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Abstract

This article is concerned with a stationary non-linear auto-regressive Markov chain on the
non-negative integers, N, known as INAR(1) model. The model’s auto-regressive structure
emerges from binomial thinning, a non-linear operation applied on the current state of the
chain, driven additively by integer-valued i.i.d. innovations independent of the past history of
the chain. In the case considered here the innovations follow a finite mixture distribution of
m ≥ 1 (independent) Poisson random variables. The stationary marginal probability distribu-
tion of the chain is self-decomposable, unimodal, and for m > 1 its index of dispersion (i.e.
ratio of variance to mean) is greater than unity, rendering overdispersion relative to Poisson
laws. The transition probability function of the model is a mixture of m Poisson-binomial laws,
whence conditional maximum likelihood (CML) estimation becomes feasible by an appropriate
EM-algorithm devised for this task. Furthermore, it is shown that CML estimation may be
combined with estimation by the method of moments (MOM) in order to obtain a balance
between descriptive and predictive abilities of the model. Integer-valued prediction is feasible
via simulation of the model in a simple way. Criteria for selecting m and for assessing perfor-
mance of the fitted model are discussed. As an application, the model is fitted to time series
of (instantaneous) counts of pixels where spatially averaged rain rate exceeds a given threshold
level. Several threshold levels are considered on (nested) sub-regions, spanning a range of spatial
scales, illustrating the capabilities of the proposed model in this challenging case of application
to highly overdispersed count data.

KEYWORDS: INAR Model; Dispersion Index; Poisson Mixture; Poisson-binomial Mixture;

EM-Algorithm; Simulation; Integer-Valued Prediction; Threshold Rain Rate.

1 Introduction

This article is concerned with a novel version of the integer-valued auto-regressive model of first

order, INAR(1) in short. The INAR(1) is actually an entire class of models, originally introduced

by McKenzie [1985] and independently by Al-Osh and Alzaid [1987]. The appeal of INAR(1)

stems from its strikingly simple Markovian auto-regressive structure. The model is non-linear,

due to a binomial thinning operation applied at each step on the current state of the chain, and

is driven additively by i.i.d. innovations independent of the past history of the chain. However,

INAR(1) models do belong to the class of conditionally linear first-order auto-regressive models,

CLAR(1) in short; see Grunwald et al. [2000]. The version considered here is driven by innovations

following an m-mixture of Poisson components, rendering a marginal law of the INAR(1) model

1



that can account for arbitrarily large index of dispersion. In this sense, the proposed version extends

the simple Poisson INAR(1) in a rather flexible manner, suitable for modelling (stationary) time

series of both small and large counts with significant overdispersion relative to Poisson laws. This

idea has been motivated from an interest to model time series of extremely variable and highly

overdispersed count data representing spatial coverage of a region with rainfall whose intensity

exceeds a given threshold level. Potentially, however, a similar interest might also pertain to spatio-

temporal intermittent random fields other than rainfall intensity (e.g. of ecological, environmental

and geophysical variables).

1.1 Survey of relevant literature

A substantial volume of literature is available on the probabilistic properties of INAR(1) and

generalizations to INAR(p) models of higher order [Alzaid and Al-Osh, 1988, 1990; Du and Li,

1991; Al-Osh and Aly, 1992; DaSilva and Oliveira, 2004]. INAR and other types of models based

on thinning, such as INMA and INARMA, are closely related to multi-type branching processes

with immigration [Dion et al., 1995]. They are also characterized as observation-driven models, in

the sense that they formulate schemes of dependence structure directly between current and past

observations. According to Cox [1981] observation-driven models are juxtaposed to parameter-

driven models, where dependence among observations is attributed to or driven by some latent

process. An overview of both classes of models is offered in MacDonald and Zucchini [1997],

Kedem and Fokianos [2002], and by McKenzie [2003].

Statistical inference for parameters of INAR models is less developed than their probabilistic

properties, motivated almost exclusively by (but also restricted to) specific cases of application

on data of small counts, conducive to equidispersion or slight overdispersion. Al-Osh and Alzaid

[1987] were concerned with estimation of the two parameters of the Poisson INAR(1) model, where

innovations follow a Poisson law. Based on Monte Carlo simulations of the model they assessed

the behavior of bias and mean square error (MSE) of Yule-Walker type estimators (YW), obtained

by the method of moments, and of estimators obtained by methods of conditional least squares

(CLS) and conditional maximum likelihood (CML), conditioning on the initial observation in the

series. Recently, Freeland and McCabe [2005] have rigorously addressed the asymptotic properties

of YW and CLS estimators of the parameters of the Poisson INAR(1) model. They derived the

asymptotic covariance matrix of CLS estimators explicitly, and showed asymptotic equivalence

of the distributions of CLS and YW estimators, for large samples. Estimation by CML for the

Poisson INAR(1) model is treated also by Freeland and McCabe [2004a], along with development

of methodology for assessing the model’s adequacy when fitted to time series of small counts. An

overview on statistical inference for INAR(1) models, from the more general standpoint of CLAR

processes with discrete support, is provided by Jung et al. [2005].

Franke and Selingmann [1993] proved consistency and asymptotic normality of CML estimators

of the vector of four parameters in the INAR(1) model with innovations following a 2-mixture of

Poisson components. They referred to this model as switching-INAR(1), or SINAR(1) in short, and
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applied it to time series of slightly overdispersed data of daily counts of epileptic seizures. Clearly,

the SINAR(1) model is a special case of the INAR(1) models treated in the present article, for

m = 2.

Thyregod et al. [1999] considered the INAR(1) and INAR(2) models with Poisson innovations,

and also a self-exciting threshold-INAR(1) model (SETINAR in short) consisting of two Poisson

INAR(1) branches. The SETINAR process alternates between its two branches at a given instant,

if the sum of its two previous values (up- or down-) crosses a threshold parameter. The INAR(2)

model was considered according to the formulation given by Alzaid and Al-Osh [1990], which implies

a more complex dependence structure than that of an alternative formulation given by Du and Li

[1991]. All three models were fitted to time series of count data from rainfall measurements at

a single station. The INAR(1) model was fitted by implementing YW, CLS, and CML methods,

while the INAR(2) and SETINAR models were fitted by implementing certain ramifications of the

CML method.

Prediction and forecasting by INAR models is another area which has recently attracted interest

and starts to pick up momentum, especially regarding the challenge of producing integer-valued or

“coherent” forecasts by the fitted model. The cases addressed so far focus on INAR(1) with

Poisson innovations, fitted by CML [Freeland and McCabe, 2004b], and on INAR(1) with Poisson,

binomial, or negative binomial innovations, fitted by Bayesian methodology [McCabe and Martin,

2005], while Jung and Tremayne [2006] have produced coherent forecasts by the Alzaid and Al-Osh

[1990] version of the INAR(2) model with Poisson innovations, fitted by the method of moments.

