λ − 1, γ,

√
δ2 + 2x) distribution.

Proof. To see this, consider that the prior distributiong(θ) is the GIG(λ, γ, δ) distribution. Then the posteriorg(θ|x)
can be obtained as

g(θ|x) ∝ θλ−1 exp

[
−1

2

(
δ2

θ
+ γ2θ

)]
θ−1 exp

(
−x

θ

)
,

and hence

g(θ|x) ∝ θλ−2 exp

[
−1

2

(
δ2 + 2x

θ
+ γ2θ

)]
,

which is a GIG(λ − 1, γ,
√
δ2 + 2x) distribution.
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In the special case whenλ = −1/2, i.e. when the simple inverse Gaussian is the prior distribution, the posterior
distribution is a GIG(−3/2, γ,

√
δ2 + 2x) distribution. Thus, posterior expectations can be computed quite easily.

Making use of the relationships between the modified Bessel functions of different orders(see, Abramowitz and
Stegun, 1974):

K1/2(x) = K−1/2(x) =
( π

2x

)1/2
exp(−x), K−n(x) = Kn(x),

Kn+1(x) = 2n

x
Kn(x) + Kn−1(x) and K3/2(x) = K1/2(x)(1 + x−1),

one can obtain that

E(θi|yi, xi) = φ2
i

γφi + 1
, (6)

E(θ−1
i |yi, xi) = 3

φ2
i

+ γ2

1 + γφi
. (7)

So, an EM type algorithm for the E-IG distribution can be described as follows:

• E-step: Let w = (δ, β) be the vector of the parameters to be estimated. Given the values of the parameters after
the kth iteration, sayw(k) , calculate for theith observation the expectationssi = E(θi|xi, w(k)) from (6) and
mi = E(θ−1

i |yi, xi, w(k)) from (7) for i = 1, . . . , n.
• M-step: Updateδ using

δ(k+1) =
(

n∑n
i=1 si +

∑n
i=1mi − 2n

)1/2

.

Updateβ’s by fitting an exponential GLM model using as responseyimi and the vectorsxi as covariate information.
• If some convergence criterion is satisfied then we stop iterating, otherwise we go back to the E-step for one more

iteration. �

Standard errors for the parameters can be obtained either through the second derivatives of the log-likelihood
(seeAppendix B) or through resampling techniques.

4. Application

The data were kindly provided by a major insurance company in Greece and concern an automobile insurance
portfolio. The data refer to the policyholders at the end of the year 2001, and specifically they describe the amounts
paid for claims at that year in hundred thousand drachmas (1 euro= 340.75 drachmas).

Our interest lies in identifying factors that affect the amount paid for each claim and specifically the factors that
correspond to the insured person and his/her characteristics, including the characteristics of the car. For this purpose,
the data consist of the amount paid for each policy (this was the response variable) and several characteristics of
the insured person, as the age, the gender, the marital status and the bonus–malus level and characteristics of the
car, like the cubic capacity, the age of the car and other characteristics related to the vehicle (like the existence
of antiblocking system (ABS), the existence of extinguisher, etc.). Only policyholders with complete records, i.e.
with availability of all the variables under consideration were considered. There were 2131 observations that met
our criteria. Variable selection techniques were applied in order to find the variables that are considered as better
predictors. The model presented below was the best fitted model. We forced some variables to be included in the
model despite the fact that they are not statistically significant, like the gender and the cubic capacity. The variables
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Fig. 1. Descriptive histograms for the data used in the example.

considered are similar to those used inBeirlant et al. (1991). Recall that only policyholders with at least one reported
accident are used for the analysis.

In Fig. 1one can see the histograms for the variables considered in the model to take a flavor of the range of their
values. It must be pointed out that the portfolio is quite heterogeneous containing a variety of different policyholders
with respect to all the combinations of the characteristics.

The derived model is presented inTable 1. The standard errors of the parameters were calculated using the
asymptotic variance covariance matrix as described inAppendices A and B. For each variable we also present the
t-values for the hypothesis that the associated coefficient is zero, together with thep-value of this test based on
asymptotic normality. For the categorical variables we employed a likelihood ratio test, namely the values under the
t-value label are the log-likelihood ratios when the variable is present or absent in the model. From the results one
can see the factors that affect the size of the claim. As expected the number of claims has a positive effect, while
the gender is not so important. This is perhaps due to the fact that the gender considered was that of the person
that signed the contract but usually more than one persons drive the car. Bonus–malus has a positive effect. For
driver age the base category is the elderly people. The most dangerous age is between 31 and 40 years, while small
ages are less dangerous. For the car age the new cars were the base category. As the age of the car increases the
expected amount increases, too. Unexpectedly, cars with ABS cause statistically significant larger amounts. Finally,
the overdispersion parameterδ was found 1.23 indicating the deviation from the simple exponential model.

