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In this paper we study the ruin probability at a given time for liabilities of diffusion type, driven by

fractional Brownian motion with Hurst exponent in the range (0.5, 1). Using fractional Itô calculus we

derive a partial differential equation the solution of which provides the ruin probability. An analytical

solution is found for this equation and the results obtained by this approach are compared with the

results obtained by Monte-Carlo simulation.
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1. Introduction

Fractional Brownian motion is used to model a wide variety of stochastic data arising

in engineering and physics (network traffic data, solar activity, levels of a river, turbulence

in an incompressible fluid flow see e.g. [1]) as well as in financial mathematics (log returns

of the stock prices, see e.g. [1�/4], the electricity price in a liberated electricity market,

see e.g. [5], foreign exhange rates, see e.g. [6] and weather derivatives [7] and references

therein). Furthermore, fractional Brownian motion (as a special case of self similar

process) has been used recently to model the claims an insurance business may face

(see eg. [8�/10] etc).

The aim of this paper is to model the liabilities of an insurance business as a fractional

Brownian motion and study the ruin probability of the firm under the influence of interest
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force. This problem is interesting from the point of view of applications but presents also

considerable theoretical interest. There is recent work on this problem by several authors

(see e.g. [8�/10], etc.). Most of these works, to the best of our knowledge, deal with the

asymptotic properties of ruin probability, using probabilistic techniques and provide

upper and lower bounds for the ruin probability in certain limiting situations. For

instance, Michna [8, 9] investigates ruin probabilities and first passage times for self-

similar processes. He proposes self-similar processes as a risk model with claims appearing

in good and bad periods. Then, he gets the fractional Brownian motion with drift as a

limit risk process. Some bounds and asymptotics for ruin probability on a finite interval

for fractional Brownian motion are derived. Husler and Piterbarg [11] considered the

extreme values of fractional Brownian motions, self-similar Gaussian processes and more

general Gaussian processes which have a trend �/ctb for some constants c , b�/0 and a

variance t2H . They derive the tail behaviour of these extremes and show that they occur in

the neighborhood of the unique point t0 where the related boundary function (u�/ctb )/tH

is minimal. They consider the case of H B/b . Debicki [10] considered the important role

that Pickand constants play in the exact asymptotic of extreme values for Gaussian

stochastic processes. The generalized Pickands constant Hn , defined as

Hn� lim
T0�

Hn(T)

T
;

where

Hn�E[exp( max
t � [0;T ]

ffiffiffi
2

p
h(t)�s2(t))]

and h (t ) is a centered Gaussian process with stationary increments and variance function

s2
h (t ). Under some mild conditions on s2

h (t ) Debicki proves that Hn is well defined and he

gives a comparison criterion for the generalised Pickand constants. Moreover he proves a

theorem that extends the result of Pickands for certain stationary Gaussian processes. As

an application he obtain the exact asymptotic behavior of c (u )�/P (supt]0 w (t )�/ct �/u )

as u 0/�, for a class of integrated Gaussian processes that are important in the fluid

model theory. For some bounds and estimators of Ha one can see [12].

The approach we adopt in this work for the treatment of ruin probabilities in models

where the claims may present long range dependence is very different from the approach

adopted in the above works. In this paper we propose a model for an insurance business

facing liabilities presenting long term correlations. The long term correlations are

modelled with the use of a fractional Brownian motion with Hurst exponent H . The

insurance firm invests in an interest account which is assumed to be deterministic. It is

shown that the cash balance process of the firm satisfies an Ornstein-Uhlenbeck

stochastic differential equation driven by fractional Brownian motion. Using the recently

developed tools of fractional stochastic calculus we show that the probability of ruin at a

given date of the firm can be expressed as the solution of a linear parabolic partial

differential equation. We have solved this partial differential equation analytically and we

provide an exact expression for this quantity in terms of error functions, valid for all

times. Using this exact expression one may derive asymptotic results using standard
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techniques. Finally, the partial differential equation allows an efficient numerical

treatment of the problem which may be used as an alternative to Monte-Carlo type

simulations. This quantity provides the probability that the cash balance of the firm goes

negative at time t provided a given initial cash balance of the firm, i.e. P [Xt B/ 0 ½X0�/x ].

The ruin probability at a given date is a very interesting quantity for the regulating

authority of the company as it provides a lower bound to the quantity traditionally called

ruin probability, given by P [infs � [0,T ]Xs B/ 0 ½X0�/x ]. Our model and treatment is inspired

by a very interesting model proposed by Norberg [13] for the study of ruin probability in a

model with diffusive type liabilities (Brownian motion type), with the use of partial

differential equations. In some sense our treatment is an extension of Norberg’s model to

the case of fractional Brownian motion type liabilities. This extension is by no means

trivial since the inclusion of fractional Brownian motion in the model presents difficulties

which need different mathematical techniques in order to be overcome.

2. A short introduction to fractional stochastic calculus

In this section we review some fundamental results in fractional stochastic calculus for the

convenience of the reader. The approach is based on the approach in [14].