1.2 Outline and summary

The rest of this article is structured into five sections. Section 2 summarizes fundamental proba-

bilistic properties of stationary INAR(1) processes, in order to facilitate understanding of the rest

of the article in a self-contained manner. In the same section, the stationary marginal distribution

of the INAR(1) process driven by mixed-Poisson innovations is characterized through an infinite

product representation of its probability generating function (p.g.f.). This distribution is (discrete)

self-decomposable, and thus unimodal. Explicit formulae for its index of dispersion, and coefficients

of skewness and kurtosis can be obtained using certain moment properties, which are summarized

in the Appendixes A, B, C.

Section 3 is concerned with statistical inference for the model’s parameters. A certain rep-

resentation of the model facilitates explicit calculation of its transition probability function as a

finite mixture of m independent Poisson-binomial laws, whence an appropriate EM-algorithm is

devised for CML estimation of the model’s parameters. The parameter associated with binomial

thinning may alternatively be estimated by the method of moments (MOM), simply as sample

auto-correlation at lag-1. This option may be preferred because it offers the advantage of divorcing

estimation of the thinning parameter, and subsequently the auto-correlation function (ACF) of the

fitted model, from the estimation of the innovation distribution. Yet another option considered is

to combine CML and MOM estimates, to the effect of regulating by desired weights the balance
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of the fitted model between better descriptive qualities with regard to marginal probabilistic char-

acteristics of the data when the thinning parameter is estimated by CML, versus better predictive

qualities when the thinning parameter is estimated by MOM. This trade-off is explained on the-

oretical grounds, and procedures for selecting the order m of the Poisson mixture are discussed

too.

Simulation of the model and issues of prediction are addressed in Section 4. Optimal prediction

in the sense of minimizing mean square error (MSE) yields a linear predictor. Most importantly,

integer-valued prediction is feasible via simulation of the fitted model. The two types of predictors

have the same mean, but naturally the variance of the integer-valued predictor is always greater

than the variance of the linear predictor. As the lead time of the prediction increases, the variance of

the linear predictor vanishes and its MSE increases towards the value of the variance of the INAR(1)

model, while predicted values eventually degenerate to a constant (i.e. the mean of the model). On

the other hand, the asymptotic variance of the integer-valued predictor coincides with the variance

of the INAR(1) model, as lead time increases. In particular, if the predicted process is indeed a

(stationary) INAR(1) process, and not just modelled as INAR(1), then the whole distribution of

the integer-valued predictor coincides with the stationary marginal law of the process. For these

reasons, in addition to the advantage of producing integer forecasts, the integer-valued predictor

is superior to the optimal predictor, the latter being linear due to the conditionally linear auto-

regressive (CLAR) property of the model. A certain statistic serving the purpose of quantifying

the fitted model’s performance is introduced and discussed in the same section.

As an application, in Section 5, the proposed model is fitted to time series of instantaneous

counts of pixels where spatial averages of rain rate (SARR) exceed a given threshold level. These

time series are obtained from radar scans mapping tropical rain-fields over a large region in south-

western Pacific Ocean. The count data, if scaled by the total number of pixels per scan, represent

spatial coverage (of the probed region) with rainfall whose intensity exceeds the given threshold.

Several threshold levels and sub-regions of different scale are considered. The obtained time series

are characterized by intermittency, high overdispersion, pronounced skewness and kurtosis in all

cases. All these features are captured remarkably well by the marginal distribution of the fitted

model, especially so by CML versions of the fitted model. Simulations and predictions based on the

fitted model yield quite adequate representations of the observed time series to which the model is

fitted, more so under MOM versions. That is, the anticipated and theoretically explained trade-off

between descriptive and predictive performance of the fitted model, depending on the available

options for inference, is indeed verified and clearly demonstrated.

Section 6 resumes the article with additional remarks in connection with recent literature on

INAR processes, remarks on potential alterations of the proposed model so as to be able to account

for dependence structures more involved than first-order Markov, and remarks about prospects

for utility of integer-valued time series models in prediction of spatial moments of intermittent

spatio-temporal random fields.
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2 Probabilistic properties of the INAR(1) model

The INAR(1) model is formally defined by the stochastic difference equation

Xt = α ◦Xt−1 + εt, (1)

where both the solution process {Xt}t∈Z and the process of innovations {εt}t∈Z are non-negative

integer-valued processes, i.e. taking values in the set of natural numbers N. The model is spec-

ified by requiring that the innovation process {εt} consists of i.i.d. random variables, and εt is

stochastically independent of the past history Ft−1 = σ (Xs; s < t), for every t ∈ Z. The ◦- op-

eration is called binomial thinning, and for given α ∈ [0, 1] is defined to act on a non-negative

integer-valued random variable X, so that α ◦ X :=
X∑

i=1
Zi, with {Zi}i≥1 being an i.i.d. sequence

of Bernoulli random variables, all independent of X, and each with distribution Bin(1, α) ; i.e.

α = P (Zi = 1) = 1 − P (Zi = 0). Equation (1) describes a non-linear scheme of first-order auto-

regression, rendering {Xt} a Markov chain on N. The source of non-linearity of INAR(1) processes

is the binomial thinning ◦-operator, originally introduced by Steutel and Van Harn [1979] in order

to extend the notion of self-decomposability of distributions on the Borel line R, to the notion of

discrete self-decomposability of distributions on N. Some elementary properties of this operation

are summarized in Appendix A, and are used in calculations throughout the article.

2.1 The stationary distribution

Starting with any non-negative integer-valued random variable X0, it follows from A3 and A4 that,

after t iterations of (1), Xt
D=αt◦X0+

t−1∑
j=0

αj ◦ εt−j . Thus, if E (X0) < ∞ and α < 1, the term αt◦X0

converges in probability to zero, as t → ∞. This is easily established using Markov’s inequality

and A5, whence P
{
αt◦X0 ≥ 1

} ≤ αtE (X0). Therefore, the marginal probability distribution

converges to that of the formal limit
∞∑

j=0
αj ◦ εt−j . Theorem 2.1 of Alzaid and Al-Osh [1990] implies

that the probability generating function (p.g.f.) of this limit in law is

φ(s) =
∞∏

j=0

ψ
(
1−αj + αjs

)
, (2)

provided that the following convergence condition holds

∞∑

j=1

P (εt≥ j )
j

< ∞, (3)

where ψ(z) = E (zεt) is the p.g.f. of the marginal distribution of the innovations {εt}t∈Z. That is,

(3) is sufficient for (2), but also necessary and sufficient condition for convergence of the product

on the RHS of (2) for every s ∈ [0, 1] [Heathcote, 1966], so that φ is well defined in that domain.