An interesting byproduct of the EM algorithm is that at the E-step we calculate for each observation the expected
risk. Since the mixing parameterθi can be considered as a risk factor, at the E-step we obtain the expected risk
for each individual. This is the posterior expected amount for a person with the specific characteristics and, hence,
it can be used to predict the future amount that the individual will cost to the company. This value represents the
expected claims of the individual and hence this quantity can be helpful for pricing and bonus–malus purposes.
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Table 1
Results of the fitted E-IG regression model

Variable Estimate S.E. t-Value/Wald P-value

Constant −5.2826 0.1986 −26.5971 0.0000
Bonus–Malus 0.0446 0.0073 6.1509 0.0000

Driver age 45.832 0.0000
>70 years 0 –
61–70 years −0.2224 0.1631 −1.3642 0.1725
51–60 years −0.0683 0.1513 −0.4512 0.6518
41–50 years −0.1896 0.1522 −1.2458 0.2128
31–40 years 0.1405 0.1499 0.9373 0.3486
21–30 years −0.3929 0.1557 −2.5232 0.0116
<20 years −0.5757 0.2223 −2.5900 0.0096

Car age 21.716 0.0000
<10 years 0 –
11–20 years −0.4008 0.1116 −3.5907 0.0003
21–30 years −0.2192 0.1038 −2.1112 0.0348
31–40 years −0.6121 0.1226 −4.9913 0.0000

Number of claims 2.1084 0.0494 42.6870 0.0000

ABS
No ABS 0 –
With ABS 0.3196 0.0605 5.2835 0.0000

Gender
Female 0 – − –
Male 0.0544 0.0465 1.1702 0.2419

Cubic capacity (in 1000 cc) 0.0048 0.0034 1.4317 0.1522
δ 1.2382 0.0431 28.6966 0.0000

In Fig. 2one can see the expected amounts for several categories. In fact we have plotted the expected amount,
obtained after the last iteration of the EM algorithm, for several variables used for creating the predicting equation.
These quantities reflect the expected amount for each policyholder given his/her characteristics and is based on the
derived model. The plots are very informative and allow for easy interpretation of the results. These expectations
can be used for further research, as for example for deriving bonus–malus models based on the expected amount of
claims instead of merely using the expected number of claims(see, Frangos and Vrontos, 2001).

5. Diagnostics

5.1. Goodness of fit

It is easy to see from the definition of the model in(1) that the quantitiesri = yi/ti are free from the covariates
and given the restrictionγ = δ they follow a special case of the E-IG model with density

f(ri) = δ
exp(−δφi + δ2)

φ3
i

(δφi + 1),

where nowφi =
√
δ2 + 2ri. Thus a QQ plot of the observed and the theoretical values of theri’s can be a

diagnostic about the adequacy of the model. Such a plot can be seen inFig. 3 together with the similar plot of the
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Fig. 2. Expected amount for a claim with respect several of the explanatory variables.

simple exponential density model. The E-IG model improves very much with respect to the exponential model (the
likelihood ratio statistic was 123.43) and the fit is satisfactory. Especially at the right tail of the density the PP plot
is almost a straight line indicating a good fit in the tail.

5.2. Right tail index

Another check of the model was based on the right index tail proposed byWang (1998). This index was proposed
in order to describe the tail behavior of different densities and it can discriminate between competing models. The
right tail index is defined as

d(X) =
∫ ∞

0

√
SX(t)dt

E(X)
− 1,

whereSX(t) = P(X ≥ t).
Empirical estimation for this index is discussed inJones and Zitikis (2003). An estimate of the right tail index is

obtained as

d̂(X) =
n∑

i=1

ciX(i)/x̄,

whereX(i) is theith ordered observation and

ci =
(
n − i

n

)1/2

−
(
n − i + 1

n

)1/2

− 1

n
, i = 1, . . . , n.
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Fig. 3. PP plots for the exponential model and the E-IG model. Clearly the E-IG model improves considerably with respect to the simple
exponential model. Note also the good fit of the E-IG model at the tails of the data.