The fractional Brownian motion (FBM) is a self affine stochastic process displaying

long term correlation. FBM is characterized by the Hurst exponent H . Let us denote by

WH
t the FBM with Hurst exponent H �/ (0.5, 1). The process WH

t is defined with respect

to some probability space (V, F, PH ), has continuous sample paths, is a zero-mean

Gaussian random variable for all t ]/ 0 and has autocorrelation function

E[W H
t W H

s ]�
1

2
t2H �s2H � ½ t�s ½2H
� �

for all t , s ]/ 0, where by E we denote the expectation with respect to the probability

measure PH . For H�/1/2 we recover the usual Brownian motion. For H �/1/2 the FBM

has a long range dependence.

Fractional Brownian motion does not have the ‘nice’ properties of Brownian motion. In

particular, it is not a Markov process and it is not a semi-martingale. This presents

problems in the definition of a stochastic integral and a stochastic calculus with respect to

fractional Brownian motion, as we may not apply the standard theory of stochastic

integration over a semimartingale to define a stochastic integral over fractional Brownian

motion. Several approaches to this subject has been proposed (see e.g. [15,16] etc). We will

adopt here the theory of Duncan, Hu and Pasik-Duncan [14] in which a stochastic

integral over fractional Brownian motion of Hurst exponent 1/2B/H B/1 has been

defined, having some properties that have similarities with the corresponding properties of

the stochastic integral over the usual Brownian motion.

We summarize here the basic results of [14] that we will use in this paper. In the

following we assume that 1/2B/H B/1. The stochastic integral f
t

0
fs dW H

s over deterministic

functions f is defined easily to provide a zero mean, Gaussian random variable with
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variance f
�

0
f
�

0
fs ftf(s; t)dsdt where f (s, t )�/H (2H�/1) j s�/t j2H�2. The stochastic inte-

gral f
t

0
Fs dW H

s can be defined over stochastic processes F as the limit

g
t

0

Fs dW H
s � lim

D00

Xn�1

i�0

Fti
� (W H

ti�1
�W H

ti
)

where {ti} is some partition of the interval (0, t ), D�/supi j ti�1�/ti j. By /� we denote the

Wick product which is defined by

o( f ) � o(g)�o( f �g)

where

o(f )�exp

�
g

�

0

ftdW H
t �

1

2g
�

0
g

�

0

fs ftf(s; t)dsdt

�

is the stochastic exponential of the deterministic function f which is such that

f
�

0
f
�

0
fs ftf(s; t)dsdt

�� ��B�:

Duncan et al . [14] provide the following generalization of Itô’s lemma in the case of

fractional Brownian motion. For a proof of this result and generalizations to more

complicated integrands, we refer to [14].

PROPOSITION 2.1. Let ht�f
t

0
asdW H

s where at is some deterministic function such that

½ f
�

0
f
�

0
asatf(s; t)dsdt ½B�: Let f �/ C1,2 and assume that @f

@x
(s; hs)as �L(0;T). Then,

f (t; ht)�f (0; 0)�g
t

0

@f

@s
(s; hs)ds�g

t

0

@f

@x
(s; hs)asdW H

s

�g
t

0

@2f

@x2
(s; hs)asg

s

0

f(s; v)avdvds; a:s:

3. The model

Following the spirit of the original model proposed for liabilities of the Brownian motion

type by Norberg [13] let us consider the following model for an insurance firm: The firm is

characterized by its value at time t , which is assumed to be a stochastic process Xt . The

firm invests its value Xt to an interest account with logarithmic interest force dt . The

interest is assumed to be a deterministic function of time. This assumption is not

unreasonable for models valid for short times. The firm has to face liabilities Bt .

Assuming an insurance portfolio that is made up of a large number of individual risks,

none of which is large enough to affect the total result significantly we approximate the

liabilities or the payment function Bt by a fractional Brownian motion with drift

dBt��btdt�stdW H
t

where bt represents the expected gain per time unit due to a safety loading in the

premium, and st is the standard deviation of the payments per time unit and is thus a
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measure of the size of the liability risk. In the above WH
t is a fractional Brownian motion

with Hurst exponent H and bt , st are deterministic functions of time. Allowing bt , st to

be given functions of time we allow for seasonality in the claims. This seasonality is

relevant in a number of models, for instance road accidents are more likely to happen

during holiday periods, fires which may lead to property damage are more likely to

happen during the hot months of the summer etc. The introduction of the fractional

Brownian motion allows for the modeling of correlations in the claims. We consider only

the case where H �/1/2 which corresponds to positive correlation between the claims. Such

models may be relevant in models of claims related to health, disability insurance,

accident or whole life insurance. The case H B/1/2 will correspond to negative correlation

between claims. An example of a risk process with long range dependence was developed

by Michna [8], who constructed a risk model in which claims appear in good and bad

periods (e.g. good weather and bad weather), and under the assumption that the claims in

bad periods are bigger than the claims of the good periods.

Following [13] the cash balance equation for the firm at time t has the following form

Xt�eDt (X0�g
t

0

e�Ds dBs) (1)

where

Dt�g
t

0

ds ds

The cash-balance process is the solution of a stochastic differential equation, driven by

fractional Brownian motion. We have the following proposition:

PROPOSITION 3.1. The cash-balance process Xt given by the book-keeping equation (1) is

the solution of the fractional Ornstein-Uhlenbeck equation

dXt�(dtXt�bt)dt�s dW H
t ; (2)

X0�x (3)

Proof. Define the process Kt�exp(f
t

0
dsds): Then we may rewrite (1) as

Xt�xKt�Ktg
t

0

K�1
s bsds�Ktg

t

0

K�1
s ssdW H

s

Let us further define the stochastic process hs�f
t

0
ssK

�1
s dW H

s and the function

f (t; h)�xKt�Ktg
t

0

K�1
s bsds�Kth

We see that f (t , ht )�/Xt .