Moreover, Theorem 2.2 of Alzaid and Al-Osh [1990] implies that, if a process {Xt}t∈Z started in

the infinite past has reached a stationary marginal distribution, and satisfies the INAR(1) model
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with binomial thinning parameter α < 1 and innovations whose distribution satisfies (3), then the

p.g.f. of the stationary marginal distribution is given by φ defined in (2).

These two facts, regarding solutions of (1) started in either finite or infinite past time, justify

the causal integer-valued moving average of infinite order, INMA(∞), representation

Xt
D=

∞∑

j=0

αj ◦ εt−j (4)

of stationary solutions {Xt} of (1), which exist if and only if α < 1. Furthermore, (4) implies that

the marginal distribution of a stationary INAR(1) process is a discrete self-decomposable law on N,

uniquely determined by the law of the innovations; see also Al-Osh and Alzaid [1987]. Subsequently,

discrete self-decomposability implies infinite divisibility and unimodality [Steutel and Van Harn,

1979] of the stationary marginal law. It is worthy noting that discrete stable laws form a subclass

of discrete self-decomposable laws [Van Harn, 1978], and while Poisson laws are the only discrete

stable laws with finite mean, it is also worthy to remark that a stationary INAR(1) process has a

Poisson marginal law (with mean λ) if and only if the innovations follow a Poisson law too (with

mean λ · (1− α)).

2.2 Moments

The mean and variance of a stationary INAR(1) process {Xt}t∈Z are

µX = E (Xt) =
µε

1− α
and σ2

X = V ar (Xt) =
αµε + σ2

ε

1− α2
, (5)

where µε and σ2
ε are respectively the mean and variance of the innovations. Formulae (5) are

obtained directly from (1), exploiting properties A5 and A6, independence between εt and α◦Xt−1,

and accounting for stationarity. Consequently, the index of dispersion of the process, ID(X) =

σ2
X/µX , is related to that of the innovations, ID(ε) = σ2

ε/µε, according to the formula

ID(X) =
(

1 +
ID(ε)

α

)
·
(

1 +
1
α

)−1

, (6)

showing that an INAR(1) process is overdispersed (i.e. σ2
X > µX) if and only if the innovation

process is overdispersed (i.e. σ2
ε > µε). The index of dispersion is widely used (e.g. in ecology) as a

measure of clustering or repulsion, associated with overdispersion or underdispersion respectively,

versus pure randomness. The latter case is associated with equidispersion, and is often represented

by a Poisson law.

Every stationary INAR(1) process is positively correlated since it has positive auto-covariance

function (ACVF) given by the formula [Al-Osh and Alzaid, 1987; Alzaid and Al-Osh, 1990]

γX(k) = Cov (Xt, Xt−k) = α|k|σ2
X , k ∈ Z, (7)

and thus the auto-correlation function (ACF) is also positive

ρX(k) =
γX(k)
γX(0)

= α|k| , k ∈ Z. (8)
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Moreover, since
+∞∑

k=−∞
|γX(k)| is a convergent geometric series, the (non-normalized) power-spectrum

of the process is absolutely continuous, and its spectral density function is obtained straight for-

wardly by the Fourier transform of the covariance function:

SX(ω) =
σ2

X

π
·

+∞∑

k=−∞
α|k| e−ikω =

α · µε + σ2
ε

π · (1− 2α cosω + α2)
, ω ∈ [0, π]. (9)

2.3 The case of mixed-Poisson innovations

Given a fixed integer m ≥ 1, let

εt = Q′
tΛt =

m∑

i=1

Q
(i)
t Λ(i)

t , (10)

with
{
Qt =

(
Q

(1)
t , . . . , Q

(m)
t

)
′
}

t∈Z
and

{
Λt=

(
Λ(1)

t , . . . ,Λ(m)
t

)′}

t∈Z
being two independent pro-

cesses of i.i.d. random vectors. Each vector Qt is assumed to follow a multinomial distribution, hav-

ing index 1 and weights 0 ≤ p1, . . . , pm ≤ 1, with
m∑

i=1
pi = 1; i.e. Qt

D=Multinomial (1, p1, . . . , pm).

Each vector Λt is assumed to consist of mutually independent Poisson random variables; i.e.

Λ(i)
t

D=Poi (λi) , i = 1, 2, . . . ,m.

In short, the probability distribution of each εt defined by (10) is a finite mixture of m Poisson

components Λ(1)
t , . . . , Λ(m)

t , with corresponding parameters λ1, . . . , λm > 0 and mixing weights

p1, . . . , pm. The probability function of these mixed-Poisson innovations is

P (εt = x) =
m∑

i=1

pie
−λi

λx
i

x!
, x = 0, 1, 2, . . . (11)

and the corresponding p.g.f. is given by the formula [e.g. see Johnson et al., 1993 (pg. 326)]

ψ(z) = E (zεt) =
m∑

i=1

pi exp {λi(z − 1)} . (12)

Setting z = 1−αj+αjs in (12) yields ψ
(
1−αj+αjs

)
=

m∑
i=1

pi exp
{
λiα

j(s− 1)
}
. Thus, according

to (2) the p.g.f. of the marginal law of a stationary INAR(1) process driven by these particular

innovations is given by the formula

φ (s) =
∞∏

j=0

(
m∑

i=1

pi exp
{
λiα

j(s− 1)
}
)

. (13)

The infinite product on the RHS of (13) does converge, so that φ is a well defined function on the

interval [0, 1]. The fact that mixed-Poisson innovations indeed satisfy the convergence condition (3)

is detailed with a proof in Appendix C. In addition, Appendix C provides formulae for (central and

non-central) moments of mixed-Poisson laws. Appendix B demonstrates the use of such formulae in

calculating central moments µr(X) = E [(X −EX)r], for r = 3, 4, of stationary INAR(1) processes

driven by innovations defined according to (10). Thereof, explicit formulae for the coefficients of
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skewness IS(X) = µ3(X)/σ3
X and kurtosis IK(X) = µ4(X)/σ4

X may be obtained, along with the

index of dispersion ID(X) given by (6). Indeed, B3 combined with (5) renders IS(X) in terms of

µε, σ2
ε , µ3(ε), which are given in Appendix C along with a sufficient condition for positive skewness

of the law of X. A more elaborate but of similar nature calculation based on B2 and A11 readily

renders IK(X) explicit too, in terms of µε, σ2
ε , µε, σ2

ε , µ3(ε), and µ4(ε). Notably, the coefficients of

skewness and kurtosis are unit-free indexes used for characterization of the shape of a distribution,

while the index of dispersion does depend on the scale of units used for measurement.

3 Statistical inference

3.1 Transition probability function and conditional likelihood

Substituting the representation (10) of mixed-Poisson innovations into (1), and accounting for the

fact that
m∑

i=1
Q

(i)
t = 1, the stationary solution {Xt} of (1) may be represented at each time t ∈ Z by

the sum

Xt =
m∑

i=1

Q
(i)
t ·X(i)

t , (14)

where X
(i)
t = α ◦Xt−1 + Λ(i)

t , i = 1, 2, . . . , m.

