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ABSTRACT

Most of the recent work on rainfall data analyses and modelling has focused
on either its spatial or temporal variability. In this paper we investigate the
structure of rainfall intermittence in space and time. Using a long series of
TOGA-COARE radar scans converted to maps of pixel rain rate over a large
tropical region of size 240 x 240 Km?, possible scale-invariant behavior of the
probability distributions of dry and wet epoch durations are explored. Such
durations are estimated by the lengths of dry and wet spells in time series of
spatially averaged rain rate, over sampled square sub-regions of spatial scales
ranging from 120 K'm to 2 K'm. The investigation is based on sample quantiles
and sample moments of the underlying marginal probability distributions. We
focus on the tail behavior of the probability distributions and investigate its
variation with respect to spatial scale. Specifically, we find that the sample
tail quantiles and sample moments of wet spells exhibit multiscaling of power-
law type, while sample tail quantiles and sample moments of dry spells exhibit
multiscaling of exponential type, across the range of the probed scales. These
new findings, based on a rather wide range of spatial scales (120 Km to 2 Km),
update, complement, and revise the findings of a recently published cadet study
by the first author, in which wet and dry epoch durations of regional rainfall in
the rather limited range of scales (10 Km to 2 K'm) pointed to the possibility
of simple scaling or self-similarity of such durations.

KEYWORDS: Intermittence; scale-invariance; dry and wet epoch dura-
tions; tail quantiles; statistical moments; spatio-temporal homogeneity.




1 Introduction

1.1 A conceptual framework

Rainfall is undoubtedly one of the most important facets of the global hydro-
logical cycle, constituting a main link between the atmospheric circulation of
ambient moisture and the river flows through the complex geomorphology of
basins of drainage. Rainfall is manifested by clusters of events specified by the
coordinates of their occurrence in space and in time, and also by their intensity
or rain rate, which by integration over time and space quantifies “how much”
rainfall water is accumulated “where” and “when” rainfall events occur.

This article is concerned with the fundamental feature referred to as in-
termittence of rainfall, a space-time feature indeed, since rainfall events are
distinguishable over space, at any given instant of time, and are also distin-
guishable during time, at any given location of space. Given that rain rate
is non-negative valued, rainfall intermittence may be defined more formally as
being the scheme of alternation from zero to positive rain rate values and vice-
versa. Such a formal scheme does not distinguish among positive values of rain
rate, however high or low they may be, thusly being indifferent on the question
of “how much” it rains. In this sense rainfall intermittence is concerned exclu-
sively with the questions of “where in space” and “when in time” does it rain
or does it not rain.

Rephrasing slightly these very questions to “on how large a region in space”
and “for how long a period in time” does it rain or does it not rain, the present
study tries to explore the possibility of a relationship between them, hence the
“space-time approach”. The potential relationship is probed by sampling sub-
regions A C § of controlled size and shape from various locations within a fixed
bounded “planar” region of study S C R?, and then by exploring possibilities
of spatial scale-invariance of the spatial random processes of wet and dry epoch
durations.

The spatial processes of wet and dry epoch durations are defined as follows.
Given a sub-region A C S, consider the temporal random process { R;(A) ; t > 0}
of spatially averaged rain rate over A, an intermittent process partitioned into
wet epochs (i.e. spells of positive values) and dry epochs (i.e. spells of zeroes),
whose lengths are assumed to be sample values from two random variables, W4
and D 4 respectively. Thus, by varying the sampled sub-region A C S, one nat-
urally obtains a spatial random process of wet epoch duration {W, ; A C S},
and another spatial random process of dry epoch duration{D,4 ; A C S}. It is
also clarified that a sub-region A C S is considered to be in a dry epoch for as
long time as there is nowhere positive rain rate in it, so that the spatial average
remains equal to zero, and it is considered to be in a wet epoch for as long time
as there is anywhere or somewhere (but not necessarily everywhere) positive
rain rate in it, so that the spatial average remains positive. That is, even if
it rains only in very small or sparse patches over a given sub-region, and even
there with very low (yet positive) rain rates, the sub-region is considered wet.

The concept of scale-invariance was introduced into studies of rainfields
since nearly a decade and a half ago [Lovejoy and Mandelbrot (1985), Lovejoy



and Schertzer (1985), Schertzer and Lovejoy (1987), Waymire (1985)], and it
has become a prominent framework within which variabilities in several aspects
of rainfall in space and time may be unified, and also a new tool for statistical
analyses of such aspects. The merit of scale-invariance, if it holds for some
aspect of rainfall, is at least three-fold. Firstly, one may exploit relatively
inexpensive and easily obtained information with respect to one scale, and use
it under the proper scaling for inferences about the same aspect of rainfall in
another scale of interest, within the range of scales where the invariance is
valid. Secondly, stochastic modelling efforts for scale-invariant aspects benefit
parsimony, at least in principle, since a reasonably satisfactory stochastic model
obtained in one scale may also be of similar use in another scale, provided that
its parameters are appropriately modified according to scaling. Thirdly, scale
invariance of certain aspects of rainfall may be used as criterion for evaluating
physical models of rainfall parametrization across certain ranges of scale in
space or in time (e.g. downscaling of hydrometeorological variables based on
General Circulation Model -GCM outputs).

Research efforts regarding scaling aspects of rainfall in space and time are
reviewed by Foufoula-Georgiou and Georgakakos (1991), Foufoula-Georgiou and
Krajewski (1995), and Foufoula-Georgiou (1998). Broader perspectives on the
interrelations between scaling aspects of rainfall and issues of scaling in other
branches of hydrological sciences are addressed in the books edited by Barndorf-
Nielsen et al. (1998), Kalma and Sivapalan (1995), and Sposito (1998).

The most popular aspect of rainfall in studies exploring statistical scale-
invariance, is its intensity or rain rate. Despite the various versions in which rain
rate is usually treated in the pertinent literature (e.g. temporal averages, spatial
averages, increments, power spectra over time or space, etc.), intermittence
between rain and no rain is usually addressed merely indirectly, provided that
the study is not conditioned on raining. Some recent examples of such studies
in the space-time mode are given in works by Over (1995), Over and Gupta
(1996), Harris (1997), Rodriguez-Iturbe et al. (1998), Pavlopoulos and Makatis
(1998), Venugopal et al. (1999).

Our opinion is that there are other aspects of rainfall, via which space-
time intermittence can be quantified, analyzed, and studied, more directly than
via rain rate. We certainly consider wet and dry epoch durations of spatially
averaged rain rate as being such an aspect, thusly worthy to study in this work,
but there are other ones too. For example, time series of the fraction of wet (or
dry) area over regions of various scales, as well as aspects of purely geometrical
nature such as fractal dimensions of wet support over time and space. In fact,
emphasizing the key importance of spatial random processes of wet and dry
epoch durations for the study of space-time intermittence, we note that these
processes can also be defined as lengths of wet and dry spells from time series
of wet area fractions of the sampled sub-regions, without any knowledge of the
exact rain rate values or of their spatial averages. Indeed, if R:(A) is interpreted
as being the instantaneous fraction of wet area over a sampled sub-region A C S
at time t > 0, then the spells of zeroes and the spells of positive values in the
temporally intermittent process { R;(A) ; ¢t > 0} define exactly the same spatial
processes {W4 ; AC S} and {Dy ; AC S} of wet and dry epoch durations as
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before, when R;(A) denoted instantaneous spatial average of rain rate.

1.2 Objectives and related literature

To the best of our knowledge, the sole attempt to address spatial scaling prop-
erties of probability distributions of dry and wet epoch durations of spatially
averaged rain rate, has been part of a recently published work by Pavlopou-
los and Gritsis (1999). That work was primarily concerned with parametric
modelling of probability distributions of such wet and dry durations. Scaling
with respect to spatial scale, indicated through simple scaling of moments, was
explored merely as extra statistical evidence, in addition to more conventional
statistics for testing goodness of fit, supporting the inverse Gaussian family
of probability distributions as a better model among other considered candi-
dates. Notably, the same distribution model was also proposed by Freidlin and
Pavlopoulos (1997), based on theoretical considerations regarding the physical
mechanism of moisture budget. Although the work by Pavlopoulos and Gritsis
(1999) points to the possibility of self-similarity or simple scale-invariance, it
may be viewed as merely a cadet study in that direction, since the scales of the
(square) regions over which the scaling was investigated were in a narrow range
(from 10 Km to 2 Km), and therefore this very strong form of scaling may have
been only circumstantial or incidental.

Another recent study, by Schmitt et al. (1998), addresses the probability
distributions of dry and wet epoch durations, along with their conformity to
the corresponding distributions obtained from modeling rain intensity via cer-
tain types of one-dimensional multifractal cascade models which do scale in a
certain sense. That study addresses rainfall intermittence in the time domain
only, using a 29-year long time series of rain intensity at a fixed point location
(instead of averaging rain intensity mapped over a region), with high sampling
frequency (every ten minutes). However, it does shed some light on the po-
tential scaling behavior of dry and wet epoch duration distributions, and also
on their connection with the dimension of the fractal set on which positive
intensities are supported.

The present work aims primarily to a more thorough investigation of the
possibilities for spatial scaling properties of probability distributions of wet and
dry epoch durations of spatially averaged rain rate data, over regions whose
sizes cover a much wider range of mesoscales from 120 Km to 2 Km. A formal
definition of stochastic scale-invariance or stochastic scaling is given in Section
2, with its implications on the scaling behavior of quantiles and of existing
moments, which in turn, under some assumptions of statistical nature, yield
operational tools with which scaling becomes statistically tractable.. The part
of TOGA-COARE data used in this study is explicitly described in Section
3, along with the formulation of our working data, while in Section 4 it is
explained why the strategy of pooling data is preferred, along with statistical
evidence supporting homogeneity assumptions needed for this strategy. The
core of statistical analysis and results of our study are presented in Section 5,
pointing to power-law scaling of sample tail-quantiles and of sample moments
of wet spells, and to exponential scaling of sample tail-quantiles and of sample



moments of dry spells. These new findings point to a multiscaling behavior
of the underlying spatial processes of dry and wet epoch durations, instead of
simple scaling which was initially indicated in Pavlopoulos and Gritsis (1999).
These findings are also associated with some of the results presented by Schmitt
et al. (1998). Section 6 concludes with some remarks on the implications of
the obtained statistical results, and with some thoughts for further research in
those directions.

2 Formalism of scale-invariance and related aspects

2.1 Definitions, assumptions, and notation

Two sub-regions A C S and B C S will be called geometrically similar if
they have identical shape, in the sense that each one of them is identifiable as a
dilated or shrunk and possibly translated or rotated copy of the other. The ratio
of diameters of two geometrically similar sub-regions defines the dimensionless
indez of spatial scale 0 < A < 1, so that if A is the larger of the two sub-regions,
then the smaller one B may be formally denoted by X - A, although strictly
speaking it is A+ A # B, except when B ={A-x | x € A}.

The practical purpose of the notation just introduced is to keep track merely
of the relative size between two geometrically similar regions, ignoring all other
aspects of relative position and orientation that distinguish two such regions.
That is, the notation \- A refers indistinguishably to any sub-region (contained
in S) which is geometrically similar to A and has diameter X\ times smaller
than the diameter of A. In particular, A itself becomes indistinguishable from
any translated or rotated copy of itself, since A may be also written formally as
1- A. This interpretation of the notation A- A, combined with the assumptions
of spatial and historical homogeneity postulated below, does facilitate a great
deal in the statistical investigation of spatial scale-invariance (see Section 5).

Stochastic scale-invariance may be defined in a number of different ways,
not necessarily equivalent. For the purposes of this study we recruit a rather
standard and very basic definition, to say that the process {W4 ; AC S} is
stochastically scale-invariant, or stochastically scaling, with respect to the spa-

tial scale 0 < A < 1, if there is a positive random function {C’/(\w) ; A€ (0, 1]},
such that C’fw) = 1 with probability one, and for every A € (0, 1),

Wi.a L C')(\w) - Wy (1)

or equivalently Wy. 4/ C/(\w) L Wy, in the sense of probability distribution func-
tions. That is, the probability distribution of wet epoch duration W4 over any
sub-region A C S, and the probability distribution of wet epoch duration Wj.4
over the sub-region A\ A = {A-x | x € A} C S, are linked through a scaling
factor Cy which is a random function merely of the spatial scale A € (0, 1], such
that

PWra<uw)=P(CY - Wa<u) (2



or equivalently P(W). 4/ ng) < u) = P(Wy < u), for every u € R and every
A € (0,1). Indeed, these equations express a probabilistic relationship between
the time-related question “for how long a period does it rain”, and the space-
related question “on how large a region does it rain”. Of course, analogous is
the definition of scale-invariance for the process {D4; AC S}, but then the
probabilistic relationship would be between the time-related question “for hou
long a period does it not rain”, and the space-related question “on how large a
region does it not rain”.

The degenerate case in which scale-invariance holds with C/(\w) being a non-
random scalar function, shall be referred to as simple scaling or self similarity
of the process {Wy ; A C S}, and then necessarily C/(\w) = M is a power-law
function of the scale A, for some 6, € R called scaling exponent of the self-
similar process {Wy ; A C S} (Lamperti 1962). The case of a scale-invariant
process which is not self-similar (or simple scaling) shall be referred to as a
multiscaling process (Gupta and Waymire 1990, 1993).