We now apply the fractional Itô lemma on the function f (t , h ). We have that

@f

@t
(t; h)�dt f (t; h)�bt
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@f

@h
(t; h)�Kt

@2f

@h2
(t; h)�0

A straightforward application of Proposition 2.1 yields

f (t; ht)�f (0; 0)�g
t

0

(ds f (s; hs)�bs)ds�g
t

0

ssdW H
s

or equivalently

Xt�x�g
t

0

(dsXs�bs)ds�g
t

0

ssdW H
s

This concludes the proof. I

We may also state the following:

PROPOSITION 3.2. The cash-balance process is a Gaussian process with mean

mt�xKt�Ktg
t

0

bsK
�1
s ds

and variance

Vt�K2
t g

t

0
g

s

0

sussK
�1
u K�1

s f(u; s)duds

where

Kt�exp

�
g

t

0

dsds

	

and

f(u; s)�H(2H�1) ½ u�s ½2H�2

Proof. The proof follows using the properties of the stochastic integral over fractional

Brownian motion. I

The mean and the variance can be computed using special functions for the particular

case of constant parameters, ds �/d , bs �/b.

4. A partial differential equation for the ruin probability at a given date

We are interested in the derivation of the quantity P (Xt 5/ 0 jX0�/x ). This quantity

provides the probability that the cash balance of the firm goes negative at time t provided

the initial cash balance of the firm is x . Thus it corresponds to the ruin probability of the
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firm at the given date t and thus using the terminology of [13] we call it the ruin

probability at a given date.

In a number of studies, the quantity P [infs � [0,T ]Xs B/ 0 ½X0�/x ] is proposed as a

measure for the ruin probability. The ruin probability we calculate in our model may serve

as a lower bound for this quantity and may thus serve as an alert to the regulating

authority of the company. We also think that the quantity we use is more interesting as it

allows us to monitor the positivity of the cash balance of the insurance business at any

given time rather than checking the fact of ruin at any time instant within a given time

interval. In [13] a partial differential equation was obtained for this quantity as well using

the Markovian property of the Brownian motion driving the liabilities. However, in the

model with fractional Brownian motion, the Markovian property is no longer valid and

we do not expect similar results to hold. We content here to perform a numerical

evaluation of P [infs � [0,T ]Xs B/ 0 ½X0�/x ] using Monte-Carlo simulation (see section 6.3).

We will show in this section that the ruin probability at a given date can be determined

by the (classical) solution of a linear parabolic partial differential equation. The analysis

follows the lines of Brody, Syroka and Zervos [7] where the value of a weather derivative

whose underlying (the temperature) is modelled by a fractional Brownian motion is

expressed through the use of a partial differential equation. We restrict ourselves to the

case where H �/0.5.

We have the following proposition

PROPOSITION 4.1. Assume that H �/ 0.5 and ss has no singularities. Then the ruin

probability u (t , x )�/P (Xt 5/ 0 jX0�/ x ) satisfies the following parabolic partial differential

equation (Cauchy problem)

�
@u

@t
�(dt�tx�bt�t)

@u

@x
�Kt�tst�t

�
g

t�t

0

f(s; t�t)ssK
�1
s ds

	
@2u

@x2
�0

u(0; x)�1fx50g

REMARK 4.1. It is useful to make a comment on the meaning and use of the above

equation. Since the equation depends on the parameter t , the solution of the equation is a

function u (t , x )�/u (t , x ; t ). The ruin probability at time t , given that the initial capital is

x is the solution of this equation calculated at t�/t , i.e. u (t , x )�/u (t , x ; t ). That means

that fixing t we have to solve the equation for u (t , x )�/u (t , x ; t ) and then take the limit

as t0/ t .

Proof of Proposition 4.1. Consider the function g (t0, h ; t )�/w (t�/t0, f (t0, h )) where

f (t0; h)�xKt0
�Kt0g

t0

0

K�1
s bs ds�Kt0

h:

We now apply the fractional Itô formula to g (t0, ht0
; t ) for t0 taking values between t0�/0

and t�/t . Note that t is considered as a fixed parameter while t0, ht0
are considered as

variables.
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Since

@g

@t0

��
@w

@t
�(dt0

f (t0; h)�bt0
)
@w

@x

@g

@h
�

@w

@x
Kt0

@2g

@h2
�

@2w

@x2
K2

t0
;

where we consider w�/w (t , x ), with t�/t�/t0, we see that

g(t; ht)�g(0; 0)�g
t

0

@g

@t0

(t0; ht0
)dt0�g

t

0

@g

@h
(t0; ht0

)st0
K�1

t0
dW H

t0

�g
t

0

@2g

@h2
(t0; ht0

)st0
K�1

t0

�
g

t0

0

f(s; t0)ssK
�1
s ds

	
dt0 (4)

where

f(s; t)�H(2H�1) ½ s�t ½2H�2:

We observe that

g(t; ht)�w(0;Xt); g(0; x)�w(t; x)

Thus, equation (4) assumes the form

w(0;Xt)�w(t; x)�g
t

0

�
�

@w

@t
�(dt0

f �bt0
)
@w

@x
�Kt0

st0

�
�
g

t0

0

f(s; t0)ssK
�1
s ds

	
@2w

@x2

	
dt0�g

t

0

st0

@w

@x
dW H

t0

We now take expectations and use the properties of the stochastic integral to obtain