The conditioned random variable
(
X

(i)
t | Xt−1

)
= (α ◦Xt−1 | Xt−1)+ Λ(i)

t follows a Poisson-

binomial law PB (Xt−1, α; λi), that is the convolution of the independent random variables (α ◦Xt−1 | Xt−1)

∼ Bin (Xt−1, α) and Λ(i)
t ∼ Poi (λi). Therefore, the conditioned random variable (Xt | Xt−1) =

m∑
i=1

Q
(i)
t ·

(
X

(i)
t | Xt−1

)
follows a finite mixture law of m (independent) Poisson-binomial random

variables PB (Xt−1, α; λi), with mixing weights pi, i = 1, 2, . . . ,m. Consequently, the transition

probability function of the Markov chain {Xt} is identical to the probability function of this mixed

Poisson-binomial law, and is given by

Pθ,m (Xt = xt | Xt−1 = xt−1) =
m∑

i=1

pi · πi(xt | xt−1), (15)

where

πi(xt | xt−1) =
xt ∧ xt−1∑

k=0

e−λi · λk
i

k!
·
(

xt−1

xt−k

)
· αxt−k · (1− α)xt−1−xt+k (16)

is the probability function of PB (xt−1, α; λi), defined for xt ∈ N, with xt ∧ xt−1 = min(xt, xt−1),

and θ = (α; p1, . . . , pm−1;λ1, . . . , λm) is the vector of the 2m effective parameters of the INAR(1)

model. Details on the Poisson-binomial law are given by Shumway and Gurland [1960].

Given a time series of observed counts x = {x0,x1, x2, ..., xT }, let L(θ; m;x) = Pθ,m(X0 = x0,

X1 = x1, ..., XT = xT ) denote its (full) likelihood according to the INAR(1) model with parameters

θ, for fixed m. Due to the Markov property this likelihood reduces to the product L(θ; m;x) =

Pθ,m(X0 = x0) ·
T∏

t=1
Pθ,m(Xt = xt|Xt−1 = xt−1), whose maximization with respect to θ is a difficult

problem, especially when the dimension of θ is large. This difficulty stems from the fact that there is
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no explicit expression of the marginal law, despite expression (12) of its p.g.f. as an infinite product.

However, in light of the explicit expression (16) for transition probabilities, maximization of the

conditional likelihood CL(θ; m;x) =
T∏

t=1
Pθ,m(Xt = xt|Xt−1 = xt−1) is feasible. The sense in which

this is a conditional likelihood is that the initial value x0 is treated as a fixed constant, and not as a

randomly varying observation. Thus, the remaining product, CL(θ;m;x) = L(θ;m;x)/Pθ,m(X0 =

x0), represents (under the considered model) likelihood of the observed data among the ensemble

of all possible time series of the same length (T + 1) and with the same initial observation x0.

3.2 An EM-algorithm

From (15) and (16) one can see that the conditional likelihood is the likelihood of a finite mixture,

namely of Poisson-binomial laws. Thus standard tools for inference in finite mixtures can be used,

such as the EM algorithm, for likelihood maximization (e.g. see Titterington et al. [1985], Bohning

[2000], McLachlan and Peel [2001]). An EM-algorithm appropriate for carrying out numerically

the task of CML estimation of θ, for fixed m, is developed here. Starting with an initial estimate θ0

in the admissible range of parameters, the algorithm comprises of iterative updating in two steps.

At the E-step, one estimates conditional expectations of latent information about the model,

given the available observations and the estimate θold from the previous iteration (or θ0 in the very

first iteration). In this case the latent information lies in the innovations {εt; t = 1, ..., T}, which

in turn are made of the non-observable variables
{

Q
(i)
t ; t = 1, ..., T

}m

i=1
and

{
Λ(i)

t ; t = 1, ..., T
}m

i=1
.

Thus, at the E-step (expectation step), for each i = 1, ..., m and t = 1, . . . , T the following infor-

mation is computed.

E-step:

q
(i)
t = E

{
Q

(i)
t | x; θold

}
= pold

i · πold
i (xt | xt−1)

m∑
j=1

pold
j · πold

j (xt | xt−1)
,

`
(i)
t = E

{
Λ(i)

t | x; θold
}

= λold
i · πold

i (xt − 1 | xt−1)
πold

i (xt | xt−1)
.

Assuming that the data x are augmented with values of the latent variables as specified in the E-

step (i.e. conditionally on the data and in terms of θold), then θold is updated to θnew maximizing

the likelihood of the augmented data. In the present case this task is straight forward, involving

estimation in a standard binomial law and in a finite mixture of Poisson laws. Thus, the M-step

(maximization step) yields the following updates for each i = 1, ..., m.
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M-step:

anew =

T∑
t=1

xt −
T∑

t=1

m∑
i=1

q
(i)
t · `(i)

t

T∑
t=1

xt−1

,

pnew
i =

T∑
t=1

q
(i)
t

T
and λnew

i =

T∑
t=1

q
(i)
t · `(i)

t

T∑
t=1

q
(i)
t

.

Iterations may be stopped as soon as some convergence criterion is satisfied, otherwise the

algorithm returns to the E-step for a new iteration. All the pros and cons of the standard EM

algorithm apply (e.g. see McLachlan and Krishnan [1997]). Although convergence to estimates

in the admissible range is guaranteed, the speed of the algorithm can be slow, especially when

the dimension of θ is large. In order to improve speed one may execute a few iterations that will

approximate the solution closely enough, and then locate the maximum using standard numerical

techniques (e.g. Newton-Raphson). Notably, few iterations are usually enough to get estimates

quite close to the maximum. Another common problem in the implementation of the EM-algorithm

to finite mixture models is the existence of local maxima of the (conditional) likelihood, which can

trap the estimates in their vicinity. In order to overcome this problem in the application presented

in Section 5, the algorithm was run for 20 different initial vectors θ0, chosen randomly for given

m, and then it was checked if more than 3 out of the 20 computed solutions reached the largest of

maxima, in which case the procedure was stopped. Otherwise, if only 3 or less solutions reached

the largest of maxima, the algorithm was run anew with additional initial vectors, until the largest

maximum was reached at least 3 times. In each run, the convergence criterion used for stopping

the algorithm is that the relative change of the (conditional) log-likelihood between two successive

iterations becomes smaller than 10−12, which is quite strict. Of course, the obtained solution always

depends on the initial observation x0.

Detailed accounts of the general properties of the EM-algorithm can be found in Dempster et al.

[1977] and McLachlan and Krishnan [1997], while Bohning [2000] and McLachlan and Peel [2001]

provide details on the EM- and other algorithms for the case of finite mixtures.