Now suppose that given a fixed sub-region A C S, and for each A € (0,1],
the notation \- A does not stand strictly for the sub-region {\-x | x € A}, but
according to the earlier introduced interpretation it stands for any member of
the class of sub-regions of S which are geometrically similar to A with diameter
smaller than the diameter of A by the scale factor A. Then, there is no conflict of
this new interpretation of the notation A- A in the definition of scale-invariance,
as long as one is willing to assume that the probability distribution of wet (dry)
epoch duration of spatially averaged rain rate is the same over any member of
that class. Such an assumption clearly points to a notion of spatial stationarity
(invariance under translations) and isotropy (invariance under rotations) of wet
(dry) epoch durations over the region S, conditionally on the shape of A C S
and on the scale index A of the test sub-regions sampled from the class A - A.
This assumption is indeed adopted in the present study, and it is referred to as
spatial homogeneity of wet (dry) epoch durations.

A second assumption made in this study is that the probability distribution
of wet Wy (dry D4) epoch duration over any fixed sub-region A C S, remains
the same throughout the history of the process {R:(A) ; t > 0}, or at least
throughout the observed history {R;(A) ; 0 <¢ < T} up to time 7' > 0. This
assumption is referred to as historical homogeneity of wet (dry) epoch durations,
and it is under this assumption that it makes sense to say (see Introduction) that
the lengths of all wet (dry) epochs in the history of {R;(A) ; t > 0} constitute
a set of sample values from the random variable W4 (from the random variable
Dy).

The third and last assumption made, is that the cumulative probability
distribution functions (c.d.f.) of the positive random variables Wy.4 and Dj. 4,
defined respectively by F/&“X(u) = P(Wxa < u) and Fidjl(u) = P(Dya <
u), are continuous at every u € R, and strictly increasing over their common
support (0, +00). The role of this assumption is of rather technical nature, so
as to guarantee that the corresponding quantile functions, generally defined for
every p € (0,1) by Qf\fujl(p) = inf{u € R| Fyﬁ(u) > p} and Qf\a(p) = inf{u €
R F/gdjl(u) > p}, are also continuous and strictly increasing, and thusly coincide



with the inverse functions of the c.d.f.’s Ffug and F/Efijl (Karr 1993, p. 63). This
helps in the simplification of the mathematical arguments connecting c.d.f.’s,
quantile functions, and moments. Moreover, we believe that this assumption is
also realistic from an intuitive and physical viewpoint, since there is no obvious
reason of why one might exclude certain intervals of duration values from the
support (0,+00) of the c.d.f.’s (i.e. excluding strict monotonicity), or allow
discrete probabilities attributed to certain duration values (i.e. allowing jump
discontinuities).

For brevity, suppression of the superscripts (w) and (d) from the above
notation indicates that the undergoing statement or argument refers without
distinction to either wet, or dry epoch durations, or both. For example, n-th
order moments are defined by

M a(n) = +Z"unm.,l(u) (3),

- (w) T rdFE® (@)
meaning that M, 4 (n) = E(W{,) = { udFy j(u) and My 4 (n) = E(D},) =

+o0
f u"’dF/Sf?l (u). Unlike c.d.f.’s and quantile functions, which always exist, n-th

order moments exist only when the defining integral in (3) converges, and in
that case all moments M. (k) of order 1 < k < n exist too. Moreover, under
the assumption of continuity and strict monotonicity of c.d.f., when M. 4(n)
exists it is possible to be calculated in terms of the corresponding quantile
function Q.4 via the integral

My a(n) = { Qe (4).

Equation (4) is obtained from (3), either by the change of variable p = F).4(u)
whence Qx.4(p) = Qaa(Fr.a(uw)) = u for every u € R, or by the change of
variable u = Qx.4(p) whence Fy.4(u) = F).4(Qx4(p)) = p for every p € (0,1).

2.2 Two hypothetical cases

If and when scale-invariance does hold, it is of great practical value for purposes
of statistical inference to express scale-invariance explicitly in terms of c.d.f.’s
most preferably, or in terms of quantiles if possible, or even in terms of moments
if and when they exist. We illustrate this prospect for two specific hypothetical
cases of scale-invariance. The one case is self-similarity, and the other is a
particular case of multiscaling to which we refer as multiplicative cascade case,
because of its obvious pertinence to scaling properties of multiplicative cascade
processes (Holley and Waymire, 1992). In either case,and also in general, scaling
expressed in term of moments, if they exist, is weaker than the notion of scaling
expressed in terms of the corresponding quantile functions, while the latter
notion is equivalent (under the constraints of continuity and strict monotonicity
of c.d.f.) to our initial definition of scaling in terms of probability distributions.



2.2.1 Case of self-similarity

In the case of simple scaling or self-similarity of wet or dry duration processes,
say with scaling exponent 6 € R, it follows directly from (2) that

Fya(u) = Fr.4 (/\—9 ‘u)=p (5),

whence, under the assumption of continuity and strict monotonicity of F.4 and
Fy.4, it follows that Qx. 4(P) = Qaa(Fra(v)) = vand Q1.4(p) = Qra(F1.a(M "¢
u)) = A~9 . u, which by elimination of u yield

Qxalp) =X - Qralp)  (6).

Moreover, if .4 admits finite moments up to order n > 1, then substitution
of (5) into (3), or substitution of (6) into (4), yields that F). 4 also admits finite
moments up to order n > 1, and in fact for every 0 < k <m,

Mya(k) = X0 Myiak) (7).

2.2.2 Case of multiplicative cascade multiscaling

In the most general case of multiscaling of wet or dry duration processes, con-
ditioning on the positive random variable C) (i.e. C’ﬁ\w) for wet or Cg\d) for dry)
in the right-hand-side of (2), yields the equation

+0o0 u
Fya(u) = {FWCA (z|c> dGa(e)  (8),

where G is the c.d.f. of the positive random variable Cy, and F1.4 ¢, is the
conditional c.d.f. of the wet duration variable W4 or of the dry duration variable
Dy, given C). The integral equation (8) is the multiscaling analogue of (5).
Unfortunately, equation (8) is not reducible to a simple expression between
the corresponding quantile functions, not even in the special case where C)
is independent of W4 or Dg, a case in which conditioning would become a
nuisance in (8).

However, in the case where the positive process {Cy ; A € (0,1]} is indepen-
dent of W4 or D, following the line of argument given by Gupta and Waymire
(1990, Section 4), it is seen that the underlying duration process {Wa; A C S}
or {D4; A C S} may admit a multiplicative cascade representation

WA.AéWA -exp{Zl(:g//\)} or D)\.AéDA'exp {Zl(:()l/)\)} (9).

The corresponding process {Za;a > 0}, defined by Zy = In Ceyp(—ay for a > 0,
starts at zero with probability one (i.e. P(Zp = 0) = 1 since P(Cy = 1) = 1),
and has stationary (but not necessarily independent) increments in the sense
that Zo,;+ay L Zo, + Za, for every 7 > 0 and ap > 0. The last equation

is equivalent to Cj,.x, L Cy, - Ch,, which follows directly from the definition
of multiscaling of the underlying duration process, provided that the positive
process {C) ; A € (0,1]} is independent of W4 or independent of D4. Note that



equations (9) accommodate also the degenerate cases of simple scaling where
P(Zln(l/A) =60-In /\) = 1.

A process which admits the multiplicative representation (9) is called multi-
plicative cascade process, and the corresponding scaling factor positive process
{Cx; A€ (0,1]} is referred to as factorial generator process of the cascade. If
the duration process {Wy; A C S} or {Dy; A C S} is indeed a multiplicative
cascade process, then by taking moments up to order n (if they exist), and
using once again the independence between ng) and Wy, or between Cf\d) and
D 4, equations (9) yield that for every 0 < k < n,

My a(k) = Ex(k) - My.a(k)  (10),

where Ex(k) = E (exp {k a1y ,\)}) is the moment generating function (m.g.f.)
of the random variable Zj;(/y), hence a convex function. Equation (10) is a
multiscaling analogue of (7), showing that k-th order moments are scaling not
necessarily according to a simple power-law function of A with exponent being
a linear function 8 - k£ of the order k. Instead, moments in this multiscaling
case scale according to the convex function factor Zy(k) = A5 ) where the
exponent Sy(k) = logy Ex(k) = InZ,(k)/In A is a non-linear concave function
of k, referred to as structural function, which may possibly depend on A too.

Closing this section we should like to remark on the possibility of simple
scaling in processes of wet and dry duration. This possibility relates subtly
to the argument of Kedem and Chiu (1987), which rules out self similarity of
rain rate processes in both space and time. Specifically, Kedem and Chiu (1987)
showed that spatially averaged rain rate cannot be simple scaling with respect to
spatial scale, because then the probability of rain (i.e. positive spatial average)
ought to remain constant in all scales. However, this contradicts the empirical
fact that the probability of rain is an increasing function of spatial scale. In
the time domain, self-similarity of rain rate processes was also ruled out under
the assumption of stationary increments, on the grounds that if it ever stopped
raining, it would never restart. Therefore, the possibility of simple scaling
was ruled out for rain rate processes on the grounds of their intermittence in
space and time. However, although wet and dry durations of spatially averaged
rain rate provide a space-time approach to studying rainfall intermittence, the
possibility of their simple scaling cannot be ruled out on the basis of the above
argument, at least not a priori, for the very simple reason that they are always
strictly positive processes, thus not intermittent ones.

3 Formulation of working data from TOGA-COARE
measurements

The source of raw data used in this study is a set of maps of radar reflec-
tivity measurements, obtained during the Tropical Ocean Global Atmosphere
(TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE), from
two shipborne Doppler precipitation radars (TOGA and MIT) scanning every
ten minutes a large tropical region of approximate size 300Km x 400Km in
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the China Sea, off the north coast of Australia. The duration of this field ex-
periment was approximately three months (November 1992 through January
1993), divided into three main phases known as Cruise 1, Cruise 2, and Cruise
3. Reflectivity measurements from each scan or snapshot were binned over small
square pixels of size 2x2 Km? each, whence instantaneous rain rate values were
obtained using the so-called Z-R relationship R = (Z/230)}/125 between reflec-
tivity Z and rain rate R. Detailed information about TOGA-COARE can be
found in Short et al. (1997).

The part of TOGA-COARE data available to us for this study covers only
a square sub-region of size 240x240 Km?, with a temporal resolution of ap-
proximately 20 minutes between successive scans, consisting of 1992 scans from
Cruise 1 (November 10, 1992 through December 9, 1992) and of 617 scans from
the early part (December 21, 1992 through December 29, 1992) of Cruise 2.
There is also a small number of missing scans, making up 48 blocks of missing
scans in Cruise 1, and 21 blocks in Cruise 2. Most of these blocks, percentage
87%, consist of one or two missing scans (per block), while the longest block
in Cruise 1 consists of 18 missing scans (i.e. about six hours), and the longest
block in Cruise 2 consists of 6 missing scans (i.e. about two hours). Figure 1
depicts the instantaneous rain rate field retrieved from a typical scan of Cruise
1.

3.1 Spatial sampling design

By computing the spatial average of rain rate over all pixels in each scan, two
time series were obtained, for Cruise 1 and Cruise 2 respectively. Apart from
a few blocks of missing values, whose time coordinates are exactly those of
blocks of missing scans, the rest of the values in each one of these time series
are positive. This showed that at the spatial scale of 240 Km it “always”
rained somewhere in the probed region, and therefore this spatial scale is not
informative about durations of dry and wet spells. Consequently, time series
of spatially averaged rain rate at scales smaller than 240 K'm were explored,
so as to start having enough temporal intermittence in order to be able to
obtain sufficient statistical information about duration (or length) of dry and
wet spells. The desired temporal intermittence started to appear in a fairly
robust manner at scales not larger than 120 K'm, and for this simple reason
we conventionally associate that scale with the dimensionless value A = 1,
considering it as scale of reference hereafter. Figure 2 depicts a fixed sampling
design of five (geometrically similar) square sub-regions, which are used as
test sub-regions at the scale of reference, each one consisting of 60 x 60 =
2400 contiguous pixels. Four of these sub-regions (NW, NE, SW, SE) partition
the probed region of study, while the central one (CR with dashed borders)
intersects symmetrically each one of the four disjoint compartments.

Other spatial scales treated in this study are those obtained from an ap-
proximate “rule of half”, applied sequentially six times on the scale of refer-
ence, down to the scale of a single pixel. These scales correspond to 60 Km
(A=60/120 =1/2), 30 Km (A = 30/120 = 1/4), 16 Km (A = 16/120 = 2/15),
8 Km (A=8/120=1/15), 4 Km (A =4/120 =1/30), and 2 Km (A =2/120 =

11



1/60), and together with the scale of reference outline a rather wide range of
mesoscales being of particular interest for both meteorological (e.g. downscal-
ing of GCM output) and hydrological (e.g. river basin flows and flood frequency
analysis) applications. Test sub-regions from each one of the treated scales are
selected from each sub-region of Figure 2, according to the five sampling de-
signs depicted in Figure 3. For example, the NW design in Figure 3 applied to
the SE sub-region of reference scale in Figure 2, samples six square sub-regions
nested within one another along the diagonal towards the NW vertex of the SE
sub-region of reference. In short, this system of seven sampled sub-regions is
denoted by SE-NW, indicating that the SE sub-region of reference scale was
sampled first, followed by six nested sub-regions “tied” to its NW vertex.