E[w(0;Xt)]�w(t; x)�E



g

t

0

�
�

@w

@t
�(dt0

f �bt0
)
@w

@x

�Kt0
st0

�
g

t0

0

f(s; t0)ssK
�1
s ds

	
@2w

@x2

	
dt0

�
(5)

We rephrase the ruin probability at a given date as

P(Xt50 ½x)�u(t; x)�E[1fXt50g]

and add this to equation (5) to obtain

E[w(0;Xt)]�u(t; x)�w(t; x)�E[1fXt50g]�E



g

t

0

�
�

@w

@t
�(dt0

f �bt0
)
@w

@x

�Kt0
st0

�
g

t0

0

f(s; t0)ssK
�1
s ds

	
@2w

@x2

	
dt0

�
(6)

where inside the integrals w �/ w (t�/t0, Xt0
)�/w (t , Xt0

). If we choose w to be the solution

of the PDE
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�
@w

@t
�(dt0

f �bt0
)
@w

@x
�Kt0

st0

�
g

t0

0

f(s; t0)ssK
�1
s ds

	
@2w

@x2
�0

with w (0, x )�/1{x5 0} we see that u (t , x )�/ w (t , x ). Observing that the coefficients of the

equation are calculated in t0 whereas w is calculated in t�/ t�/t0 we may redefine time so

as to express this equation in the equivalent form

�
@w

@t
�(dt�tx�bt�t)

@w

@x
�Kt�tst�t

�
g

t�t

0

f(s; t�t)ssK
�1
s ds

	
@2w

@x2
�0

w(0; x)�1fx50g

This concludes the proof of the proposition. I

We may further obtain a PDE for the computation of the ruin probability at a given

date u (t , y ; s, x )�/P (Xt 5/ y jXs �/x ). We have the following proposition

PROPOSITION 4.2. Under the same assumptions as in proposition 4.1 the ruin probability

u (t , x ; s, x )�/ P (Xt 5/ y jXs �/x ) satisfies the following parabolic partial differential

equation (Cauchy problem)

�
@w

@t
�(dt�s�tx�bt�s�t)

@w

@x
�Kt�s�tst�s�t

�
g

t�s�t

s

f(s?; t�s�t)ss?K
�1
s? ds?

	
@2w

@x2
�0

w(s; x)�1fx5yg

in the sense that u (t , x ; s, y )�/w (t , x ).

Proof. We may show that

Xt�K̄ s;tx�Kt



g

t

s

K�1
s? bs?ds?�g

t

s

K�1
s? ss?dW H

s?

�

where K̄ s;t�exp(f
t

s
ds?ds?): We now apply the fractional Itô formula to the function

g (t , ht )�/w (t�/s�/t , f (t , ht )) where

f (t; h)�xK̄ s;t�Ktg
t

s

K�1
s? bs?ds?�Ktht

ht�g
t

s

K�1
s? ss?dW H

s?

The rest follows as in the proof of proposition 4.1. I

5. Solution of the PDE

We now deal with the solution of the PDE for the ruin probability at a given date.
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5.1. An analytical solution

The PDE for the ruin probability at a given date can be solved analytically in its most

general form. This facilitates immensely the calculation of the ruin probability.

We start our presentation of the analytical solution of the PDE for the ruin probability

at a given date in the case where the coefficients dt , st and bt are constants. This facilitates

the arguments. Then we provide the solution for the general case of time dependent

coefficients.

In the case of constant coefficients the time dependent factor multiplying the second

derivative term becomes

f (t)�edts2H(2H�1)g
t

0

½t�s½2H�2e�dsds

�s2H(2H�1)g
t

0

s2H�2edsds

�s2H(2H�1)
X�
n�0

dn

n!

t2H�1�n

2H � 1 � n

�s2H(2H�1)(�1)2H�1d1�2Hg(2H�1;�dt) (7)

where g (z , a ) is the incomplete gamma function (see for instance [17]). In this case we may

obtain an expression for the ruin probability at a given date in terms of the

complementary error function. We have the following proposition.

PROPOSITION 5.1. In the case where dt , st , bt are constants the ruin probability at a given

date may be expressed as

P(Xt50 ½X0�x)�
1ffiffiffi
p

p erfc(k(t; x))

where

k(t; x)�
edt(dx � b) � bffiffiffiffiffiffiffiffiffiffiffi

2T(t)
p

with

T(t)�2d2g
t

0

f (t�t?1)e2dt?1 dt?1:

Proof. We proceed to the solution of the PDE

�
@w

@t1

�(dx�b)
@w

@x
�f (t�t1)

@2w

@x2
�0

with initial condition w (0, x )�/1{x50}. We will use the change of variables (t , x ) 0/ (T, X )

where

X �edt1 (dx�b)

T�t1

�
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Since

@

@x
�dedt @

@X
�dedT @

@X
;

@2

@x2
�d2e2dt @2

@X 2
�d2e2dT @2

@X 2
;

@

@t1

�dedt(dx�b)
@

@X
�

@

@T
�dX

@

@X
�

@

@T

the PDE becomes in the new variables

�
@w

@T
�d2f (T)e2dT @2w

@X 2
�0

By further defining the new set of variables

X ?�X

T ?�2d2g
T

0

e2dtf (t�t1)dt1

8<
:

we see that the PDE assumes the form of the heat equation

�
@w

@T ?
�

1

2

@2w

@X ?2
�0

with initial condition w (0, X ?)�/1{X ?5b }. This can be solved using the Green’s function

(heat kernel) for the diffusion equation G (X ?�/Y, T ?). The solution is given by the

integral formula

w(T ?;X ?)�g
�

��

G(X ?�Y ;T ?)w(0;Y )dY

where

G(X ?�Y ;T ?)�
1ffiffiffiffiffiffiffiffiffiffiffi

2pT ?
p exp

�
�

(X ? � Y )2

2T ?