3.3 Alternative options of estimation

According to (8) the thinning parameter, α, is equal to the value of the ACF at lag-1. This very

fact prompts estimation of α by the sample estimate of the auto-correlation of lag-1. This is quite

a reasonable alternative to CML estimation of α, with the definite advantages that, (a) it does

not depend on the distribution of innovations, thus is also independent of the choice of m, and

(b) lag-1 auto-correlation of the fitted model matches exactly with lag-1 sample auto-correlation

of the actual data to which the model is fitted (for any m). The only shortcoming is that this

estimate may be a negative number, however not smaller than −1. In such a case, one may abort
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modelling with the proposed model, or may still pursue it by setting α = 0. In the latter case, the

data are modelled as integer-valued i.i.d. noise with mixed-Poisson law. Hereafter, the estimate
∧
α= max

{
0,

T−1∑
t=0

(xt− x)(xt+1− x)/
T∑

t=0
(xt− x)2

}
is referred to (for brevity) as method of moments

(MOM) estimate of the thinning parameter α, where x = (T + 1)−1 ·
(

T∑
t=0

xt

)
is the sample mean

of the data. In this case the rest of the parameters can be still obtained using the CML method

and the EM algorithm described in the previous section, but now keeping the value of α constant in

all iterations; i.e. by setting αnew = α0 =
∧
α in the formulae of the previous section. The estimates

obtained with this method are also referred to as MOM estimates, emphasizing that they have been

obtained with α estimated by
∧
α.

To emphasize further the significance of the MOM option, it should be mentioned that the

CML estimate of α by the EM-algorithm, say αCML, usually under-estimates α compared to the

MOM estimate
∧
α, provided that

∧
α> 0, and the deficit of αCML versus

∧
α> 0 keeps increasing with

m. This effect and the fact that α determines completely the ACF (8) of the INAR(1) model,

suggest that it is best to not estimate α based solely on the EM-algorithm, because then the

entire ACF of the fitted model can be seriously deflated, thus handicapping the performance of any

reasonable predictors that one may be able to construct. Instead, if α is estimated by
∧
α, then the

performance of competent predictors can be assessed more objectively, at least at lag-1 where the

auto-correlation of the data and the auto-correlation of the fitted model are identical.

Two explanations of the effect of m on αCML are offered here, beyond plain empiricism from

computational experiments. One line of reasoning is that by increasing the order m of the mixture

law of innovations one is approaching the so-called non-parametric maximum likelihood estimate

(NPMLE); i.e. the mixture distribution that provides the best likelihood with respect to all prob-

ability measures [Lindsay, 1995]. Therefore, by increasing m the fitted model comes as close to the

observed data as it can possibly be, thus optimizing distributional fit, but at the cost of ignoring

and even depleting the serial dependence structure inherent in the data. Notably, several authors

use the NPMLE as a semi-parametric estimate of the underlying probability distribution. A second

explanation is based on equation (6), whence it is easy to check that α is a decreasing function of

ID(X), when ID(ε) > 1. This is indeed the case when the innovations follow a finite mixture of

m > 1 Poisson laws. By increasing m in the INAR(1) model fitted to a given series of overdispersed

count data, one evidently increases ID(X) of the fitted model so as to match the sample index of

dispersion of the data. Therefore, a decay in values of α is naturally anticipated, which propagates

even further to degrade lag-1 auto-correlation and thereof the entire ACF of the fitted model.

In light of the above discussed properties of the estimators αCML and
∧
α, one might be interested

to consider as a third option a weighted estimator
s
α:= π ·αCML +(1−π)· ∧α. The role of the weight

0 ≤ π ≤ 1 is to regulate the balance of the fitted model between excellent descriptive qualities

with regard to marginal probabilistic characteristics of the data (when π = 1 and
s
α= αCML) and

reasonably adequate predictive qualities (when π = 0 and
s
α=

∧
α). In this case, it should also

be understood that the remaining parameters (p1, . . . , pm; λ1, . . . , λm) of the model ought to be
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re-estimated by the EM-algorithm, but keeping now αnew = α0 =
s
α in every iteration.

3.4 Specifying the order of the mixture

The methods of estimation presented above, and also simulation and prediction methodology to be

presented in Section 4, presume that a fixed number of components in the Poisson mixture law of

the innovations is given. However, none of those methods specified how this number m > 1 ought

to be selected. The purpose of this section is to describe procedures according to which the size of

m can be decided with reason.

A systematic and rather objective procedure is to fit the proposed model, to the count data of

one’s interest by any of the above suggested methods of inference, beginning with m = 1. Then,

using the same method of estimation, keep fitting the model to the same data by increasing the

value of m successively until the log-likelihood stops increasing (e.g. see Lindsay [1995], Bohning

[2000]). The only shortcoming of this procedure is that it is not keen to parsimony, and may often

lead to over-parameterized models with components which may not contribute substantially to the

overall fit.

A different strategy, quite standard in mixture literature as well as in time series model selection,

would be to select m according to information criteria such as Akaike Information Criterion (AIC),

where the conditional log-likelihood is penalized by the number of estimated parameters, or AIC

corrected (AICC) and Bayesian Information Criterion (BIC), where the penalty accounts also for

the sample size T . Further criteria for selecting the order m of a mixture model are discussed in

McLachlan and Peel [2001].

4 Simulation, prediction and performance assessment

Given a fixed m and a vector of parameters θ = (α; p1, . . . , pm−1; λ1, . . . , λm), simulation of synthetic

time series from the INAR(1) model with mixed-Poisson innovations is quite straight forward. The

following algorithm can be easily implemented to simulate a single stationary series of desired length

N .

1. First generate a single value X0 from a mixed-Poisson law with parameters (p1, . . . , pm; λ1, . . . , λm)

in line with (10) and (11).

2. Then generate M values {Xt; t = 1, . . . , M}, such that each Xt is the sum of two independent

random variables, the one following a binomial law Bin (Xt−1, α), and the other following

again a mixed-Poisson law with parameters (p1, . . . , pm; λ1, . . . , λm).

Note that the M iterations of step 2 follow the Markov recursion of the INAR(1) model according

to (1), starting with the initial value of X0 from step 1, and the M values generated from the mixed

Poisson law with parameters (p1, . . . , pm; λ1, . . . , λm) in step 2 are realizations of i.i.d. innovations.

Moreover, since the law of X0 from step 1 has finite mean, µε =
m∑

i=1
piλi, the argument given in
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the very beginning of Section 2.1 guarantees that after a large enough number of iterations, say

n ≤ M , the marginal law of the simulated values {Xt; t = n + 1, . . . ,M} is effectively a very good

approximation of the stationary law with p.g.f. (13). Thus, considering the first n iterations of

step 2 as “burn-in” period, the remaining N = M − n values {Xt; t = n + 1, . . . ,M} represent the

desired synthetic stationary series.