Obviously there are numerous alternatives of defining sampling designs other
than the one just described. Our main reason for considering this particular
sampling mechanism, is that due to its symmetry it covers quite densely and in
a rather economic manner the entire probed region (240x240 Km?) in all seven
scales treated in this study, providing statistical information (about dry and
wet durations) from 25 different test sub-regions for each one of the six smaller
scales (60 Km, 30 Km, 16 Km, 8 Km, 4 Km, 2 Km), and from 5 different test
sub-regions of the reference scale (120 Km). Moreover, this particular sampling
scheme keeps spatial overlaps as minimal as possible among test sub-regions
of the same scale. The benefit from minimal overlapping is that repetitious
information, from test sub-regions which are nearly the same, is avoided to a
large extent. This in turn simplifies the statistical inference and facilitates the
interpretation of results.

3.2 Pooling of statistical information

The sampling scheme described above, produces a total number of 155 different
sub-regions (i.e. 5x1 + 25x6) of the probed region, whence statistical informa-
tion about dry and wet epoch durations is obtained and analyzed in Section 4
in order to explore if there is any scaling behavior and of what kind.

The first step in that direction was to obtain the time series of spatially
averaged rain rate corresponding to each one of the 155 sub-regions. Blocks of
zeros and blocks of positive values, appearing in alternating sequence, corre-
spond to dry and wet spells respectively, occasionally interrupted by a block of
missing values. Sample values of wet (dry) epoch durations were estimated by
the corresponding number of measurements in each spell, called length of the
spell. Obviously, lengths of wet and dry spells are positive integers, which if
multiplied by the temporal sampling frequency 1/3 hr express the sample val-
ues of wet and dry durations in units of hours (hr). Although this is a natural
way to estimate wet and dry epoch durations, it is also rather crude because it
assumes that there was no temporal intermittence during any 20 minute sam-
pling interval, which clearly may be untrue especially over regions of small size.
Moreover, wet and dry spells bordering with a block of missing values in a time
series were just discarded, because they obviously are another source of ambi-
guity for the true length of a few dry or wet spells. Serving as an example,
Figure 4 depicts the time series of spatially averaged rain rate during Cruise 1,
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over the seven nested sub-regions sampled by the NE-CR design.

The second step was to pool lengths of wet spells from Cruise 1 and Cruise
2, retaining chronological sequence of spell lengths within each cruise and also
between cruises, and the same sort of pooling was applied also to lengths of dry
spells. This procedure is hereafter referred to as temporal pooling of wet or dry
spell lengths, and it was applied on each one of the 155 test sub-regions.

The third step was to pool the temporally pooled wet spell lengths from
all test sub-regions of the same scale, so as to obtain one data set of wet spell
lengths for each one of the seven spatial scales. This procedure is hereafter
referred to as spatial pooling, and of course it was also applied to temporally
pooled lengths of dry spells from all test sub-regions of each scale.

After temporal and spatial pooling, the final product consists of 7 pools
of wet spell lengths, and another 7 pools of dry spell lengths. These final 14
spatio-temporal pools (two pools, dry and wet, for each one of the seven scales)
constitute our working data for the purposes of this study.

4 Justification of pooling and homogeneity

The target task being the statistical investigation of scaling possibilities regard-
ing the probability distributions of wet and dry epoch durations, with respect
to the spatial scale of the sampled sub-regions, is carried out in Section 5 con-
sidering sample tail-quantiles and sample moment estimates of the underlying
probability distributions. However, before going into the details of that analy-
sis, some justification should be given for our choice of strategy to work with
spatio-temporally pooled spell length data, hereafter called pooled strategy. The
obvious alternative would be to carry out the same analysis separately for each
individual system of nested sub-regions, maintaining temporal pooling per sub-
region, but without spatial pooling of data from regions of the same scale from
different systems. This alternative is called individual strategy hereafter.
Under the individual strategy, scaling analysis of quantiles and moments
ought to be performed separately on each one of the 25 systems of nested sub-
regions obtained by the implemented spatial sampling designs. Subsequently,
conclusions ought to be drawn based on some summary statistics of scaling ex-
ponents and the like parameters quantifying whatever forms of scaling behavior
might emerge. Such strategy would not require the assumption of spatial ho-
mogeneity, but only that of historical homogeneity. Nevertheless, a serious
shortcoming of that strategy is that inference for lower and mid-range quantiles
is severely obscured by the extremely prominent skewness of the data, and by
the same token inference for upper-tail quantiles would have be based only on
very few and sparse extreme values in samples whose sizes at best are in the
order of only a few decades. A glimpse of this situation is given in Figure 5,
presenting statistical summaries in the form of box-plots for wet and dry epoch
durations in all seven scales, obtained after temporal pooling applied to the
individual system of seven nested sub-regions sampled by the NE-CR design.
Note that due to the temporal pooling between Cruise 1 and Cruise 2 over each
sub-region, sample sizes are slightly higher than those marked in the Cruise 1
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time series plots depicted in Figure 4, yet the above described shortcomings are
quite obvious.

Under the pooling strategy the situation improves partially, in the sense
that, although extremely high skewness prevails also in the spatio-temporally
pooled working data at each scale, hence still obscuring statistical inference
about lower and mid-range quantiles, inference about upper-tail quantiles be-
comes more feasible and robust due to the gain of information about the extreme
values of the underlying probability distributions from substantially larger sam-
ples. Figure 6 depicts this improvement via boxplots corresponding to all seven
spatial scales treated, after spatial pooling.

Indeed, comparing the box-plots in Figure 6 with those in Figure 5, it is
obvious that in all spatial scales, both dry and wet spell lengths are highly
skewed, with a very short interquartile range whose upper end does not exceed
the 2 hours, except in the 4 Km dry and the 60 Km wet cases where the
corresponding sample upper quartiles are nearly 2.3 and 3.3 hours respectively.
However, the gain of information about extreme values higher than the upper
quartile is quite substantial, except for the 120 Km scale where there is not much
improvement after spatial pooling (recall that there are only 5 samples pooled
for this scale, instead of 25 samples for every other scale). It is noted that the
NE-CR design is one of the most informative among the 25 designs considered
in the study (see again the NE quarter of the study region in Figure 1), and
for this reason it has been chosen for comparison with the pooled working data
sets.

Sample quantile estimates for specific values across the range (0,1) of prob-
ability levels (including the probability levels 0.25 and 0.75 for the lower and
upper quartiles respectively) are given in Table 1 for the spatio-temporally
pooled working data, whence it becomes strikingly clear that scaling analysis
of quantiles is feasible only for upper-tail quantiles, say for probability levels
higher than 0.75. Indeed, for probability levels lower than 0.75, sample quan-
tiles across the different spatial scales become almost indistinguishable as they
collapse to only a couple of different values (say 2 and 3 for the 0.55 level), thus
making impossible the study of any scaling structure however prominent or sub-
tle it may be, if it holds at all. This masking effect is indeed rather annoying,
and it is easily attributable partly to the prominent skewness of the underlying
probability distributions, and partly to the rather long sampling frequency of
20 minutes which “quantizes” the data.

Choosing the pooling strategy instead of the individual strategy, for the
reasons explained above, bears the additional cost of having to adopt also the
assumption of spatial homogeneity (see section 2.1), along with the assumption
of historical homogeneity which is needed for justification of either strategy.
One might be convinced to accept both these homogeneity assumptions on the
basis of some general intuitive argument addressing in loose qualitative terms
the physical mechanism responsible for setting on and off the occurrence of
rainfall events over space and time. For example, such an argument might imply
the desired statistical homogeneity from a broad sense of climatic stability and
uniformity over the probed geographical region (e.g. tropical in this study)
during a specific season (e.g. monsoon season in this study). However, since
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these two homogeneity assumptions are of fundamental importance for the task
of scaling analysis in this study, especially under the pooling strategy, some
additional effort was made in order to address in a more quantitative manner
the potential validity of these assumptions via some statistical tests.

4.1 Evidence of historical homogeneity

In order to test homogeneity during time, the non-parametric test of runs above
and below the median was applied for every individual sub-region from each
scale, after temporal pooling of the corresponding information from both Cruise
1 and Cruise 2. In fact, this testing procedure tests not only homogeneity of the
parent probability distribution (of the temporally pooled data per sub-region),
but the stronger null hypothesis that the data constitute a random sample
of observations from independent and identically distributed (i.i.d.) random
variables. This testing procedure is actually a ramification of the well known
Wald-Wolfowitz asymptotic test, requiring large enough samples so that both
scores of runs above and below the median are large too, and it is described
with some detail in Pavlopoulos and Gritsis (1999, section 2.2).

The evidence provided by these tests is measured by the corresponding p-
values (or significance probabilities), whose box-plot summaries per spatial scale
(except the scale of reference) are given in Figure 7 for both dry spell lengths
(top row) and wet spell lengths (bottom row). In particular, quantiles at the
0.1 probability level of the obtained p-values are all higher than 0.01, meaning
that, in at least 90% of the sampled sub-regions of any given scale, the i.i.d.
null hypothesis for either wet or dry spell lengths is accepted with confidence
99%. Indeed, this constitutes quite satisfactory evidence in support of the
null hypothesis of i.i.d. observations, hence also of the historical homogeneity
assumption in every scale, for wet epoch durations as well as for dry. In fact,
more attentive reading of Figure 7 indicates that the evidence is slightly stronger
for wet spells than for dry.

Box-plots of p-values for the scale of reference (120 Km) are not included in
Figure 7, because at that scale there are only 5 p-values (instead of 25 for each
of the other six scales), which are also hard to interpret since the corresponding
sample sizes are too small for the asymptotic test used (between 3 and 21 for
dry, and between 2 and 13 for wet spell lengths).

4.2 Evidence of spatial homogeneity

Testing for spatial homogeneity refers to testing, in each fixed scale, for in-
variance of the underlying probability distribution (of the already temporally
pooled data, of dry and wet spell lengths separately), among the sampled sub-
regions of that scale.

The test of runs above and below the median may be applied again, al-
though it is not quite appropriate since spatially pooled data no longer reflect
any chronological sequence in which they were observed, and therefore the sta-
tistical significance of the null hypothesis of randomness varies according to the
permutation of blocks of data from the different sub-regions of the same scale
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(chronological sequence is however maintained within each block since it con-
sists of the temporally pooled data over a specific sub-region). Despite these
drawbacks, this testing procedure is somewhat informative, in the sense that
under different permutations, although p-values do vary indeed, it appears that
the null hypothesis of randomness is not rejectable over the larger scales (120
Km - 16 Km for wet spells, and 120 Km - 30 Km for dry spells), but it is
rejectable over the smaller scales.

Retaining the above mentioned reservations regarding appropriateness of
this testing procedure, the results are not all that discouraging about the valid-
ity of spatial homogeneity, as the rejection of the null hypothesis of randomness
may be attributed to the presence of some spatial dependence and not to lack
of spatial homogeneity. This last point is supported also by the fact that when
the test was applied to spatially pooled data from only disjoint sub-regions of
the same scale, p-values did increase slightly, especially for spatially pooled dry
data.

To shed more light on the question of spatial homogeneity of dry and wet
spells from different sub-regions of a given scale, further classical statistical tests
of homogeneity were employed, namely the Kruskal-Wallis test, and the >3-
homogeneity test. Both these testing procedures allow for comparison between
several (temporally pooled) samples of wet (or dry) spell lengths, one sample
from each sampled sub-region of a given scale. Both these non-parametric
asymptotic tests require independent large samples, not necessarily of the same
size, each sample consisting of i.i.d. data. From these two requirements, the
latter is evident enough on the basis of temporal randomness, but the former
is evidently not met due to spatial dependence between samples from different
sub-regions of the same scale. Moreover, we note that the x2-homogeneity test
was difficult to apply, because of the high skewness in each sample, often yielding
unavoidably low scores (below 5 and even 0 sometimes) in some partitioning
cells.

Despite these shortcomings regarding appropriateness and applicability of
the Kruskal-Wallis test and of the y?-test in the situation at hand, merely
explorative application of them yields similar results to those obtained from
the test of runs above and below the median. Namely, spatial homogeneity is
supported at larger scales (120 Km - 16 Km for wet spells under both tests,
and 120 Km - 60 Km for dry spells only under the x>-test).

In light of the above remarked shortcomings of testing homogeneity simulta-
neously among samples from all sampled sub-regions of the same scale (5 for the
reference scale and 25 for every other scale), one may resort to testing merely
pairwise independence and homogeneity in each pair of samples from the sam-
pled sub-regions of the same scale. To this end, a battery of nonparametric
asymptotic tests may be used, namely Kolmogorov-Smirnov, Wilcoxon-Mann-
Whitney (a two-samples analogue of the Kruskal-Wallis test), and x?-test for
testing homogeneity, and Spearman’s rank-correlation, Kendall’s T-test, and x?-
test for testing independence. The p-values of these tests of independence are
indicative of the appropriateness of the tests for pairwise homogeneity, since
each of the homogeneity tests presumes independence between the two com-
pared samples (along with randomness within each sample, which has already
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been accepted). Detailed descriptions of these tests are given in standard sta-
tistical books, such as Bickel and Doksum (1977), Lehmann (1986), Rao (1973),
and Rohatgi (1976).

Although pairwise independence is much weaker than, and certainly not
equivalent to mutual independence among the individual random samples from
all subregions of the same scale, pairwise independence does provide an alter-
native approach towards testing global homogeneity. That is, one may resort to
evidence of independence among random samples from pairs of subregions of the
same scale, in order to justifiably apply the above mentioned homogeneity tests
to each of those very pairs of independent random samples. Furthermore, one
may argue that if homogeneity is evident among pairs of independent random
samples, then this very pairwise homogeneity can be considered as reasonable
evidence of global homogeneity among the individual random samples from all
subregions of the same scale. In other words, evidence of pairwise independence
and of pairwise homogeneity thereafter, render global homogeneity plausible,
even when lack of mutual independence (attributed to some spatial dependence)
disables testing for global homogeneity directly in a single trial.