	

and w (0, Y )�/1{Y5b }. Using the integral formula

w(T ?;X ?)�g
b

��

1ffiffiffiffiffiffiffiffiffiffiffi
2pT ?

p exp

�
�

(X ? � Y )2

2T ?

	
dY

The last integral may be expressed in terms of the complementary error function as

follows

w(T ?;X ?)�
1ffiffiffi
p

p erfc

�
X ? � bffiffiffiffiffiffiffiffi

2T ?
p

	

and returning to the original variables we may find that

w(t1; x)�
1ffiffiffi
p

p erfc(k(t1; x));
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k(t1; x)�
edt1 (dx � b) � bffiffiffiffiffiffiffiffi

2T ?
p

T ?�2d2g
t1

0

f (t�t?1)e2dt?1 dt?1

The ruin probability at a given date is obtained setting t1�/t in the above expression. This

completes the proof. I

REMARK 5.1. The new variable T ? may be expressed as a function of t1 in the form of

series using the expression

T ?�2d2s2H(2H�1)
X�

n;m�0

2mdn�m

m!n!(n � 2H � 1)
tn�m�2HBt1=t(m�1; n�2H)

where by Bx (a , b ) we denote the incomplete Beta function

Bx(a;b)�g
x

0

sa�1(1�s)b�1ds

Setting t�/t1 in the above series we may obtain a series expression for T (t ) of the form

T(t)�2d2s2H(2H�1)
X�

n;m�0

2mdn�m

m!n!(n � 2H � 1)
tn�m�2HB(m�1; n�2H)

where by B (a , b ) we denote the complete Beta function

B(a;b)�g
x

0

sa�1(1�s)b�1ds

We now give the solution of the PDE of the ruin probability at a given date in the

general case of time dependent coefficients:

PROPOSITION 5.2. The solution of the PDE of the ruin probability at a given date in the

general case is given in the form

u(t; x)�g
0

��

1ffiffiffiffiffiffiffiffi
2T ?

p exp

�
�

(X ? � Y )2

2T ?

	
dY �

1ffiffiffi
p

p erfc

�
X ?ffiffiffiffiffiffiffiffi
2T ?

p
	

where

X ?�exp

�
g

t

0

dt�sds

	
x�g

t

0

bt�sexp

�
g

s

0

dt�s?ds?
	

ds

T ?�g
t

0

exp

�
g

t1

0

2dt�sds

	
f (t�t1)dt1

f (t�t1)�Kt�t1
st�t1

�
g

t�t1

0

f(s; t�t1)ssK
�1
s ds

	
(8)

Proof. As before we seek for a new set of variables in which the PDE assumes the form

of the heat equation. To this end we try the new set of variables
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X �f1(t1)x�f2(t1)

T�t1

�

where f1 and f2 are functions to be specified. Choosing f1 and f2 to be the solutions of the

differential equations

�
df1

dt1

(t1)�dt�t1
f1(t1)�0

�
df2

dt1

�bt�t1
f1(t1)�0

we see that in the new coordinates the equation becomes

�
@u

@T
�f1(t1)2f (t�t1)

@2u

@X 2
�0 (9)

where f1 and f2 can be readily found from the solution of the above ODEs as

f1(t1)�exp

�
g

t1

0

dt�sds

	

f2(t1)�g
t1

0

bt�sexp

�
g

s

0

dt�s?ds?
	

ds

Equation (9) can be reduced to a diffusion equation of the form

�
@u

@T ?
�

1

2

@2u

@X ?2
�0

through a further change of variables

X ?�X

T ?�2g
T

0

f1(t1)2f (t�t1) dt1

8<
:

The solution of this equation can be given in terms of the Green’s function (heat kernel)

for the diffusion equation in a way analogous to the constant coefficient case. I

REMARK 5.2. Note that we use Lebedev’s [17] convention for the complementary error

function

erfc(x)�g
�

x

e�z2

dz

To avoid confusion note that software packages such as e.g. Mathematica or Matlab use a

slightly different definition. These two are related by a simple scaling factor of 2ffiffi
p

p :

5.2. Asymptotics

Using the well known asymptotic expansions for the error function (see e.g. [17]) we may

obtain asymptotics for the probability of ruin at a given date for various limiting cases of

interest.
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One particularly interesting case is the limit of large initial capital x 0/�. In the

constant coefficients case for example we have

P(Xt50 ½X0�x)#
1ffiffiffi
p

p exp(�k(t; x)2)



1

2k(t; x)
�

1

22k(t; x)3
�� � �

�

From that we see that the ruin probability at a given date decreases as exp(�/lx2) for large

x , for some properly chosen constant l . This is in accordance with the results obtained in

[13] for the Brownian motion case.