According to this approach the tail index forri’s was calculated to be 1.740, while the theoretical value is 1.93.
However for small sample sizes the empirical counterpart underestimates this index. For this reason we built
parametric bootstrap confidence intervals for the empirical right tail index. The 95% bootstrap confidence intervals
for the index is given by(1.65,2.13) based on 50 000 bootstrap replications. The interval contains the value we
obtained for our data. This is an indication that our model is adequate for modelling the tail of the data. On the
contrary, Pareto distribution with the same first two moments has an index which is much larger (seeFig. 4). In
Fig. 4 we have plotted the right tail index for the Pareto and E-IG distributions with mean equal to 1 and varying
variance. There is a clear difference between the two densities.

5.3. Residuals

Another useful approach is to consider the common Pearson type residuals for assessing the goodness of fit of
the proposed model. It is easy to see that for our model, the variance of each observation is given as a function of
the meanti by V(ti) = t2i (1 + 2/δ2). The quantity in the parenthesis, is in fact, an overdispersion factor relative to
the simple exponential model. Thus we can construct Pearson type residuals as

Ri = δ(yi − ti)

ti
√
(2 + δ2)

.
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In the usual way we can use as a diagnostic the sum of squared Pearson’s residuals. This sum equals 1828.43 which
is much lower than the number of observations and thus it implies a satisfactory goodness of fit of the model. In
Fig. 5 one can see the absolute residuals. There are few of them with large values. Detailed examination of the
residuals with respect the explanatory variables did not show any particular pattern.

Other type of residuals can be also used as diagnostics, like deviance residuals, etc.

5.4. Influence diagnostics

In order to assess the influence of the observations for the estimated parameters we made use of a statistic similar
to the Cook distance for simple linear models. Our statistic has the form

Di = (w(i) − w)′Ŝ−1
w (w(i) − w),

wherew is the vector of all the parameters of the model, i.e.w = (δ, β) andw(i) is the same vector when removing
theith observation. Moreover̂S−1

w is the estimated covariance matrix forw obtained when considering all the data.
The statistic mimics the Cook distance and differs form that inMcCullagh and Nelder (1989)since we use directly
the estimated covariance matrix. Plot ofDi’s may reveal observations with high influence for the parameters. We
advocate not to use a limit above which the observation is considered as influential but mainly to check from the
plot comparatively the influence of each observation

Fig. 6presents theDi’s for our data set. We can see that there are some observations that have larger statistics.
However, the values of the statistics do not indicate large departures but rather they indicate that those points have
an effect in the estimates. Examinations of the observations revealed that they have rather extreme values for some
explanatory variables (e.g. observation 655 refers to a car with large cubic capacity).
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Note that, computationally, the calculation of the statistics is rather easy via the EM algorithm since we have quite
close initial values and usually the algorithm converges after a few iterations. More refined influence diagnostic can
be also calculated but we do not pursue further about this in the present paper.

6. Other topics

6.1. Computational aspects

The EM algorithm described inSection 3was used to estimate the parameters. As initial values we used the
regression parameters of a simple exponential distribution GLM. The initial value for the parameterδ was set equal
to the overdispersion of the exponential model. The model converged after quite a few iterations using a rather strict
criterion. We stopped iterating when the relative change of the log-likelihood between two successive iterations was
smaller than 10−12. To ensure that the global maximum has been obtained and the algorithm had not been trapped
in a local maximum we ran the algorithm with random initial values but for all the cases the same solution was
obtained.

Standard errors were obtained as described inAppendices A and B. Alternatively one could use the property
that the likelihood ratio and the Wald tests for the significance of an individual parameter are equivalent for large
samples and, thus, the log-likelihood change on omitting the variable can be related to thet-statistic and hence, its
standard error(Aitkin, 1999). Note that reduced models can be fitted easily and quickly by the proposed algorithm,
since very good initial values are available from the full model. For the same reason jackknife or bootstrap standard
errors can be obtained relatively easy.