Clearly, there are (‘;’) = 10 pairs of (temporally) random samples of wet
(dry) spell lengths for the reference scale and (%) = 300 pairs of such ran-
dom samples for each of the other six scales. The seven tests mentioned above
(three for pairwise independence and four for pairwise homogeneity) were ap-
plied on several pairs of sampled sub-regions from each scale, but certainly not
on all of them, The obtained p-values from each test applied to different pairs
of sub-regions of the same fixed scale, showed some variability but were always
supportive of the null hypothesis tested (pair independence or pair homogene-
ity). For this reason, and also due to space limitations, summary statistics of
p-values from each given test applied to several pairs of a given scale, have been
intentionally omitted.

Instead, we consider much more interesting to have a glimpse on the vari-
ability of p-values from the entire battery of tests when applied across the
various spatial scales. Table 2 serves this purpose, tabulating p-values obtained
from all seven tests applied on pairs of samples of wet spell lengths, and also on
pairs of samples of dry spell lengths, corresponding to the pairs of sub-regions
sampled in each scale by the NW-CR and NE-CR sampling designs. Quite
similar p-values were also obtained in all the other pairs of sampling designs
that we tried, namely NE-CR & SE-CR, SE-CR & SW-CR, SW-CR & NW-CR,
SW-CR & NE-CR, NW-CR & SE-CR, and a few more.

The empirical conclusions which can be drawn from the pairwise approach
towards testing global homogeneity per scale, to the extent that it was actu-
ally explored, can be summarized as follows. Regarding pairwise independence,
all three tests (x?, and Kendall’s and Spearman’s correlation tests) yield quite
large p-values, supporting the statistical significance of pairwise independence,
among pairs of wet duration samples as well as among pairs of dry duration
samples, in every spatial scale. Consequently, this constitutes evidence that all
the homogeneity tests ( X2, Kolmogorov-Smirnov, Wilcoxon-Mann-Whitney,
and Kruskal-Wallis) are appropriate to use for further testing of pairwise ho-
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mogeneity. Indeed, all four tests yield quite large p-values too, providing rather
convincing evidence in favor of accepting pairwise homogeneity in every spatial
scale, among samples of wet spell lengths and also among samples of dry spell
lengths. Therefore, in light of the argument given earlier, we shall consider the
available evidence satisfactory enough so as to adopt hereafter the postulated
global spatial homogeneity assumption.

5 Scaling analysis

Core of the scaling analysis undertaken in this section is the statistical investi-
gation of the theoretical relationships expressed by equations (6), (7), and (10).
These relationships are considered merely as certain basic forms of scaling, cer-
tainly not exclusive of other possibilities, and any significant departures thereof
ought to be interpreted as evidence of other forms of scaling associated with
model processes other than the two hypothetical ones presented in Section 2.

The actual practice of these investigations consists of simple linear regres-
sions of In {gx(p)/q1(p)} and of In {my(k)/m1(k)} on the spatial scale A or on
In A, and on the statistical significance of the corresponding regression coef-
ficients, and their behavior as functions of p and k respectively. The nota-
tion gx(p) stands for sample estimates of quantiles @, (p) at probability level
p € (0,1), and the notation my(k) stands for sample estimates of moments
M (k) of order k > 0 up to the order for which moments are assumed to exist.

For the reasons addressed in Section 4, scaling analysis of sample quan-
tiles g (p) focuses merely on tail-quantiles corresponding to values of p € P =
{0.8,0.825,0.85,0.875,0.9,0.925,0.95,0.975, 0.985,0.995}, for both wet and dry
working data defined in Section 3. These sample values are given in Table 3 for
each one of the probed spatial scales.

Note that simplification of the index A - A to just A in the notation of
sample quantiles and sample moments, is indeed justified, firstly by the fact
that the data sets for which the estimates are obtained, consist of spatially
(and temporally) pooled data from all sampled subregions of the same spatial
scale A, thus reducing the need to keep track of the reference scale region A, of
which A - A is a geometrically similar subregion, and secondly by the fact that
all the sampled subregions have the same geometric shape of square.

5.1 Tail-quantiles and moments of wet epoch durations

A summary of statistical information regarding simple linear regressions of
In{gr(p)/q1(p)} on In X for each p € P is given in Table 4. Correlation coef-
ficients are satisfactorily high, slopes are quite significant, and intercept terms
are rather insignificant, as inferred from p-values of corresponding t-tests. A
plausible conclusion from this set of regressions is that wet quantiles seem to
fit to a scaling format In {Qx(p)/Q1(p)} = ©(p) - In X or equivalently

Qx(p) = 2°®) . Q:(p)  (11),

which differs from simple scaling of quantiles as expressed by (6) in that the
scaling exponent is a non-constant function ©(p) of the probability level p.
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Equation (11) formulates a certain type of multiscaling (in contrast to simple
scaling with a single fixed exponent) of tail-quantiles, which hereafter we shall
refer to as power-law type of multiscaling. That is, for a given probability p
the scaling factor between p-quantiles at two different spatial scales equals the
dimensionless ratio A of the smaller to larger scale, raised to the power O(p).
Furthermore, simple linear regressions of Ingy(p) on In(1 — p) for each of
the probed scales A yield further insight about possible structure of wet du-
ration tail-quantiles. Table 5 summarizes information from these regressions.
Correlation coefficients are quite close to -1, while on the basis of p-values of cor-
responding t-tests both slopes and intercepts are statistically significant. This
information points to the strong possibility of a linear relationship

nQx(p) = A(A) - In(l —p) +In B(Y)  (12),

where the slope and the intercept are, in general, some functions of the spatial
scale A, denoted by A(\) and In B()) respectively.

From a mathematical standpoint, a plausible choice of functions which sat-
isfy both equations (11) and (12) is In B(A) = a-In A+ 3, A(\) = v-In A + 6,
O(p) =v-In(1 — p) + a, and in that case elementary algebraic manipulation of
(11) and (12) yields that

QW (p) =M (1 —p A (13).

In order to estimate the parameters involved in this scenario, we regress in-
tercepts from Table 5 against In )\, and we obtain a = 0.3652,5 = 0.8746
both statistically significant, with correlation coeflicient 0.951. Similarly, re-
gression of slopes from Table 5 against In A yields also significant v = 0.0285
and § = —0.5006, with correlation coefficient 0.8884. Finally, simple linear re-
gression of the slopes of Table 4 against In(1 — p) yields indeed the very same
estimates obtained for the a and v parameters, both significant again, although
with a lower correlation coefficient equal to 0.7318. Figure 8 depicts the fit of
these three linear regression lines to the corresponding scatterplots of points.

Figure 9 depicts a graphical comparison between sample quantiles and pre-
dicted tail-quantiles under the scenario postulated by equation (13) with the
above estimated parameters. The comparison is based partly on values of the
correlation coefficient between sample and predicted quantiles at each separate
scale as well as cumulatively for all scales combined, and partly on scedasticity
of scatterplots around the drawn diagonal line through the origin. It is rather
clear that except perhaps of the largest probed scale (120 K'm scale of reference)
where the correlation is 0.879, the proposed scenario describes quite satisfacto-
rily the variability of wet duration tail-quantiles across a wide range of spatial
scales.

If equation (13) holds true for tail-quantiles, that is for every p € (po,1)
given some pg close to 1 (e.g. po = 0.8), then the corresponding tail-probabilities
ought to satisfy the equation

w an w11/ (rInA+s)
P(WA>Q§>(p)>=l—p=[e( mA+6) . L) (p) , as p /1,
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whence by substitution of Qf\w)(p) with v > 0 follows that
P(W)\ > u) — e—(a.lnA-}-ﬁ) / (vInA+6) | ul/(»y.ln)\+6)’ as u / 400 (14)_

Equation (14) shows that under the scenario postulated by (13), tail probabili-
ties of wet duration are of hyperbolic type, provided that v -In A+ 6 < 0, which
indeed holds true for the above estimated values of v = 0.0285 and § = —0.5006,
since 0 < A < 1. Furthermore, if (13) is true, then equation (4) implies that

1 n 1
M) > [ Q)] dp = e [(1 - g0 gy (15),
Po Po

and the latter integral is finite iff n < —(y-ln A+6)~!. Therefore, if (13) is true,
then at a given scale 0 < A < 1 the probability distribution of wet duration W)
does not possess finite moments of order —(y - In A + §)~! or higher. However,
we should note that —(y-In 4+ §)~! is not necessarily a tight upper bound of
order up to which moments exist, because moments of some order smaller than
this bound may also not exist due to possible non-integrability of the lower tail
of the distribution near zero.

Hereafter we shall use —(7y-In A+ 6)~! merely as a crude estimate of highest
order up to which moments of wet duration may exist. These estimates of
moment order bounds for the probed scales A € A={1/60, 2/60, 4/60, 8/60,
15/60, 30/60, 1} are respectively equal to 1.62,1.67,1.73,1.79,1.85,1.92,1.99. It
is interesting to note that these bounds imply that in everyone of the probed
scales second order moments do not exist, and therefore duration of wet epochs
is likely to have infinite variance.

In order to probe further the possibility of scaling in terms of moments
we first focus on moments of order k¥ €{0.25, 0.5, 0.75, 1, 1.25, 1.50}, which
presumably exist in all the seven probed scales under the scenario postulated by
(13). A summary of statistical information regarding simple linear regressions
of In {my(k)/m1(k)} on ln A for each one of these values of k is given in Table
6. Correlation coefficients are again satisfactorily high, slopes S(k) are quite
significant, and intercept terms are rather insignificant, as inferred from p-values
of corresponding t-tests. A plausible conclusion from this set of regressions is
that wet quantiles seem to fit to a scaling format In {My(k)/Mi(k)} = S(k)-In A

or equivalently
My(k) = X5®) . M (k)  (16).

Equation (16) points to a power-law type of multiscaling scenario for moments
of wet duration, as much as (11) points to a power-law type of multiscaling
scenario for tail-quantiles of wet duration, provided that the function S(k) is a
non-linear function of k.

Figure 10(A) depicts regression lines fitted to points (In A, ln {m(k)/m1(k)})
for each value of moment order k¥ €{0.25, 0.5, 0.75, 1, 1.25, 1.50}, and Figure
10(B) depicts the variation of the slopes of these fitted lines. At first glance,
Figure 10(B) indicates the very strong indeed possibility of a linear structural
function S(k). According to equation (7), this possibility would point to a
simple scaling scenario, provided that the structural function had no intercept
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term, and in that case the slope of S(k) ought to be the scaling exponent
parameter. However, linear regression of slopes S(k) against moment orders
k €{0.25, 0.5, 0.75, 1, 1.25, 1.50} from Table 6, yields a statistically significant
intercept of -0.0574 (t-test p-value 0.0045), along with a linear slope 0.2990,
and a very high indeed correlation coefficient 0.9976. Moreover, attentive read-
ing of Figure 10(B) shows that the structural function S(k) may well be some
non-linear convex function of k, and despite how subtle this convexity may
be, it certainly points to a power law multiscaling scenario for moments that
would rule out the possibility of multiscaling of wet durations according to a
multiplicative cascade process as defined in subsection 2.2.2, because then the
structural function ought to be concave instead of convex.

If one is not aware of the previous analysis regarding tail-quantiles, which
imposes certain restrictions on existence of moments, then moments of arbi-
trarily high order may be assumed to exist. For example, moments of order
ke{1, 2,3, 4,5, 6} are often arbitrarily assumed to exist, and based on them
one may proceed to their scaling analysis ignoring any other structure such as
that of quantiles. Following this rather ad hoc approach, we regressed linearly
again In {my(k)/mi(k)} versus In X for each value of k €{1, 2, 3, 4, 5, 6}. In-
formation regarding this set of regressions is also given in Table 6, supporting
again the power-law type of multiscaling for wet duration moments, but in this
case the non-linearity of the structural function S(k) seems to be concave as
shown in Figure 10(C). Nevertheless, linear regression of S(k) against moment
orders k €{1, 2, 3, 4, 5, 6}, yields a fairly good fit with correlation coefficient
0.9425, slope 0.1215, and a statistically significant intercept 0.23 (t-test p-value
0.0519).

Based on the above scaling analysis of moments one may tend to deduce
that, despite some non-linearity of the structural function, there is enough
evidence to support scenaria of simple scaling, such as the one with scaling
exponent 6 = 0.2990 obtained from moments of order £ €{0.25, 0.5, 0.75, 1,
1.25, 1.50}, or alternatively the one with scaling exponent § = 0.1215 obtained
from moments of order k €{1, 2, 3, 4, 5, 6}. In either case, tail-quantiles ought
to also scale according to equation (6). Figure 11 depicts a graphical compari-
son between sample quantiles and predicted tail-quantiles under three different
scenaria. These are, the power-law type of multiscaling scenario postulated by
equation (13) with the above estimated parameters, and the two simple scaling
scenaria with scaling exponents § = 0.2990 and € = 0.1215 respectively. As
in Figure 9, the comparison is based partly on values of the correlation coef-
ficient between sample and predicted quantiles, and partly on scedasticity of
scatterplots around the drawn diagonal line through the origin. Plots in the left
column of plots in Figure 11 combine sample and predicted tail-quantiles from
all spatial scales, while plots in the right column combine sample and predicted
tail-quantiles from all scales but the 120 Km scale of reference. Inclusion of
the scale of reference clearly introduces some bias in favor of the simple scaling
scenaria by contributing ten points (as many as the values of p € P for which
tail-quantiles are obtained) displayed exactly along the diagonal of each scat-
terplot. Nevertheless, it is very clear that the power-law type of multiscaling
scenario according to (13) describes the predicted variability of wet duration
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tail-quantiles better than the simple scaling scenaria at all scales, both in terms
of higher correlation with sample quantiles and in terms of better fit along the
diagonal through the origin.