Of interest are also the large time asymptotics. The case of general H is complicated to

handle (due to the complicated form of the integral defining T ?), but some insight can be

obtained by studying the special cases H�/1/2 and H�/1 (see next section).

Finally of interest is the asymptotic formulae for the ruin probability at a given date as

the interest force tends to 0 (d0/0). When 1
2
BHB1 and d0/0 we have from the

asymptotics of the general solution that

lim
d00

u(t; x)�
1

2



1�F

�
tb � x

tHs
ffiffiffi
2

p
	�

5.3. Two special cases

We now provide results for two special values for the Hurst parameter H . We will only

consider the constant coefficient case.

5.3.1. The case of Brownian motion (H�/1/2). In the case H�/1/2 the only term in the

series 7 that survives is the term corresponding to n�/0. This gives f (t)�s2

2
which is a

constant.

Then the PDE for the ruin probability at a given date becomes

�
@w

@t1

�(dx�b)
@w

@x
�

s2

2

@2w

@x2
�0

w(0; x)�1fx50g

The ruin probability at a given date u (t , x )�/w (t , x ). This is the same equation as the one

derived by Norberg [13] for the case of Brownian motion driven liabilities.

Using the consecutive transformations

X �edt1 (dx�b)

T�t1

�

and

X ?�X

T ?�g
T

0

d2s2e2dtdt�
ds2

2
(e2dT �1)

8<
:

we see that the equation transforms to
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�
@w

@T ?
�

1

2

@2w

@X ?2
�0

The initial condition is

w(t1�0; x)�1fx50g

which translates to

w

�
T ?�0;

X � b

d

	
�1�

X�b
d

50

� �1fX5bg

The general solution to this equation is

w(X ?;T ?)�g
�

��

1ffiffiffiffiffiffiffiffiffiffiffi
2pT ?

p exp

�
�

(X ? � Y )2

2T ?

	
1fY5bgdY

�
1ffiffiffi
p

p g
�

k

exp(�z2)dz�
1ffiffiffi
p

p erfc(k)

where

k�k(T ?;X ?)�
X � bffiffiffiffiffiffiffiffi

2T ?
p

or in terms of the original coordinates

k�k(x; t)�
1ffiffiffi
d

p
s

edt(dx � b) � bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2dt � 1

p

It is interesting to look at the limiting behaviour of the above formula.

. t 0/0. In this case

k(x; t)#
x

s
ffiffi
t

p

and

u(x; t)#
1ffiffiffi
p

p erfc

�
x

s
ffiffi
t

p
	

The limiting behaviour is different depending on whether x is positive or negative.

. t 0/�. In this case

k(x; t)#

ffiffiffi
2

p

s
ffiffiffi
d

p (dx�b�be�2dt)

so that

u(x; t)#
1ffiffiffi
p

p erfc

� ffiffiffi
2

p

s
ffiffiffi
d

p (dx�b�be�2dt)
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5.3.2. The case H�/1. In the case H�/1 we have

f (t)�edts2g
t

0

e�dsds�
s2

d
(edt�1)

The equation for the ruin probability becomes

�
@w

@t1

�(dx�b)
@w

@x
�

s2

d
(ed(t�t1)�1)

@2w

@x2

and the ruin probability is u (t , x )�/w (t1�/t , x ).

We perform the consecutive change of variables

X �edt1 (dx�b)

T�t1

and

X ?�X

T ?�2ds2g
T

0

(ed(t�T)�1)e2dT dT�2s2

�
(edT �1)edt�

e2dT � 1

2

�

In the new variables the equation becomes

�
@w

@T ?
�

1

2

@2w

@X ?2
�0

with initial condition w (t1�/0, x )�/1{x50}, or in the new variables

w(T ?�0;X ?)�1�
X ?�b

d
50

� �1fX ?5bg:

Using the integral formula for the solution of the diffusion equation we find that

w(T ?;X ?)�
1ffiffiffiffiffiffiffiffi
2T ?

p g
b

��

exp

�
�

(X � Y )2

2T ?

	
dY �

1ffiffiffi
p

p g
�

X ?�bffiffiffiffiffi
2T ?

p
exp(�z2)dz

or in terms of the original variables

w(t1; x)�
1ffiffiffi
p

p g
�

k(t1;x)

exp(�z2)dz�
1ffiffiffi
p

p erfc(k(t1; x))

k(t1; x)�
edt1 (dx � b) � b

2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(edt1 � 1)edt � (e2dt1 �1)

2

q

The ruin probability u (t , x )�/w (t , x ) is obtained by setting t1�/t in the above formula.

We thus find

u(t; x)�
1ffiffiffi
p

p erfc

�
edt(dx � b) � b

2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
e2dt � edt � 1

2

q
	
�

1ffiffiffi
p

p erfc

�
edt(dx � b) � b

s
ffiffiffi
2

p
(edt � 1)

	

Two limiting cases are interesting.
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. t 0/0. Then

k(t; x)#
xffiffiffi
2

p
st

and

u(t; x)#
1ffiffiffi
p

p erfc

�
xffiffiffi
2

p
st

	

. t 0/�. Then

k(t; x)�
1ffiffiffi
2

p
s

(dx�b�be�dt)

and

u(t; x)#
1ffiffiffi
p

p erfc

�
1ffiffiffi
2

p
s

(dx�b�be�dt)

	

Finally we present the asymptotics for zero interest force in the H�/1 case. When H�/1

and d0/0 we have from the asymptotics of the general solution that

lim
d00

u(t; x)�
1

2



1�F

�
tb � x

ts
ffiffiffi
2

p
	�

6. Numerical treatment of the problem

In this section we propose some possible approaches to the numerical study of ruin

probabilities for our insurance business model.