The rest of this section is concerned with prediction of time series of counts under a stationary

INAR(1) model (i.e. α < 1), driven by i.i.d. innovations with finite variance, and known parameters,

either given or estimated by fitting such a model to data. As usual, the setting assumes that a

regular discrete time series of non-negative integers X1 = x1, X2 = x2, ..., XT = xT has been

observed, and for some lead-time k ≥ 1, a future value corresponding to the random variable XT+k

must be predicted in terms of known information consisting of the l most recent observed values

XT−l+1 = xT−l+1, XT−l+2 = xT−l+2, ..., XT = xT , where 1 ≤ l ≤ T .

4.1 Linear prediction

It is well known [e.g. see Priestley, 1981, Chapter 10] that the optimal predictor of XT+k, given

XT−l+1, ..., XT , is the conditional expectation

∧
XT+k= E (XT+k | XT−l+1, XT−l+2, ..., XT ) , (17)

in the sense that this predictor minimizes the mean square error of the prediction

MSE(k) = E

{(
XT+k−

∧
XT+k

)2
}

. (18)

After k iterations of (1), XT+k
D= αk ◦ XT +

∑k
j=1 αk−j ◦ εT+j , whence by taking conditional

expectations and using basic properties of the thinning operator (Appendix A) it readily follows

that
∧
XT+k= αk ·XT +

(
1− αk

)
· µε

1− α
, (19)

whence one also derives that

E

( ∧
XT+k

)
= αk · µX +

(
1− αk

)
· µε

1− α
, (20)

V

( ∧
XT+k

)
= α2k · σ2

X , (21)

MSE(k) =
(
1− α2k

)
· αµε + σ2

ε

1− α2
. (22)

From (19) it is clear that the optimal predictor
∧
XT+k is linear with respect to the most re-

cent observation XT . Note that if µX = µε · (1− α)−1, then E

( ∧
XT+k

)
= µX , and if σ2

X =

(
αµε + σ2

ε

) · (1− α2
)−1, then MSE(k)+V

( ∧
XT+k

)
= σ2

X , both of which do hold if the X-process

is indeed INAR(1). In general, however, even when the X-process is merely modelled as INAR(1),
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without necessarily being such, the asymptotic values of E

( ∧
XT+k

)
and MSE(k) are respectively

µε · (1− α)−1 and
(
αµε + σ2

ε

) · (1− α2
)−1, as k → ∞, while V

( ∧
XT+k

)
tends to zero, and the

predictions themselves tend (in probability) to the same constant value µε ·(1− α)−1 as their mean.

4.2 Integer-valued prediction

The linear predictor
∧
XT+k suffers two shortcomings. One is that after a few lead times it degenerates

to nearly constant predictions, that is no prediction. The other is that it produces positive real-

valued predictions, which are difficult to interpret meaningfully in light of the distinctively integer

character of the observations. Therefore, an alternative approach is proposed and investigated here,

resolving both these issues.

Given observations of the past variables XT−l+1, ..., XT , and taking into account the non-linear

auto-regressive Markov structure of the model used for prediction, we propose prediction of a future

variable XT+k by the integer-valued and non-linear predictor

s
XT+k= αk ◦XT +

k∑

j=1

αk−j◦ sεT+j , (23)

formulated by k iterations of the INAR(1) model, starting from the most recent observation XT ,

and driven by simulated values
s
εT+j of the (non-observable) i.i.d. innovation process.

If XT follows the marginal law of the stationary INAR(1) model, then so does the predictor
s
XT+k too, whence E

( s
XT+k

)
= µX and V

( s
XT+k

)
= σ2

X > V

( ∧
XT+k

)
, where µX and σ2

X are

further specified according to (5). In general, however, when the X-process is just modelled as

INAR(1), without necessarily being such, it follows from (23) that

E
( s
XT+k

)
= αk · µX +

(
1− αk

)
· µε

1− α
, (24)

V
( s
XT+k

)
= α2k · σ2

X + αk · (1− αk) · µX +
1− α2k

1− α2
· σ2

ε +
(

1− αk

1− α
− 1− α2k

1− α2

)
· µε. (25)

From (20) and (24) it is clear that E
( s
XT+k

)
= E

( ∧
XT+k

)
, and thus all the comments made

about E

( ∧
XT+k

)
remain valid for E

( s
XT+k

)
too. From (21) and (25) it is also clear that always

V
( s
XT+k

)
> V

( ∧
XT+k

)
. Asymptotically, V

( s
XT+k

)
tends to

(
αµε + σ2

ε

) ·(1− α2
)−1, as k →∞.

This limit is the variance of the INAR(1) model, thus it is positive and guarantees that the integer-

valued predictions will never degenerate to a constant. This same limit is also the variance of the

process only if σ2
X =

(
αµε + σ2

ε

) · (1− α2
)−1, which happens for example when XT follows the

marginal law of the stationary INAR(1) model.

4.3 Assessment of model performance

Model performance is used here as a term that broadens the meaning of the more classical notion

of goodness of fit, in the sense that the model at hand is not merely a probability distribution
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whose goodness of fit to data must be assessed. Instead, it is a model for integer-valued time series,

which aims to capture features of the underlying dependence structure represented by second-order

characteristics (i.e. auto-correlations), along with features of variability represented by moment

characteristics of the underlying marginal probability distribution.

In general, the construction of statistical criteria suitable for evaluation of model performance

in time series settings is a task that may be carried out in different ways, depending on the focus of

interest. This implies “relativity” among criteria of model performance, in the sense that a model

considered adequate with respect to one criterion may fail seriously to fulfill another. Nevertheless,

model performance as well as goodness of fit criteria are measures of proximity of information

produced by the fitted model and by the observed data whose stochastic structure the fitted model

is anticipated to mime. Usually such proximity is measured by some kind of collective loss of

information between the actual data and the predicted or simulated data produced by the fitted

model.

A definite restriction with respect to the case at hand, is that most of the existing literature

on measures of model performance or goodness of fit for time series uses normality assumptions

and/or asymptotic arguments for large samples. Avoiding these restrictions, parametric bootstrap

is undertaken here adopting the approach suggested by Tsay [1992]. That is, to generate data from

the fitted model and to check if their deviation from the observed data could have occurred if the

observed series had been generated by the assumed model. This approach enables one to assess

how closely the assumed model represents the stochastic evolution of the data by implementing the

following test statistic

D =
T∑

t=2

(Xi − X̂i)2

s2(X̂)
.