We believe that this last result is quite informative in many aspects when
juxtaposed to the finding of Pavlopoulos and Gritsis (1999) that wet duration
of regional rainfall is a simple scaling process with scaling exponent § = 0.2537.
That result was obtained from scaling analysis of moments of order k£ €{1, 2, 3,
4, 5} from a much smaller section of TOGA-COARE data over a square region
of size 10 x 10 Km? during the entire Cruise 2 (December 20, 1992 through
January 9, 1993) with temporal resolution 10 minutes. The very limited size of
the region for which data was available for that study, limited also the scaling
analysis to only five spatial scales (10 K'm, 8 Km, 6 Km, 4 Km, and 2 Km),
and was based only on an individual system of nested subregions at these scales
since spatial pooling was clearly not much of an option.

In order to compare more closely the results of this study with the results of
Pavlopoulos and Gritsis (1999) about spatial scaling of wet duration of regional
rainfall, we made some extra effort to investigate scaling of the wet working data
across the restricted range of scales corresponding to 16 Km, 8 Km, 4 Km,
and 2 K'm. The result is quite remarkable indeed, in that it literally reverts
the previous conclusion in favor of simple scaling over these smaller scales.
Specifically, working along the same line of regressions as for all scales, scaling
analysis of moments of order k£ €{0.25, 0.5, 0.75, 1, 1.25, 1.50} and of order
k €{1,2,3,4,5, 6} both point to validity of (16) again, with structural functions
S(k) deviating in a very subtle but clearly convex manner from linearity, with
extremely high correlation coefficients (0.9996 and 0.9957 respectively), slopes
0.1492 and 0.2341 respectively, and statistically significant intercepts -0.0119 (t-
test p-value 0.0048) and -0.1532 (t-test p-value 0.0221) respectively. Figure 12
serves the purpose of comparison between the power-law multiscaling scenario
(13) for wet tail-quantiles against the two simple scaling scenaria with scaling
exponents 6 = 0.1492 and 6 = 0.2341 respectively. Evidently, the competition
between simple scaling and power-law multiscaling is much closer in terms of
the fit of points along the diagonal, and simple scaling is slightly better in terms
of correlation between predicted and sample tail-quantiles, a situation indeed
opposite to the one over all scales as depicted in Figure 11.

5.2 Tail-quantiles and moments of dry epoch durations

Unlike tail-quantiles of wet duration, tail-quantiles of dry working data do not
support the validity of equation (11). This is easily concluded from the sta-
tistical information obtained from linear regressions of In {gx(p)/q1(p)} on In A
for each p € P, which is very poor to support linearity. Instead, linear re-
gressions of In{gx(p)/q1(p)} on the spatial scale X itself, for each p € P, yield
quite strong evidence of linearity with extremely close to -1 correlation coeffi-
cients below -0.97, and statistically significant intercepts which apparently are
opposite to values of the corresponding slopes. Further confirmation of this
structure is obtained via linear regressions of In {gx(p)/q1(p)} on A — 1 for each
p € P. Information from this latter set of regressions is given in Table 7, where
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correlations and slopes remarkably match exactly those obtain from regressions
of In {gx(p)/q1(p)} on A, and intercepts are quite insignificant as we anticipated
from inclusion of their significant part into the regressor A —1 by subtraction of
unity. Thus, a plausible conclusion is that dry quantiles fit to a scaling format

In{Qx(p)/Q1(p)} = T(p) - (A - 1) or equivalently
Qx(p) =e*@ -V . Q1(p)  (17).

Equation (17) is clearly different from both simple scaling of quantiles formu-
lated by (6) and power-law multiscaling of quantiles formulated by (11), and
formulates a new type of multiscaling of tail-quantiles, which hereafter we shall
refer to as exponential type of multiscaling. This nomenclature is justified by
the fact that for a given probability p the scaling factor between p-quantiles
at two different spatial scales is an exponential function of the dimensionless
ratio A of the smaller to larger scale, and the exponent of this scaling factor is a
linear function of A with slope ¥(p) and intercept —¥(p) which are themselves
non-constent functions of p.

Furthermore, simple linear regressions of Ingx(p) on In(1 — p) for each of
the probed scales A yield further useful insight about possible structure of dry
duration tail-quantiles. Table 8 summarizes information from these regressions.
Correlation coefficients are quite close to -1, while on the basis of p-values of
corresponding t-tests both slopes and intercepts are statistically significant (ex-
cept possibly of the intercept at the 16 Km and 30 Km scales). This information
points anew to the strong possibility of a linear relationship

n@x(p) = A*(A) -In(1 —p) + I B*(A)  (18),

where the slope and the intercept are, in general, some functions of the spatial
scale A\, denoted by A*(A) and In B*(A) respectively.

From a mathematical standpoint, equation (18) for dry tail-quantiles is
of the same form as equation (12) for wet tail-quantiles, except that now a
plausible set of functions which satisfy both (17) and (18) is In B*(\) = o* - A+
B, A*(\) =~*- A+ 6%, U(p) =~*-In(l —p) + o*, and in that case it follows
easily from (17) and (18) that

Q(p) = e (1—p)T T (19).

In order to estimate the parameters involved in this scenario, we regress inter-
cepts from Table 8 against A, and we obtain o* = —0.5117, §* = 0.2327 both
statistically significant, with negative correlation coefficient -0.7958. Similarly,
regression of slopes from Table 8 against A yields also significant v* = 0.379 and
6* = —0.57, with correlation coefficient 0.9415. Finally, simple linear regression
of the slopes of Table 7 against In(1 — p) yields indeed the very same estimates
obtained for the o* and v* parameters, both significant again, with correlation
coeflicient 0.9792. Figure 13 depicts the fit of these three linear regression lines
to the corresponding scatterplots of points, and Figure 14 depicts a graph-
ical comparison between sample quantiles and predicted tail-quantiles under
the scenario postulated by equation (19) with the above estimated parameters.
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Clearly, the proposed scenario describes quite satisfactorily the variability of
dry duration tail-quantiles across the probed spatial scales.

If (19) truly holds for dry tail-quantiles, then the corresponding tail-probabilities
ought to satisfy the equation

] L/ (y*-2+6%)

P (DA > Qg‘”(p)) —l-p= [e—<°‘ QW (p) Cas p )1,

whence by substitution of Q(Ad) (p) with w > 0 follows that
P(Dy > u) = e~ @ MB) [ (F28) U(r 548 oy S 4og (20),

showing that under the scenario postulated by (19) tail probabilities of dry
duration are also of hyperbolic type, provided that v* - A+ 6* < 0, which indeed
holds true for the obtained estimates of 4v* and §*. Furthermore, if (13) is true,
then equation (4) implies that for py in a neighborhood of 1,

@ 0@ m]" n(ar A+p") || n(y* A+6*)
MPm) > [ [Q0@)] dp = J (L =)0y (21),
Po Po

and the latter integral is finite iff n < —(y* - A 4 §*)~! which can be used as a
crude upper bound for the order of finite moments of dry duration at a given
scale. These bounds for the probed scales A € A={1/60, 2/60, 4/60, 8/60,
15/60, 30/60, 1} are respectively equal to 1.77, 1.79, 1.83, 1.92, 2.10, 2.62, 5.23.
It is interesting to note that according to these bounds, duration of dry epochs
is likely to have infinite variance for scales of 16 K'm or less.

In order to probe scaling in terms of moments of dry duration we consider
sample moments of order k €{0.25, 0.5, 0.75, 1, 1.25, 1.50, 2, 3, 4, 5, 6}, and
start with linear regressions of In{my(k)/mi(k)} on In A for each value of k.
Table 9 summarizes information from these regressions, where we note that for
k €{0.25, 0.5, 0.75, 1, 1.25, 1.50}, so that the corresponding moments ought to
probably exist in all scales under the scenario postulated by (10), correlation
coefficients are moderately close to -1, whereas for k €{2, 3, 4, 5, 6} they begin
to increase significantly and thus weakening the evidence of linearity. Moreover,
intercept terms are rather significant as inferred from p-values of corresponding
t-tests. These findings suggest that, unlike moments of wet duration, moments
of dry duration probably do not conform with a power-law type of multiscaling
M )(\d)(k;) = \5"(k) . Ml(d) (k), and consequently neither to simple scaling.

Figure 15(A) depicts regression lines fitted to points (In A, In {m(k)/m1(k)})
for each value of moment order k£ €{0.25, 0.5, 0.75, 1, 1.25, 1.50}, while Figures
15(B) and 15(C) depict the variation of the slopes S*(k) of two subsets of lin-
ear regressions corresponding to values of k in the sets {0.25, 0.5, 0.75, 1, 1.25,
1.50} and {1, 2, 3, 4, 5, 6} respectively. Despite a very slight concavity of the
“pseudo-structural” function S*(k) indicated in both Figures 15(B) and 15(C),
the most prominent impression is that S*(k) could very well be a linear function
of k. Indeed, regression of the two sets of slopes S*(k) on the corresponding
values of k, yield correlation coefficients -0.9944 and -0.9994 both pointing to
very strong linearity, slopes -0.3292 and -0.5036 respectively, and statistically
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significant intercepts 0.0593 (t-test p-value 0.0251) and 0.2962 (t-test p-value
0.0008) respectively. We note that the significance of the latter two intercepts
can be interpreted as additional evidence against a simple scaling scenario, but
if we want to test for (or against) such a scenario, then our first crude estimates
of a possible “scaling exponent” would be 8 = -0.3292 and 8 = -0.5036.

Graphical comparisons between sample tail-quantiles and predicted tail-
quantiles for dry duration, based on (6) for simple scaling with 6 = -0.3292 and
f = -0.5036, and alternatively based on the exponential type of multiscaling
scenario postulated by (19) with the above estimated parameters a*, 5*, ~v*,
6*, are depicted in Figure 16, whence very clearly the scenario of exponentially
multiscaling describes the variability of dry duration tail-quantiles strikingly
well, and by far better than either of the simple scaling scenaria, at all scales.

Having ruled out the possibility of power-law type of multiscaling for mo-
ments of dry duration, based on the above presented evidence, and guided
by the hint that moments and tail-quantiles of wet duration conform to the
same type of scaling (power-law multiscaling), we proceed to investigate if such
“symmetry” holds also for dry durations. That is, we proceed to investigate
exponential type of multiscaling for moments of dry duration as an alternative
scenario. To this end, we regressed In {my(k)/my(k)} on A—1 for each k €{0.25,
0.5, 0.75, 1, 1.25, 1.50, 2, 3, 4, 5, 6}, and statistical information from these re-
gressions is summarized in Table 10. Indeed, correlation coefficients point to an
extremely strong linear relationship In {M)(k)/M:1(k)} = H(k) - (A — 1), with
negative slope denoted by the function H(k), and negligible (i.e. statistically
insignificant) intercept. That is, the latter set of regressions yields ample evi-
dence supportive of exponential multiscaling of dry moments according to the

formula
My(k) = eT®-O-D an k) (22),

which expresses exponential type multiscaling of dry duration moments, and
notably can be viewed as a special case of (10) with

Ex(k) = AE-O-1 (93),

Figure 17(A) depicts regression lines fitted to points (A — 1,1n {my(k)/m1(k)})
for each value of moment order k €{0.25, 0.5, 0.75, 1, 1.25, 1.50}, while Figures
17(B) and 17(C) depict the variation of the slopes H(k) of two subsets of linear
regressions corresponding to values of k in the sets {0.25, 0.5, 0.75, 1, 1.25, 1.50}
and {1, 2, 3, 4, 5, 6} respectively. Despite a very slight concavity of the function
H (k) indicated in both Figures 17(B) and 17(C), the most prominent impression
is that H (k) could very well be a linear function of k£ as well. Indeed, regression
of the two sets of slopes H (k) on the corresponding values of &, yield correlation
coefficients -0.9934 and -0.9989 both pointing to very strong linearity, slopes -
1.5032 and -2.5011 respectively, and statistically significant intercepts 0.2863
(t-test p-value 0.0273) and 1.6871 (t-test p-value 0.0019) respectively.

It is interesting to remark that the second derivative Ej (k) = Zx(k) - (A —

7 ! 2
1)- {H' (k) +(A-1)- [H (k)] }, of Ex(k) in (23), with respect to k, has pos-

itive sign if H(k) is non-linear concave function, and negative sign if H(k) is
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linear function. Consequently, if H (k) is non-linear concave, then =5(k) is a
convex function of £ as in the multiscaling framework of multiplicative cascade
processes where (10) is anticipated to hold true, and if H(k) is linear, then
Ex(k) is a concave function of k.