6.1. Monte Carlo method

As an alternative to the pde approach one can use the Monte Carlo method in order to

find the probability of ruin w (x , t ). Furthermore since the Monte Carlo method is

attacking the problem from a quite different point of view it can be used as an

independent test of the validity of the pde approach proposed here.

As we have seen the cash-balance process Xt is given by the solution of equations (2)

and (3). In order to implement the Monte Carlo method we simulate a large number M of

paths of Xt in the time interval [0, T ]. We use for each path N�/2L , number of points.

Then the probability of ruin at time T can be found as:

w(x0;T)�
number of XT 5 0

M
:
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In order to simulate the paths of fractional Brownian motion, we have used the method

of Wood and Chan [18]. Some other methods that could be used are the methods

described in Mandelbrot et al . [19], Abry and Sellan [20], Norros et al . [21] (and the

references therein).

6.2. Finite difference methods

As we have seen we have derived an analytical solution of the pde that governs the ruin

probability at a given date. Instead of using the analytical solution we could alternatively

use the finite difference method for the numerical resolution of the pde. We have

implemented the full implicit finite difference method and the Crank�/Nicolson finite

difference method.

6.3. Numerical results

In the following tables we present some numerical results using the analytic expressions,

the Monte Carlo method and the finite difference method. We consider the following

values for the parameters of the model. For the interest force we have assumed that d�/

0.05, for the volatility in claims liabilities we assume that s�/0.20, for the expected gain

per time unit due to a safety loading in the premium we assume that b�/0.10. The

parameters used for the implementation of the various numerical schemes are included in

the Appendix.

As an indication of the results obtained for the ruin probability using the various

methods proposed we present tables comparing the estimates for the ruin probability at

time T for different values of the initial capital X0�/0, 0.5, �/0.5.

Table 1. Probability of ruin for initial capital X0�/0, at T�/100.

H Exact Monte Carlo Implicit Crank �/Nicolson

0.5 0.00084174 0.000867 0.00084170 0.00084169

0.6 0.0132523 0.0131667 0.01310549 0.01319379

0.7 0.060585 0.0605333 0.06097709 0.06110057

0.8 0.141854 0.145800 0.14438584 0.14459275

0.9 0.231166 0.234100 0.23129410 0.23160310

1 0.308538 0.309100 0.30000028 0.30017402

Table 2. Probability of ruin for initial capital X0�/0.5, at T�/100.

H Exact Monte Carlo Implicit Crank�/Nicolson

0.5 0.000042186 0.00003333 0.00004218 0.000042178

0.6 0.00274159 0.00316667 0.00270194 0.00272269

0.7 0.026191 0.02706667 0.02636487 0.02639296

0.8 0.0898221 0.09073300 0.09051296 0.09062079

0.9 0.178783 0.17716600 0.17352670 0.17379322

1 0.265707 0.26480000 0.24598212 0.24616236
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The following observation is of interest. For H�/1 and x�/0 the Monte-Carlo

approach gives the following results for the ruin probability as a function of time:

It is interesting to see that this behaviour, i.e. the fact that the ruin probability is

independent with respect to variations in time is predicted by the exact analytical solution

for H�/1. The case H�/1 is a limiting situation for which the results of this work are

questionable since the theory of stochastic integration with respect to fractional Brownian

motion used here is strictly valid for values of the Hurst index in the interval (0, 1).

However, the fact that this behaviour is reproduced by the Monte Carlo simulation poses

questions on the validity of the theory in the limit H�/1. This is a point which probably

deserves further attention.

We now present graphically the dependence of probability of ruin with the Hurst index,

the initial capital and time.

In figure 1 we present the variation of the ruin probability at x�/0 and time T�/100

with the Hurst exponent. We see that as H is taking bigger values the probability of ruin is

also growing. This result indicates the effect of long time correlations in the probability of

ruin for the insurance business.

In figure 2 we present the variation of the probability of ruin at time T�/100 as a

function of the initial capital The probability of ruin decreases as the initial capital

increases as is expected. The Hurst index is taken to be H�/ 0.7.

In figure 3 we present the variation of the probability of ruin with time for initial capital

equal to x�/0 and H�/0.7. As time increases the probability of ruin decreases.

In all the above figures we have taken d�/0.05, s�/0.20, b�/0.10.

As a final application of the simulation approach we present the calculation of a slightly

different form of the ruin probability P*�/P [infs � [0, T ]Xs B/0 jX0�/x ]. We have taken

10000 paths and 214 points in each path, for initial capital X0�/0, 0.25, 0.5. The results are

shown in table 5. We observe that for initial capital zero as H increases the probability of

ruin in a finite time decreases. For initial capital 0.25, 0.50 we see that as H increases the

Table 3. Probability of ruin for initial capital X0�/�/0.5, at T�/00.