That is, D is the sum of normalized square residuals between the observed data Xi and their (e.g.

one-step-ahead) predictions X̂i, in this case given by (19) or (23) for k = 1. The normalization

s2(X̂) is an estimate of the variance of the predictions, as in (21) or (25) respectively, with all the

involved parameters taking the same values as in the fitted model. Alternatively, s2(X̂) can be

just the sample variance of the predictions made by (19) or (23). In the applications presented

in Section 5 the normalization s2(X̂) is the sample variance of integer-valued predictions made by

(23), for k = 1 and k = 2.

Instrumental to this approach is to obtain an empirical distribution of the test statistic D, and

to check if the observed value of D belongs to an upper tail of this distribution, or not, given a

desired level of significance. This test is computationally demanding, as one must fit the model

to each series simulated from the fitted model, whose performance is under testing, and must also

make predictions based on the simulated series. However, since good initial values are available the

EM-algorithm presented in 3.2 converges fairly quickly.

Of course, the (conditional) likelihood of the fitted model offers an alternative measure of per-

formance, which one may consider in parallel with the above proposed statistic D, as a counterpart

reflecting descriptive abilities rather than predictive ones.
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5 Application to rainfall

The INAR(1) model can be thought of as describing dynamics of a branching process with immigra-

tion in discrete time. In that framework, the thinned term α◦Xt represents the number of survivors

from the t-th generation of a population with Xt members, to the very next (t + 1)-st generation

with Xt+1 = α ◦Xt + εt+1 members, while the innovation term εt+1 represents immigrants added

(independently of Xt) to the α ◦Xt survivors. This viewpoint is conducive with the application of

INAR(1) to spatial rainfall, presented herein.

The population of interest consists of pixels where spatially averaged rain rate (SARR) exceeds

a given threshold level, in an instantaneous radar scan mapping a rain field over a fixed region. The

role of survivors between two successive scans of the probed region is played by pixels that maintain

SARR values greater than the given threshold in both scans. Pixels whose SARR values increased

so as to up-cross and exceed the threshold level, from values lower than or equal to the threshold

in the previous scan, play the role of immigrants. Moreover, since the spatial organization of rain

fields is quite complex, comprising of light and moderately intense rain from stratiform clouds

with wide spatial coverage, together with very intense rain from convective cells occurring very

locally, and several other intermediate regimes in the evolution of a storm, it is reasonable to model

immigration by considering innovations with mixed structure, such as that of mixed Poisson laws.

Motivation for pursuing this sort of application of the proposed INAR(1) model, to time series

of (instantaneous) counts of pixels where SARR exceeds a threshold, is prompted from the need to

predict temporal evolution of the fraction of regional coverage, τ -FRC, with rain intensity exceeding

a certain “optimal” threshold τ ≥ 0. If τ -FRC can be predicted over time by a suitable time series

model, then the threshold method (TM) can be used to recast temporal predictions of τ -FRC into

temporal predictions of SARR over the entire probed region. Such information is quite valuable

input for further hydrological, meteorological and climatological analysis and predictions.

When the size of pixels is sufficiently small, relative to the size of the probed region, τ -FRC can

be approximated reasonably well by the ratio of the count of pixels where rain intensity exceeds τ ,

to the total number of pixels in a scan. However, the total number of pixels in any given scan is

fixed, determined by the spatial resolution of pixels, while the count in the numerator of τ -FRC

fluctuates randomly as the rain field evolves. Therefore, prediction of time series of counts of pixels

where SARR exceeds a given “optimal” threshold τ , can indeed play a key role in predicting τ -FRC

and subsequently SARR by implementation of TM. In this sense, the present application may be

viewed as an effort aiming to parametric modelling of τ -FRC time series of a temporally evolving

rain rate random field, for predictive as well as for descriptive purposes.

TM works more generally for prediction of spatial moments of non-negative random fields with

sufficient intermittency between positive and zero values, and not just for prediction of spatial

averages (i.e. spatial moments of first order). Thus, the idea mentioned above about recasting

temporal predictions of τ -FRC to predictions of SARR, can in principle be also applied towards

temporal prediction of (general) spatial moments. Detailed accounts on the statistical foundation

of TM, on criteria for choosing optimal thresholds, on the performance of the method in predicting
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spatial moments of rain rate, and on its valuable utility when remote sensing technology (i.e. radar,

satellite) is implemented for measuring precipitation, are given in Kedem and Pavlopoulos [1991],

Shimizu et al. [1993], Shimizu and Kayano [1994], Mase [1996], Meneghini et al. [2001].

5.1 Presentation of the data

The raw data is a regular time series of maps of radar reflectivity measurements obtained during

the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment

(COARE) by shipboard Doppler precipitation radar (MIT). Each scan probes a fixed oceanic region

of area 240 × 240Km2 in the tropical sector of South Western Pacific Ocean (China Sea: 2oS,

156oE). Measurements of radar reflectivity echo Z (in dBZ units) from each scan, binned by

spatial averaging over square pixels of area 2 × 2 Km2, have been converted to instantaneous

rain rate R values (in mm/hr units) by the Z-R relationship R = (Z/230)1/1.25. The temporal

resolution between successive scans is 20 minutes, and the sample size of the regular time series

considered here is T = 184, corresponding to a nearly three day segment (02:01 UTC, November 22,

1992 through 15:01 UTC, November 24, 1992). This is the longest regular segment (i.e. without

missing scans) of Cruise 1 (20:01 UTC, November 10, 1992 through 23:41 UTC, December 9,

1992) of TOGA-COARE. In total Cruise 1 consists of 1991 scans, with a percentage of missing

scans 5.19% distributed in 49 blocks of length mostly 1 or 2 (scans), and occasionally longer (the

longest corresponding to 18 missing scans, amounting to a six hour gap of information). Detailed

documentation of TOGA-COARE is given by Short et al. [1997].

Along with the region of reference, which is a square of side length 240 Km, seven square sub-

regions are also considered, having the same center as the region of reference and side lengths 120

Km, 60 Km, 32 Km, 16 Km, 8 Km, 4 Km, 2 Km respectively. For each one of these centrally

nested regions, time series of counts of pixels where R exceeds the threshold levels of 0 mm/hr, 1

mm/hr, 2 mm/hr, 5 mm/hr, 10 mm/hr, and 20 mm/hr were recorded from the regular time series

of 184 radar scans. That is, six time series of counts for each one of the eight regions were recorded,

rendering a total of 48 different series of pixel counts. The threshold of 0 mm/hr theoretically

discriminates between wet and dry pixels. However, due to known deficiencies of radar technology

in discerning very light rain from noise induced by plain humidity or cloud, the thresholds of 1

mm/hr or even 2 mm/hr might alternatively be considered for mapping information of spatial

intermittency between wet and dry states of rainfall. The thresholds of 5 mm/hr, 10 mm/hr and

20 mm/hr are considered here only as proxies of optimal threshold levels reported in pertinent

literature [Kedem and Pavlopoulos, 1991; Short et al., 1993; Kayano and Shimizu, 1994].