Another “symmetry” (so to speak) which seems to hold between wet and
dry durations of regional rainfall is that, if we restrict the scaling analysis of
tail-quantiles and moments of dry durations to the narrower range of scales
corresponding to 16 K'm, 8 Km, 4 Km, and 2 Km, then although there is
still ample evidence supporting quite firmly exponential multiscaling of both
tail-quantiles and moments, we find that analysis of sample moments yields
also substantial evidence of simple scaling scenaria. Specifically, analyses of
moments of order k& €{0.25, 0.5, 0.75, 1, 1.25, 1.50} and of order k €{1, 2, 3, 4,
5, 6}, both point to structural functions deviating in a very subtle but clearly
concave manner from linearity, with extremely strong correlation coefficients
(-0.9959 and -0.9987 respectively), slopes -0.0885 and -0.1070 respectively, and
statistically significant intercepts 0.0144 (t-test p-value 0.0212) and 0.0294 (t-
test p-value 0.0476) respectively. Along with significance of these intercepts,
another fact that weakens the possibility of simple scaling is also the signif-
icance of intercepts in regressions of In {my(k)/mi(k)} versus In\. However,
using the latter two slopes as estimates of scaling exponents, Figure 18 serves the
purpose of comparison over these lower scales, between sample and predicted
tail-quantiles of dry durations under the exponential multiscaling scenario (19)
and the two simple scaling scenaria with scaling exponents § = -0.0885 and 6 =
-0.1070 respectively. It can be seen that although the fit of points along the
diagonal line through the origin is better under the exponential multiscaling
scenario, the two simple scaling scenaria yield slightly higher correlation coef-
ficients (0.9974 and 0.9972) between sample and predicted tail-quantiles than
the correlation coefficient 0.9861 obtained under exponential multiscaling, and
clearly simple scaling is rendered here more competitive against exponential
multiscaling than in the comparison made in Figure 16.

Closing this section we note that simple scaling of dry duration of regional
rainfall was also reported among the results obtained by Pavlopoulos and Gritsis
(1999), with quite different scaling exponent 64 = _0.3360, based there on
scaling analysis of sample moments of order k €{1, 2, 3, 4, 5} for the same
individual system of nested subregions (corresponding to scales of 10 K'm, 8
Km, 6 Km, 4 Km, and 2 K'm) that pointed to simple scaling of wet duration
with scaling exponent #(®) = 0.2537.

5.3 Capacity fractal dimension of wet residence time

Hyperbolic tail-probabilities expressed by formulae (14) and (20), for wet and
dry epoch durations respectively, besides leading to bounds of the order up to
which moments may exist, also point to the fractal or multifractal nature of the
set where wet epochs are supported in time records of regional rainfall. Such a
set is hereafter referred to as wet residence time of regional rainfall, and in this
subsection we are concerned with the dependence of fractal dimension of wet
residence time on the spatial scale to which regional rainfall records correspond.

26



A general account on the connection between hyperbolic distributions and
fractals is given by Mandelbrot (1983), but more specifically related to the
approach undertaken here is the work by Schmitt et al. (1998), where it is
shown that the probability density function of dry residence is proportional to
7= (8+1) where A is the fractal dimension of the wet residence set in a temporal
record of rainfall, at given temporal scale 7, at a fixed site. This very result
has also been obtained by Lowen and Teich (1993), although by an approach
different than that of Schmitt et al. (1998).

In any event, the argument given by Schmitt et al. (1998), based on average
number of dry epochs accounted at a given temporal scale T, is also valid if the
temporal record is a record of regional rainfall over a whole region of some scale,
instead of a record at a single point location. Thus, in the more general regional
setting, the probability density function of dry residence is also anticipated to
be proportional to 77 (831 where Ay is now the fractal dimension of the wet
residence set in a temporal record of regional rainfall, at given temporal scale
T, over a region of spatial scale A. Consequently, integration with respect to
7, yields tail-probabilities of dry duration (or dry residence time) D, being

proportional to 772, That is, P (Dy > 7) o< 7~?*, whence for 7 = Qs\d) (p) we

obtain 1 — p [Qg\d) (p)]_AA , or equivalently Qg‘d)(p) o (1 —p)~VA and if
oy > 0 denotes the constant of proportionality in the latter relationship, then
we have that

AP =or-(L—p) B (24).
For p /' 1, one may combine equation (19) for tail-quantiles with equation (24)
to obtain

(d)
D opy w2 B ey ooy,

whence by solving for the exponent of 1 — p on the LHS it follows that

Kli - Ail =7t (=Nt {or e Vo) fn(-p) (25)
Noting that the second term in the RHS of (25) tends to vanish as p /1, we
deduce that

A% ~ Z\l‘l =" (1=N+o(n(l-p)  (26).

Equation (26) presents both theoretical and practical interest as it expresses
a rather simple approzimate linear relationship of the inverse fractal dimension
1/Ay of wet residence time of regional rainfall records, with respect to the
spatial scale A of the region. The slope is determined by the parameter v* of
dry tail-quantiles (19), and the intercept is determined by the same parameter
~v* and also by the fractal dimension A; of wet residence time in regional rainfall
records from a region at the spatial scale of reference, provided that all records
are of the same temporal scale. Moreover, equation (26) readily implies that
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fractal dimension of wet residence time decreases as spatial scale is reduced,
pointing to meagrening of wet residence time as a region reduces in size.

In order to test equation (26), one first needs to obtain some estimates of the
fractal dimensions on the LHS. To this end, we focused on the 155 time series
records of spatially averaged rain rate from Cruise 1 only. Recall from Section
3 that these are 5 time series from sampled sub-regions at the scale of reference
(120 Km), and 25 time series from sampled sub-regions at each one of the other
six scales probed in this study. Cruise 1 (1992 scans) was preferred because it
has nearly triple the number of scans than those available to us from Cruise 2
(617 scans). Concatenation of time series from Cruise 1 and Cruise 2 over any
given sampled sub-region was not really an option, since there is a long gap
of about eleven days between the end of Cruise 1 and the beginning of Cruise
2. However, the short blocks of missing scans within Cruise 1 were simply
ignored, and an estimate of the capacity fractal dimension was obtained via a
box-counting procedure for each one of these 155 time series (using unity as the
embedding dimension of course). Some summary statistics of these estimates
are given in Table 11, and Figure 19 depicts histograms of the distributions of
box-counting estimates of the capacity fractal dimension in each scale. These
are rather skewed histograms, suggesting that both the sample mean and the
sample median may be used as gross estimates of the capacity fractal dimension
Ay at a given scale A. Evidently, it is noticeable from the sample medians and
from the sample means in Table 11, but also from the histograms in Figure 19,
that as the spatial scale decreases there is a small but steady drift of probability
mass towards smaller values of fractal dimension, as anticipated on the basis of
(25) or (26).

Using the sample median of box-counting estimates as a gross estimate of
the capacity dimension Ay, for each scale A, then simple linear regression of
1/A) — 1/A; against 1 — X yields correlation coefficient 0.8895, slope 0.5589,
and a statistically negligible intercept -0.0652 (t-test p-value 0.5471), while
using the sample means of box-counting estimates as gross estimates of capacity
dimension in each scale, then linear regression of 1/A) — 1/A; against 1 — A
yields correlation coefficient 0.9197, slope 0.5945, and also statistically negligible
intercept -0.0699 (t-test p-value 0.4697).

Both these regressions show that although correlation coeflicients are not
strikingly high, they are significant enough to support linearity, while intercepts
are statistically negligible as we anticipated according to (26). The only short-
coming of these regressions is that they yield slopes (0.5589 and 0.5945) which
are higher than the estimated parameter v* = 0.379 from dry tail-quantiles.
Nevertheless, scatterplots of points with coordinates (0.379 - (1 — A),1/A) —
1/A;), marked in Figure 20 with O for median and with % for mean gross
estimates of capacity dimension, show that the predictor 0.379- (1 — A) underes-
timates the difference 1/Ay —1/A; only in the lower spectrum of spatial scales
between 2 Km and 8 Km, and possibly up to 16 Km if the mean gross estimate
of capacity dimension is used, while in the upper spectrum of scales between
120 Km and 30 Km, and possibly down to 16 Km if the median gross estimate
of capacity dimension is used, the theoretically obtained predictor 0.379- (1 — )
matches quite closely the difference 1/A) — 1/A; along the diagonal line drawn
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through the origin.

We believe that these minor discrepancies ought to be attributed to the
rather crude sample box-counting estimates of capacity dimensions, which were
obtained from quite short time series of nearly 2000 observations sampled every
20 minutes, when it is well known that reliable estimation of a fractal dimension
requires much richer time series data. Emphatically we mention that Schmitt
et al. (1998) obtained a box-counting estimate of capacity dimension equal to
0.55, for temporal scales between 10 minutes and 3.5 days, from a single time
series record of 29 years (January 1, 1967 through December 31, 1995) with
sampling frequency of 10 minutes at a single point location (Uccle, Belgium).
For a brief summary account on estimation of capacity fractal dimension via
box-counting procedures, we refer to subsection 3.3.6 of the review article by
Isham (1993) and references therein.

6 Concluding remarks and some thoughts

The work presented in this article is an effort to study spatial scaling proper-
ties of wet and dry epoch durations based on time series records of spatially
averaged rain rate data (i.e. regional rainfall). Several limitations were pointed
out regarding the information available from the data towards this goal. Some
of these limitations were partially alleviated by spatio-temporal pooling of rel-
evant information via implementation of a fixed (i.e. non-random) and sym-
metric design for sampling sub-regions of certain spatial scales from the region
probed with TOGA-COARE. This pooling strategy required certain conditions
of spatio-temporal homogeneity to hold, so that the scaling analysis be mean-
ingful. Some effort was made to test these conditions, which provided sufficient
statistical evidence supportive of the validity of spatial and temporal homogene-
ity to reasonable extent. Despite implementation of the pooling strategy as a
means to exploit as much as possible available information, some inescapable
limitations restricted the analysis on (upper) tail-quantiles only, on existing
statistical moments, and on rather poor estimates of capacity dimensions of
wet residence (time-) sets. Summarizing our findings in a nutshell, the main
conclusions are:

1. Tail-quantiles and moments of wet epochs in regional rainfall records
conform to power-law type of multiscaling, according to (11) and (16) respec-
tively.

2. Tail-quantiles and moments of dry epochs in regional rainfall records
conform to exponential type of multiscaling, according to (17) and (22) respec-
tively.

3. Wet and dry epochs have (upper) tail-probabilities of hyperbolic type,
according to (14) and (20) respectively.

4. The reciprocal of capacity dimension of wet residence time in a time
series record of regional rainfall may be approximated by a linear function of
the spatial scale of the region, according to (26).

Speculating on the consequences of the above findings, regarding aspects
related to spatial and temporal modelling of rainfields, we address the wide
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class of multifractal cascade models known for their potential to accommodate
some multiscaling properties of the underlying random field, be it one-, two-,
or even multi-dimensional.

Tail-probabilities of wet epochs being of hyperbolic type immediately rules
out the possibility that time series records of regional rainfall at any spatial
and temporal scale may be modelled by a one-dimensional (-cascade model,
the simplest indeed cascade model, because it is well known that then tail-
probabilities of wet epochs should be exponentially decaying (see Schmitt et
al., 1998).

Regarding the spatial process of wet durations {W,4 ; A C S} we deduce
that, if the structural function S(k) in (16) is non-linear convex, then a two-

dimensional (2D) multiplicative cascade model whose factorial generator {C’E\w) ; Ae (0, 1]}

is independent of {W4 ; A C S} would be inappropriate, because then the
structural function in (10) ought to be concave instead of convex. However,
the possibility of {W4 ; A C S} being modelled by a positive 2D cascade re-
mains promising, provided that its factorial generator {C’f\w) i AE (0,1]} is
stochastically dependent on {Wy ; A C S}. This scenario readily amounts to
having a joint probability density function between any two random variables
Wy and ng) , supported exclusively on the positive quadrant, and such that
(8), (13), and (16) hold simultaneously.

Regarding the spatial process of dry durations {Dy4 ; A C S}, it was pointed
out in sub-section 5.2 that if the function H (k) in (22) is non-linear concave,
then E)(k) is convex, and if H(k) is linear, then E,(k) is concave. Therefore,
if H(k) is non-linear concave, then the process {D4 ; A C S} may be mod-
elled by a two-dimensional (2D) multiplicative cascade with factorial genera-
tor {ng) ; A€ (0, 1]} independent of {D4 ; A C S}. In the more likely case
though, where H(k) is linear function, the process {Dy4 ; A C S} may be mod-
elled by a two-dimensional (2D) multiplicative cascade only if there is a genera-
tor process ng) ; A€ (0, 1]} which stochastically depends on {D4 ; A C S}
in such a manner that the joint probability density function between any two
random variables D4 and C’g‘d) is supported exclusively on the positive quadrant
again, and (8), (19), and (22) hold simultaneously.

It is not the scope of this article to establish from the mathematical stand-
point the existence of dependent cascade processes possessing the desired mul-
tiscaling properties outlined above. Yet, putting such matters on a wider con-
ceptual perspective, we believe that stochastic scale-invariance is a particular
form of stochastic dependence across a range of different scales, and if cascade
processes hold any promise to adequately model stochastic scale-invariance then
probably there exist appropriate ones expressing the types of multiscaling dis-
covered in the present work.