6.2. An extended model

The present model fitted the claim amount for all the policyholders with at least one claim at the period of study.
This implies that there are not 0 claims at the database used for fitting the model. A more elaborated model could
consist of two parts, the first part trying to model those without claim for the period of study while the other part
modelling those with claims. Letci be the number of claims for theith individual andzi be an indicator variable
that takes the value 1 ifci > 0 and 0 ifci = 0. Then the distribution of the amount paid for an individual is given as

f(yi) = f(yi|zi = 0)P(zi = 0) + f(yi|zi = 1)P(zi = 1), (8)

but sincef(yi|zi = 0) is a degenerate distribution at 0 (since if the individual has no claim then the amount
paid is necessarily 0) and thus the model consists of two parts. The former fits a logistic regression model to the
characteristics of the policyholder in order to decide whether the policyholder will have a claim, and the latter given
that there is at least one claim tries to model the claim amount. Our model is applicable for this part.

The above model can be seen as a model with exact zeros and is useful for the calculation of the aggregate claim
size of the entire portfolio. Being, in fact, a finite mixture model, one can fit the general model without special effort
using standard techniques for finite mixtures(see, Bohning, 1999).

7. Concluding remarks

Mixtures of the exponential distribution are very important models for describing survival data. The reason is that
all the distributions with decreasing failure rate can be retrieved as mixtures of the exponential distribution(see,
e.g. Proschan, 1963; Barlow and Proschan, 1975). Some known distributions belong to this family like the Pareto
distribution, via a gamma mixing density as well as the gamma distribution for shape parameter<1, as shown in
Gleser (1989).
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In the present paper another member of this family, the exponential-inverse Gaussian distribution was proposed.
The model has moderate tails, ML estimation is relatively easy via an EM type algorithm and the model can be seen
as a mixed effects exponential regression model.

The EM algorithm described is easily extended to cover other cases. For example, the algorithm is quite general
and it may be used for other mixing distributions. Such an example is the Pareto distribution. A similar algorithm for
mixed effects Poisson regression has been proposed inKarlis (2002). In addition, the algorithm can be easily extended
to cover the case of multivariate exponential-inverse Gaussian distributions, like those described inWhitmore and
Lee (1991). Furthermore, the data augmentation used in the paper to derive the EM algorithm can be the basis for
constructing Bayesian estimation procedures through an MCMC scheme.

Finally, the exponential-generalized inverse Gaussian model defined at the end ofSection 2contains both the
Pareto and the E-IG models as subcases. Thus, it would be interesting to fit the more general model in order to select
between those two and other models included in this general model. However the estimation task is not any more
simple. Creating a similar EM algorithm is not simple as the M-step involves ML estimation for the parameters of
the GIG distribution and their behavior is not simple (see Jorgensen, 1992).
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Appendix A

Suppose thatx|θ follows an exponential distribution and thatθ follows an GIG(λ, δ, γ) density given in(2). Then
the resulting mixed distribution has probability density function

f(x)=
(γ
δ

)λ 1

2Kλ(δγ)

∫ ∞

0
θ−1 exp

(
−x

θ

)
θλ−1 exp

(
−1

2

(
δ2

θ
+ γ2θ

))
dθ

=
(γ
δ

)λ 1

2Kλ(δγ)

∫ ∞

0
θλ−2 exp

(
−1

2

(
δ2 + x

θ
+ γ2θ

))
dθ.

Using the integral representation of the modified Bessel function as verified from the density of the GIG distribution
one obtains that

f(x) = Kλ−1(γ
√
δ2 + 2x)

Kλ(δγ)

γ

δλ
(δ2 + 2x)(λ−1)/2, γ, δ, x > 0, λ ∈ R.

Forλ = −1/2 and the properties of the modified Bessel function one can obtain the density of the E-IG distribution
given in(2).

Appendix B

Asymptotic standard errors can be obtained by standard procedures based on the information matrix. Letw denote
the vector of the parameters for the case ofp covariates including the constant, namelyw = (δ, β1, . . . , βp).

Then the matrixH = hij, i, j = 1, . . . , p + 1 of the second derivatives of the log-likelihood with respect to the
parameter vectorw is given as
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h1,1 = − n
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, j, k = 1, . . . , p.

The entries of the information matrixI = Iij are given asIij = E(hij), i, j,= 1, . . . , p + 1. Since the expectations
are hard to be evaluated, one may use asymptotic Taylor expansions keeping the first few terms.

Confidence intervals and tests about the parameters can be obtained by using familiar asymptoticχ2 approxima-
tions for likelihood ratio statistics. Alternatively one may use asymptotic normality, treatingµ as approximately
normally distributed with mean vector0 and covariance matrix given byI−1.
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