H Exact Monte Carlo Implicit Crank �/Nicolson

0.5 0.00937525 0.009133 0.00937540 0.00937526

0.6 0.048428 0.04943333 0.04807283 0.04830152

0.7 0.123069 0.12323333 0.12391473 0.12414554

0.8 0.211218 0.20900000 0.21659835 0.21685958

0.9 0.291155 0.29193330 0.29843905 0.29873668

1 0.354146 0.35490000 0.35870696 0.35885493

Table 4. The probability of ruin for H�/1 at x�/0 for different times.

T Exact Monte Carlo

1 0.308538 0.3094333

10 0.308538 0.3106333

100 0.308538 0.309100
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Figure 1. Probability of ruin at x�/0 as a function of the Hurst exponent.
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Figure 2. Probability of ruin as a function of the initial capital for H�/0.7.
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probability of ruin in a finite time is also increasing in general. For the case of H�/0.5, we

solved the pde derived by Norberg using an implicit finite difference scheme and we found

that for X0�/0.25 P*�/0.239, while with Monte Carlo we find 0.228, and for X0�/0.50 we

find P*�/0.049, while with Monte Carlo we find 0.047.
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Figure 3. Probability of ruin as a function of time for H�/0.7.

Table 5. The probability of ruin P *�/P [infs � [0, T ]Xs B/0 jX0�/x ] for different values of H and x .

H X0 P *

0.5 0 0.941

0.6 0 0.915

0.7 0 0.871

0.8 0 0.798

0.9 0 0.671

1 0 0.310

0.5 0.25 0.228

0.6 0.25 0.232

0.7 0.25 0.263

0.8 0.25 0.292

0.9 0.25 0.314

1 0.25 0.285

0.5 0.50 0.047

0.6 0.50 0.078

0.7 0.50 0.126

0.8 0.50 0.189

0.9 0.50 0.244

1 0.50 0.287
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7. Conclusions and extensions

In this paper we have derived a linear parabolic partial differential equation for the ruin

probability at a given date of an insurance firm with long correlated claims, modelled by a

fractional Brownian motion with Hurst exponent 1/2B/H B/1. The equation has been

solved and an explicit expression for the ruin probability at a given date has been derived

in terms of error functions. Alternatively, this viewpoint offers a convenient way of

calculating the ruin probability using standard finite difference schemes for the solution of

partial differential equations.

The derivation of a differential equation is interesting in its own right for the following

reason. If in the model the liability was driven by a Brownian motion then using the

martingale properties and the Markov properties of Brownan motion the celebrated

Feynman-Kac representation of the solution of partial differential equations can be

obtained (see e.g. [22]). Through the use of the Feynman-Kac formula one may derive a

PDE for the ruin probability. This was the original approach of Norberg [13]. However, in

the case where liabilities are driven by a fractional Brownian motion the validity of a

Feynman-Kac representation is no longer straightforward, since the fractional Brownian

motion is neither a semimartingale, nor a Markov process.

The model may be generalized along the following directions:

An obvious generalization would be to include stochasticity in the interest force as well.

This would lead to a more complicated linear stochastic differential equation driven by

fractional Brownian motions. In this case the derivation of an equation for the ruin

probability is possible but its form will be different and most probably it will not be

expressible in local form. Also, since the fractional Brownian motions driving the

liabilities and the interest force will, in principle, have different Hurst exponents the

fractional stochastic calculus set up proposed by Duncan et al . may be insufficient and we

may have to resort to the theory of stochastic integration on fractional Brownian motion

proposed by Elliot and Van der Hoek [4], where mixtures of fractional Brwonian motions

of different Hurst exponents may be used. This problem is under active consideration.

Another interesting direction towards the generalization of the model is the inclusion of

Poisson jumps in the liability process. This will turn the partial differential equation for

the ruin probability at a given date into a partial integrodifferential equation which may

be treated using standard techniques for such problems.

Appendix

In this Appendix we include the parameters used for the implementation of the numerical

schemes.

For the Monte Carlo we have used M�/30000 paths and L�/14.

For the Implicit method for H�/0.5 we took initial capital steps�/5000, time steps�/

50000, X_min�/�/10, X_max�/10, and for the Crank�/Nicolson, for H�/ 0.5, we

took initial capital steps�/5000, time steps�/10000, Xmin �/�/10, Xmax �/10.
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For the Implicit method for H �/ (0.5, 1) we took initial capital steps�/1000, time

steps�/1000, Xmin �/�/10, Xmax �/10.

For the Crank�/Nicolson method for H�/0.5, we used initial capital steps�/5000, time

steps�/10000, Xmin�/�/10, Xmax�/10.

For the Implicit method for H �/ (0.5, 1) we used initial capital steps�/1000, time

steps�/1000, Xmin�/�/10, Xmax�/10.

For the Crank�/Nicolson method for H �/ (0.5, 1), we have some some singularities

because of the discontinuity of the probability of ruin at x�/0, and thus we used

for the first five steps the implicit finite difference method and for the rest steps the

Crank�/Nicolson method. We have used initial capital steps�/1000, time steps�/1000,

Xmin�/�/10, Xmax�/10.

For the Implicit method for H�/1 we used initial capital steps�/2000, time steps�/

2000, Xmin�/�/10, Xmax�/10.

For the Crank�/Nicolson method for H�/1, we used for the first five steps the implicit

finite difference method and for the rest steps the Crank�/Nicolson method. We have

used initial capital steps�/1000, time steps�/1000, Xmin�/�/10, Xmax�/10.
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