Another direction along which some basic research may be pursued, is to
study to what extent the above multiscaling properties of wet and dry durations
of regional rainfall may be retrieved from analyses like the ones shown here, but
applied on simulated time-evolving random fields with spatio-temporal inter-
mittence between zero and positive values. Such random fields may of course
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be obtained by dynamic 2D cascades whose generator (not to be confused with
the factorial generator process, which in fact is a limit product of replicas of
the generator) is a non-negative random function of time with intermittence
between zero and positive values. An example of such a dynamic 2D cascade
is given by Over (1995) and Over and Gupta (1996), where the generator is
a random function alternating between zero and positive values according to
a binary stationary Markov process multiplied with an independent diffusion
process whose stationary distribution is lognormal. Of course, many other al-
ternatives may be explored. For instance, one may consider a 2D dynamic
cascade whose generator is a random function alternating between zero and
positive values according to a fractal renewal process [Lowen and Teich (1993)],
with its positive sections being marked according to a 1D universal multifractal
model [Schertzer and Lovejoy (1987), Tessier et al. (1993)], or according to
an appropriate diffusion process [Pavlopoulos and Kedem (1992)]. Yet another
alternative is to consider as generator a random function alternating between
zero and positive values according to a hysteresis effect between two coupled
brownian motions with drift [Freidlin and Pavlopoulos (1997)], with its positive
sections being marked according to a third diffusion process again.

In parallel, whatever the cascade generator may be, development of efficient
statistical methodologies such as maximum likelihood estimation is of great
need in order to make inferences about model parameters and their physical
interpretation. Unfortunately, this need has fallen missproportionately short
of progress compared to the development of various types of multifractal cas-
cade processes suitable for this or that modelling application. However, as the
mathematical theory of cascades broadens and deepens, advanced statistical
methodology beyond simple method of moments type of remedies is strongly
anticipated to emerge eventually.

The space-time approach proposed here for probing intermittence of rain-
fields has the potential to be generalized so as to facilitate: a) exploitation of
more information from rainfield map series such as TOGA-COARE, and b) es-
tablishment of “links” between duration and intensity of regional rainfall, and
between duration of regional rainfall and fractional wet area, that is another
truly space-time type of connection. Such “links”, as the well known optimal
threshold linear relationship between regional rain rate and fractional wet area
where rain rate exceeds a given threshold [Kedem and Pavlopoulos (1991)], may
lead to new statistical methodologies for inferences based on space-time data
of rainfields probed via remote sensing technology. The key step towards such
generalization is to introduce the concept of intermittence between wet and dry
states, with respect to positive and zero values of regional rain rate, or with re-
spect to positive and zero values of fractional wet area (or fractional dry area =
1-fractional wet area), not on the original random field but on versions obtained
from it by truncation or clipping at certain threshold levels of pixel rain rate val-
ues. Suggestively, one may refer to this generalized concept of intermittence as
n-threshold level intermittence, where n > 0 is a given threshold level according
to which pixel rain rate values are clipped or truncated. Clearly n = 0 corre-
sponds to the case of intermittence with respect to the original rainfield without
any clipping or truncation of pixel rain rate values. One may anticipate that
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for small values of the threshold (say for 7 < 1 mm/hr), the proposed analysis
will benefit from reduction of the number of pixels with noisy small positive
values of “rain rate” that could very well be representing instrument error and
not actual rainfall, but at the cost of prolonging dry epochs and shortening wet
epochs, which in turn eventually has an impact on inferences regarding scaling
of quantiles and moments of wet and dry durations of regional rainfall.

Last and certainly not of least interest, would be the investigation of possi-
ble connections between scaling properties of spatial processes of wet and dry
duration of regional rainfall, and scaling properties of flood peaks (and drought
lows) with respect to size of drainage basins spanned by large river networks.
Relatively recent work [Gupta et al. (1994), Gupta and Dawdy (1995)] has
shown that, while flood peaks generated by snowmelt conform with simple
scaling theories, flood peaks attributed to rainfall are multiscaling in a manner
such that, for large return periods, spatial variability of flood peaks decreases
as spatial scale increases. This effect may be attributed partly to multiscaling
of regional rainfall intensity, where variability indeed decreases as spatial scale
increases, but partly (possibly) to multiscaling of regional wet and dry duration
processes as well. In fact, one may intuitively argue that over large continental
regions (not oceanic as in this study), where drainage areas are spanned by river
networks of substantial size in a terrain of complex geomorphology interacting
with the atmospheric organization of rainfall, and given the reduced variability
of regional rain intensity in such a large scale, the more important source of
flood peak variability could very well be the spatial variability in wet and dry
duration processes.
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Table 1: Sample quantiles, in units of 20 minute intervals, at ten regularly spaced probability
levels along each column, corresponding to spatio-temporally pooled working data of dry and
wet spell lengths for each of the seven spatial scales.

DRY! 120 | 60 | 30 | 16 8 4 2 WET| 120 | 60 | 30 | 16 8 4 2
Km|Km|Km|Km|Km|Km| Km Km|Km |Km|Km|Km|Km | Km
005 1 1 1 1 1 1 1 [005] 1 1 1 1 1 | 1
015 1 1 1 1 1 1 1 1015] 1 1 1 1 1 1 1
0251 1 1 1 1 1 1 1 025 1 1 1 1 1 1 1
035 1 1 1 2 2 2 2 (035 1 2 1 1 1 1 |
045 1 1 2 2 2 2 2 1045 1 2 2 2 2 2 2
055 2 2 2 3 3 3 3 1055 2 3 3 3 2 2 2
0.65| 2 3 3 4 4 5 4 10.65]| 2.6 5 4 4 3 3 3
075 3 4 4 6 6 7 6 1075 4 10 6 5 4 4 4
085 34 6 7 9 10 11 11 085192 18 | 11 8 7 6 6
095 4 11 15 {1971 21 { 22 | 23 1095|442 | 38 | 23 16 15 14 | 12

Table 3: Sample tail-quantiles of spatio-temporally pooled working data of dry and wet spell
lengths for each of the seven spatial scales probed, at ten probability levels along each column.
These estimates correspond to units of 20-minutes time length, which are converted to units of 1
hour (via multiplication by 1/3) when used for the scaling analysis.

DRY| 120 | 60 | 30 | 16 { 8 4 2 (WET|{120] 60 | 30 | 16 8 4 2

Km|Km|Km|Km|Km|Km|Km Km | Km | Km | Km )| Km | Km | Km
08 | 3 4 6 7 8 8 8 |08 96| 13 8 6 5 5 4
0.825| 3 5 6 8 9 10 | 10 |0.825|14.4 | 15 9 7 6 6 5
085| 34| 6 7 9 10 { 11 | 11 (0.85(19.2| 18 | 11 8 6 6
0.875| 4 6 8 11 | 12 | 12 | 13 |0.875| 24 | 21 13 | 10 7 7
09 | 4 | 72|10 12 | 14|14 | 1509 | 27 |23 | 16 | 11 | 10 9 8
0.925| 4 9 12 | 16 | 17 | 17 | 18 |0.925/32.8| 29 | 18 | 13 | 12 | 11 | 10
095 | 4 11 15 1197 21 | 22 | 23 (095|442 38 [ 23 | 16 | 15 | 14 | 12
0.975| 4 14 | 21 | 26 | 29 | 32 | 32 |0975/572| 53 | 31 | 24 |2345| 23 | 21
0.985/4.68 | 17 | 27 | 34 | 36 {38.74| 38 |0.985/62.72/60.4| 38 | 31 | 32 | 30 | 26
0.995| 5.56 {24.61|33.56(49.28|52.06(59.91(62.06|0.995(68.24| 83.4 163.44| 52 |48.18|40.52| 34




Table 2: P-values of tests of independence and of tests of homogeneity, between samples of wet
spell lengths, and also between samples of dry spell lengths, for each pair of sub-regions of the
same spatial scale sampled according to the NW-CR and NE-CR designs.

P-values of pairwise tests between NW-CR and NE-CR samples of WET spell lengths

Spatial Independence Tests Homogeneity Tests
Scale
12 Kendall | Spearman %2 Kolm-Sm | Wilcoxon | Kruskal
120 Km 0.9056 0.9990 0.9811 0.0287 0.1152 0.1544 0.1438
60 Km 0.1270 0.5511 0.4555 0.4647 0.8477 0.3731 0.3721
30 Km 0.4173 0.1758 0.1650 0.4757 0.7391 0.6962 0.6956
16 Km 0.1746 0.7169 0.7162 0.2516 0.5336 0.2216 0.2214
8 Km 0.8042 0.4031 0.3609 0.6017 0.9948 0.6358 0.6354
4 Km 0.5421 0.3429 0.3022 0.6771 0.9958 0.9207 0.9200
2 Km 0.1803 0.0532 0.0327 0.2806 0.5427 0.5735 0.5727

P-values of pairwise tests between NW-CR and NE-CR samples of DRY spell lengths

Spatial Independence Tests Homogeneity Tests
Scale
v2 Kendall | Spearman %2 Kolm-Sm | Wilcoxon | Kruskal
120 Km 0.8643 0.1447 0.1090 0.4155 0.8524 0.3771 0.3689
60 Km 0.6076 0.6434 0.5888 0.9152 0.6742 0.4546 0.4538
30 Km 0.1895 0.4149 0.3661 0.3214 0.8149 0.2928 0.2925
16 Km 0.1372 0.4037 0.3798 0.9180 0.9991 0.9383 0.9378
8 Km 0.0735 0.1576 0.1536 0.4113 0.6377 0.3780 0.3776
4 Km 0.2370 0.2086 0.1827 0.7085 0.8135 0.5690 0.5682
2 Km 0.5530 0.5692 0.5353 0.6452 0.6066 0.3367 0.3360




Table 4: Summary statistics from the set of linear regressions of ln{q(kw) (0)/qt™ (p)} versus
InA, for each of the tail probability levels p. P-values from t-tests of significance (difference

from zero) for the slope and intercept of each regression accompany in parentheses.

Probability Correlation Regression Regression Residual’s
Level p Coefficient Slope O(p) Intercept Standard Error

0.8 0.9212 0.2625 (0.0032) | 0.1749 (0.2096) 0.1781
0.825 0.9496 0.2839 (0.0010) | 0.0143 (0.8947) 0.1507
0.85 0.9551 0.3220 (0.0008) | -0.0325 (0.7780) 0.1605
0.875 0.9627 0.3347 (0.0005) | -0.0568 (0.6052) 0.1512

0.9 0.9685 0.3145 (0.0003) | -0.0560 (0.5554) 0.1301
0.925 0.9523 0.3099 (0.0009) | -0.0718 (0.5386) 0.1597
0.95 0.9520 0.3323 (0.0009) | -0.0860 (0.4963) 0.1718
0.975 0.9133 0.2598 (0.0040) | -0.0923 (0.5001) 0.1863
0.985 0.9261 0.2211 (0.0027) | -0.0533 (0.6127) 0.1447
0.995 0.9442 0.2000 (0.0013) | 0.1642 (0.0848) 0.1122

Table 5: Summary statistics from the set of linear regressions of Inq{"’(p) versus In(1-p),

for each of the probed spatial scales. P-values from t-tests of significance (difference from zero)
for the slope and intercept of each regression accompany in parentheses.

Spatial Correlation Regression Regression Residual’s
Scale Coefficient Slope Intercept Standard
A A(A) InB(A) Error
1/60 2Km) -0.9782 -0.5865 (9x107) | -0.4216 (0.1410) 0.1598
2/60 (4 Km) -0.9852 -0.5990 (2x107) | -0.3389 (0.0169) 0.1336
4/60 (8 Km) -0.9894 -0.6153 (5x10™%) | -0.3047 (0.0143) 0.1158
8/60 (16 Km) -0.9933 -0.5708 (8x10®) | -0.0781 (0.3084) 0.0851
15/60 (30 Km) -0.9858 -0.5424 (1x107) | 0.2865 (0.0210) 0.1185
30/60 (60 Km) -0.9764 -0.5069 (1x10) | 0.8456 (0.0001) 0.1439
60/60 (120 Km) -0.9028 -0.4906 (3x107) | 0.9122 (0.0069) 0.2999




Table 6: Summary statistics from the set of linear regressions of ln{m&w) (k)/m™ (k)} versus

InA, for each value of moment order k € {0.25, 0.5,0.75,1,1.25,1.5,2, 3,4, 5, 6}. P-values

from t-tests of significance (difference from zero) for the slope and intercept of each regression
accompany in parentheses.

Moment Order Correlation Regression Regression Residual’s

k Coefficient Slope S(k) Intercept Standard Error
0.25 0.9027 0.0314 (0.0053) | 0.0328 (0.1025) 0.0241
0.5 0.9513 0.0839 (0.0009) | 0.0414 (0.2233) 0.0437
0.75 0.9660 0.1554 (0.0004) | 0.0224 (0.6435) 0.0668

1 0.9676 0.2374 (0.0003) | -0.0147 (0.8371) 0.0996
1.25 0.9661 0.3201 (0.0003) | -0.0568 (0.5710) 0.1375
1.5 0.9649 0.3965 (0.0004) | -0.0947 (0.4601) 0.1736

2 0.9651 0.5215 (0.0004) | -0.1433 (0.3982) 0.2275

3 0.9715 0.6812 (0.0002) | -0.1252 (0.5230) 0.2674

4 0.9701 0.7750 (0.0002) | 0.0065 (0.9765) 03115

5 0.9498 0.8360 (0.0010) | 0.2066 (0.5244) 0.4426

6 0.9109 0.8807 (0.0043) | 0.4495 (0.3516) 0.6415

Table 7: Summary statistics from the set of linear regressions of ln{qx

(d)

(0)/4(p)} versus

A —1, for each of the tail probability levels p. P-values from t-tests of significance (difference
from zero) for the slope and intercept of each regression accompany in parentheses.

Probability Correlation Regression Regression Residual’s
Level p Coefficient Slope ¥(p) Intercept Standard Error

0.8 -0.9780 -1.0703 (1x10™") | -0.0830 (0.3487) 0.0892
0.825 -0.9815 -1.2203 (8x10”) | -0.0586 (0.5150) 0.0930
0.85 -0.9884 -1.1781 (2x107%) | -0.0286 (0.6716) 0.0706
0.875 -0.9794 -1.2123 (1x10™) | -0.0822 (0.3931) 0.0977

0.9 -0.9964 -1.3343 (1x10°%) | -0.0345 (0.4287) 0.0446
0.925 -0.9974 -1.5215 (6x107) | 0.0122 (0.7630) 0.0428
0.95 -0.9969 -1.7490 (9x107) | 0.0420 (0.4230) 0.0536
0.975 -0.9958 -2.0848 (2x 10%) | 0.0712(0.3395) 0.0749
0.985 -0.9938 -2.1344 (5x 10%) | 0.0859 (0.3532) 0.0933
0.995 -0.9927 23761 (8x10°%) | 0.0876 (0.4284) 0.1130




(d)

Table 8: Summary statistics from the set of linear regressions of Inq;” (p) versus In(l-p),

for each of the probed spatial scales. P-values from t-tests of significance (difference from zero)
for the slope and intercept of each regression accompany in parentheses.

Spatial Correlation Regression Regression Residual’s
Scale Coefficient Slope Intercept Standard
A A' (V) InB* (%) Error
1/60 (2Km) -0.9882 -0.5342 (8x10®%) | 0.3149 (0.0078) 0.1060
2/60 (4 Km) -0.9908 -0.5376 (3x10%) | 0.2785(0.0081) 0.0943
4/60 (8 Km) -0.9865 -0.5125 (1x107) | 0.2938 (0.0127) 0.1090
8/60 (16 Km) -0.9851 -0.5309 (2x107) | 0.1472(0.1807) 0.1189
15/60 (30 Km) -0.9784 -0.5062 (9x107) | -0.0406 (0.7344) 0.1371
30/60 (60 Km) -0.9807 -0.4704 (5x107y | -0.2524 (0.0377) 0.1203
60/60 (120 Km) -0.9009 -0.1401 (3x10™) | -0.1355 (0.1009) 0.0866

Table 9: Summary statistics from the

InA, for each value of moment order

(d)

set of linear regressions of ln{rnx (k)/m!? (k)} versus
k €{0.25,0.5,0.75,1,1.25,1.5,2, 3,4, 5, 6}. P-values

from t-tests of significance (difference from zero) for the slope and intercept of each regression
accompany in parentheses.

Moment Order Correlation Regression Regression Residual’s

k Coefficient Slope S* (k) Intercept Standard Error
0.25 -0.9260 -0.0436 (0.0027) | 0.0359 (0.1246) 0.0285
0.5 -0.9222 -0.1004 (0.0031) | 0.0884 (0.1138) 0.0676
0.75 -0.9177 -0.1710 (0.0035) | 0.1605 (0.1049) 0.1190

1 -0.9125 -0.2545 (0.0041) | 0.2544 (0.0977) 0.1834
1.25 -0.9069 -0.3494 (0.0048) | 0.3705 (0.0920) 0.2610
1.5 -0.9009 -0.4535 (0.0056) | 0.5078 (0.0875) 0.3511

2 -0.8894 -0.6817 (0.0073) | 0.8370 (0.0812) 0.5630

3 -0.8698 -1.1823 (0.0109) | 0.6512 (0.0747) 1.0779

4 -0.8539 -1.7046 (0.0144) | 0.5976 (0.0716) 1.6702

5 -0.8403 -2.2285 (0.0179) | 0.6261 (0.0698) 2.3109

6 -0.8289 -2.7476 (0.0211) | 0.7035 (0.0686) 2.9806




Table 10: Summary statistics from the set of linear regressions of ln{mgf‘) (k) / m{® (k)} versus

A —1, for each value of moment order k € {0.25, 0.5,0.75,1,1.25,1.5, 2, 3, 4, 5, 6}. P-values

from t-tests of significance (difference from zero) for the slope and intercept of each regression
accompany in parentheses.

Moment Order Correlation Regression Regression Residual’s
k Coefficient Slope H(k) Intercept Standard Error
0.25 -0.9852 -0.1907 (5x107) | -0.0112 (0.3810) 0.0129
0.5 -0.9884 -0.4425 (2x107%) | -0.0225 (0.3906) 0.0266
0.75 -0.9913 -0.7593 (1x10”) | -0.0325 (0.4013) 0.0394
1 -0.9938 -1.1398 (5x10%) | -0.0397 (0.4154) 0.0497
1.25 -0.9959 -1.5777 2x10%) | -0.0425 (0.4374) 0.0560
1.5 -0.9974 -2.0642 (6x107) | -0.0401 (0.4768) 0.0579
2 -0.9990 -3.1478 (5x10®) | -0.0188 (0.7145) 0.0542
3 -0.9987 -5.5807 (9x10%) | 0.0799 (0.4476) 0.1078
4 -0.9968 -8.1804 (1x10%) | 0.2363 (0.3530) 0.2566
5 -0.9943 -10.8394(4x10°%) | 0.4355 (0.3362) 0.4550
6 -0.9917 -13.5129(1x10”) | 0.6636 (0.3312) 0.6855
Table 11: Summary descriptive statistics of samples of box-counting estimates of capacity

fractal dimension of wet residence sets for each one of the probed spatial scales. Fractal
dimension estimates are based on TOGA-COARE, Cruise 1 time series of spatially averaged rain
rate over sub-regions sampled according to the spatial sampling design described in Chapter 3.

Spatial Sample Median | Sample Mean Sample
Scale Capacity Capacity Standard
A Dimension Dimension Deviation
1/60 2Km) 0.5320 0.5277 0.0857
2/60 (4 Km) 0.5965 0.5717 0.1321
4/60 (8 Km) 0.5900 0.5776 0.0711
8/60 (16 Km) 0.6520 0.6037 0.1460
15/60 (30 Km) 0.6850 0.6757 0.0591
30/60 (60 Km) 0.7320 0.7191 0.0575
60/60 (120 Km) 0.8250 0.8088 0.0712




Figure 1: Instantaneous rain rate field retrieved from a typical radar scan
over the region of study.
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Figure 2: Spatial sampling design of five square sub-regions (NW, NE, SW, SE, CR), at the scale
of reference (120 Km or A = 1), from the TOGA-COARE 240x240 Km’ square region of study.
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Figure 3: Five designs for spatial sampling of systems of six nested square sub-regions,
corresponding to six spatial scales A € {60/120, 30/120, 16/120, 8/120, 4/120, 2/120}, from each
one of the five square sub-regions of the reference scale (A = 120/120=1) depicted in Figure 1. The
dots imply the non-depicted smaller scales (1/120 for NW, NE, SW, SE, and 4/120, 2/120 for CR).
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Figure 4: Time series of spatially averaged rain rate over the seven nested
sub-regions sampled by the NE-CR design, during Cruise-1 (10 November through
9 December, 1992) of TOGA-COARE (MIT Radar). Sample sizes of dry and
wet spells are also marked for each time series (e.g. the 60 Km NE-CR sub-
region yields 88 dry spells and 75 wet spells), after discounting spells of ambigu-
ous length due to missing values. Discounted spells are depicted as unit-gaps
in each time series, modifying its length from 1992 to 2040.
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Figure 5: Box-plot summary statistics of dry (top row) and wet (bottom
row) spell lengths sampled over the seven individual nested square sub-regions
defined by the NE-CR design. Each vertical pair of box-plots corresponds to
the same individual sub-region of the NE-CR design. Sample sizes of data are
denoted by N under each box-plot (compare with sample sizes given in Figure 4).
The upper and lower sides of each box indicate upper and lower quartiles, the
white line inside each box indicates the median or middle quartile, and lines
outside each box indicate extreme values in the upper tail of the underlying
probability distribution.
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Figure 6: Box-plot summary statistics of dry (top row) and wet (bottom
row) spell lengths, after spatial pooling of samples from individual square sub-
regions of the same scale from every design (i.e. box-plots of the 14 sets of
“working data”). Each vertical pair of box-plots corresponds to the same spatial
scale, and sample sizes of data are denoted by N under each box-plot. The
upper and lower sides of each box indicate upper and lower quartiles, the white
line inside each box indicates the median or middle quartile, and lines outside
each box indicate extreme values in the upper tail of the underlying probability
distribution (compare with box-plots in Figure 5).
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Figure 7: Box-plot summary statistics of p-values from tests of random-
ness applied to the sampled 25 test sub-regions of each one of the six probed
scales (120 Km scale of reference is omitted), for dry (top row) and wet (bot-
tom row) spell lengths. Whiskers above the upper quartile side and below the
lower quartile side of each box, mark the largest and smallest p-value obtained
respectively.
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Figure 8: Estimates of the intercept function In B()) and of the slope func-
tion A()) in equation (12), regressed linearly against In A in plots (A) and (B)
respectively, and estimate of the slope function ©(p) in equation (11), regressed
linearly against In(1 — p) in plot (C). Notably, slope and intercept in regression
(C) are in perfect agreement with the slopes obtained in regressions (B) and
(A) respectively.
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Figure 9: Q-Q-plots of wet duration tail-quantiles predicted by power-
law multiscaling according to (13), versus sample estimates of wet duration
tail-quantiles, at the same probability levels (0.8, 0.825, 0.85, 0.875, 0.9, 0.925,
0.95, 0.975, 0.985, 0.995), for each one of the probed seven scales (plots A, B, C,
D, E, F, G), and collectively across all scales combined (plot H). The correlation
reported on each plot is the correlation coefficient obtained from simple linear
regression of predicted tail-quantiles against sample ones. The line drawn in
each plot is the diagonal through the origin.
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Figure 10: Straight lines fitted by linear regressions of In {mE\w) (k)/ mgw)(/c)

versus In A for moment order £ € {0.25,0.5,0.75,1,1.25,1.5} in (A); Slopes S(k)
plotted and linearly regressed versus k € {0.25,0.5,0.75,1,1.25,1.5} in (B); and
slopes S(k) versus & € {1,2,3,4,5,6} in (C).
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Figure 11: Q-Q-plots of predicted versus sample tail-quantiles of wet du-
ration, for graphical comparison between the power-law multiscaling scenario
postulated by (13) and two simple scaling scenaria with scaling exponents 0.2990
and 0.1215, over the entire range of probed scales. The line drawn in each plot

is the diagonal through the origin.
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Figure 12: Q-Q-plots of predicted versus sample tail-quantiles of wet du-
ration, for graphical comparison between the power-law multiscaling scenario
postulated by (13) and two simple scaling scenaria with scaling exponents 0.1492
and 0.2341, over the 16-to-2 Km lower range of probed scales. The line drawn
in each plot is the diagonal through the origin.
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Figure 13:Estimates of the intercept function In B*(A) and of the slope
function A*(A) in equation (18), regressed linearly against A in plots (A) and (B)
respectively, and estimate of the slope function ¥(p) in equation (17), regressed
linearly against In(1 — p) in plot (C). Notably, slope and intercept in regression
(C) are in perfect agreement with the slopes obtained in regressions (B) and
(A) respectively.
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Figure 14:Q-Q-plots of dry duration tail-quantiles predicted by exponential
multiscaling, as described by (19), versus sample estimates of dry duration tail-
quantiles, at the same probability levels (0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95,
0.975, 0.985, 0.995), for each one of the probed seven scales (plots A, B, C, D,
E, F, G), and collectively across all scales combined (plot H). The correlation
reported on each plot is the correlation coefficient obtained from simple linear
regression of predicted tail-quantiles against sample ones. The line drawn in
each plot is the diagonal through the origin.
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Figure 15: Straight lines fitted by linear regressions of In {m&d) (k)/ m(ld)(k)}
versus In A for moments of order k € {0.25,0.5,0.75,1,1.25,1.5} in (A); slopes
S*(k) plotted and linearly regressed versus k € {0.25,0.5,0.75,1,1.25,1.5} in
(B); and slopes S*(k) versus k € {1,2,3,4,5,6} in (C).
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Figure 16: Q-Q-plots of predicted versus sample tail-quantiles of dry du-
ration, for graphical comparison between the power-law multiscaling scenario
postulated by (19) and two simple scaling scenaria with scaling exponents -
0.3292 and -0.5036, over the entire range of probed scales. The line drawn in
each plot is the diagonal through the origin.
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Figure 17:Straight lines fitted by linear regressions of In {mg\d) (k)/ m(ld) (kz)}
versus \ — 1 for moments of order k € {0.25,0.5,0.75,1,1.25,1.5} in (A); slopes
H (k) plotted and linearly regressed versus k € {0.25,0.5,0.75,1,1.25,1.5} in
(B); and slopes H(k) versus k € {1,2,3,4,5,6} in (C).
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Figure 18:Q-Q-plots of predicted versus sample tail-quantiles of dry du-
ration, for graphical comparison between the exponential multiscaling scenario
postulated by (19) and two simple scaling scenaria with scaling exponents 0.1492
and 0.2341, over the 16-to-2 Km lower range of probed scales. The line drawn
in each plot is the diagonal through the origin.
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Figure 19: Histogram plots of box-counting sample estimates of capacity
fractal dimension of wet residence time for the probed scales.
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Figure 20:Plot of estimates of the differences 1/A —1/A;, for median and
mean estimates of fractal dimension, versus their predicted values 0.379- (1 — )
according to (26). The line drawn in each plot is the diagonal through the

origin.
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