Due to the nesting of the considered sub-regions, the count of pixels for any given threshold

level is an increasing (albeit random) function of the spatial scale (or size) of the region. It is also

anticipated that zero counts prevail in the smaller spatial scales and for the larger thresholds, but

become more rare in regions of large spatial scales, especially for low thresholds considered there.

Temporal intermittency between positive and zero values of counts, representing evolution of spatial

intermittency with respect to a threshold level of precipitation intensity, is partially indicated by
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the probability or sample proportion of zero counts. If this indicator is very close to its extreme

bounds, 0 and 1, then the time series of counts contains only a few zeroes or is made mostly of

zeroes (respectively), and in this sense its intermittency ought to be considered low.

Table 1 provides information of sample statistics (mean, index of dispersion, coefficients of

skewness and kurtosis, proportion of zeroes, and lag-1 auto-correlation) from the 48 time series

described above. Some series from the regions of smaller scales (4 Km and 2 Km) comprised

only of zeroes, thus no statistics are reported there except the obvious values of sample mean and

sample proportion of zeroes. Notably, in most cases the overdispersion is nontrivial, accompanied

by pronounced (positive) skewness and kurtosis. The negative skewness of series corresponding to

the threshold 0 mm/hr in scales of 32 Km and lower, results from all pixels being “wet” for a

sufficiently large proportion of scans. However, this may be considered merely as an artifact of the

rather coarse resolution by pixels of scale 2 Km relative to scales of 32 Km or lower, in combination

with deficiencies of radar technology in discerning rain of very low intensity from plain noise.

Certain trends emerging from Table 1 may be summarized as follows. The sample proportion

of zeroes indeed increases when the spatial scale decreases and when the threshold level increases,

as anticipated earlier. The same two trends are also noted for the coefficients of skewness and

kurtosis, with the exception of the 0 mm/hr threshold level, where deviations from these trends

might be attributed to the aforementioned deficiencies of radar technology. Exactly the reverse type

of trends is noted about the sample mean and the index of dispersion, both of which decrease when

the threshold level increases and when the spatial scale decreases. Auto-correlation also presents a

tendency to decay as the spatial scale decreases (for fixed threshold) and when the threshold level

increases (for fixed scale), although not as consistently as noted in all the other trends.

5.2 Results from the fitted model

The performance of the proposed INAR(1) model is demonstrated in the rest of this section. The

model was fitted to the time series of pixel counts presented above by the methods of estimation

discussed in Section 3. For demonstrative purposes six cases have been chosen based on the criterion

that there is sufficiently moderate temporal intermittency in the observed series of counts. This

criterion excludes the regions of 2 Km, 4 Km, and 240 Km, since intermittency there is very

little, as indicated by the proximity of sample proportion of zero counts to 1 and 0 respectively

(see Table 1). Specifically, the cases of 5 mm/hr in 120 Km, 1 mm/hr and 20 mm/hr in 60 Km,

10 mm/hr in 32 Km, 0 mm/hr in 16 Km, and 2 mm/hr in 8 Km, have been chosen. These are

quite representative of very similar types of behavior seen in the bulk of cases with moderate to

high intermittency, and also representative of the performance of the fitted model in such cases.

An exception is the case of 0 mm/hr in 16 Km, which represents cases with very low intermittency

(due to only a few zeroes) and the artifact of negative skewness pointed out earlier.

Table 2 provides information about the fitted model (mean, dispersion index, skewness and

kurtosis coefficients, proportion of zeroes, order m, thinning parameter α, conditional log-likelihood,

D-statistic and its P-value) in these six cases, using the CML (π = 1) and MOM (π = 0) options
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for estimation of parameters, when the order m is chosen according to AIC. This information

offers a first impression about the model’s adequacy, by simple comparison with the corresponding

information in Table 1 (marked with bold characters). It is clear that all the marginal characteristics

(mean, ID, IS, IK, proportion of zeroes) are recovered much more adequately by CML than by

MOM, and the likelihood of the CML-fitted model is significantly greater than that of the MOM-

fitted model. On the contrary, comparing the estimated values of the thinning parameter α in

Table 2 with lag-1 sample auto-correlation in Table 1, it is seen that the MOM version recovers

the ACF much more adequately than its CML counterpart does. Judging also by the values of

the statistic D and the corresponding P-values, indicating significant model performance based on

predictions, it is clear that the model fitted by the MOM option predicts more adequately than its

CML counterpart.

In fact, the very transition from the better predictive ability of the MOM version (π = 0) to

the better descriptive ability of the CML version (π = 1), is further detailed in Table 3. It is

clearly seen there that by combining both options to fit the model, with weights determined by

0 < π < 1, the log-likelihood grows while the D statistic decays, consistently as π increases from

0 to 1. The growth of the likelihood is also paralleled with the improvement of the mean of the

fitted model, which may be further compared to the corresponding values given in Tables 1 and 2.

It is also seen that the statistic D is partial to assessing predictive performance of the fitted model,

while descriptive performance in the sense of capturing characteristics of the marginal distribution

is better reflected by the conditional log-likelihood. These results advocate the possibility of even

optimizing the compromise between predictive and descriptive abilities of the fitted model, by

choosing the weight π appropriately. Of course that choice generally depends on the scope of the

optimization, and is not pursued any further in this work. However, some interesting possibilities

might be to relate π with α or m.

Table 4 shows the procedure of selecting a suitable value of m by AIC or BIC in each of the

six cases presented, when the thinning parameter α is estimated strictly by the method of MOM

(π = 0). The values of m that optimize the AIC criterion (marked with ∗) were used in fitting the

model for all the values of π shown in the previous Table 3. It is worthy noting that after a certain

value of m the changes in the likelihood are quite small juxtaposed to the great complexity that the

additional components induce to the model and its estimation. It is also noted that D fluctuates

very little in Table 4, as m increases. This stems from the fact that α (and thus the ACF) of the

MOM fitted model remains fixed for all m, and thus the predictive ability of the MOM model is

not very sensitive to the number of components m. However, D does grow with m if the CML or

a combined MOM/CML version of the fitted model is used (not shown here). It is also seen in

Table 4 that the greater values of m correspond to cases with greater overdispersion (see also Table

1). All the models were fitted implementing the EM algorithm for several different initial values

in order to ensure that the global (instead of local) maxima have been obtained. Figures 1 and 2

facilitate more detailed comparison between marginal probabilistic properties of the observations

and those of the INAR(1) model, fitted by the MOM (π = 0, left column) and by the CML (π = 0,
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right column) options, in each of the six cases.

Figure 1 depicts tail probabilities {P (X > k); k = 0, 1, 2, . . .} of the empirical probability distri-

bution of the data, along with parametric bootstrap medians Q(0.5) and 95% percentile confidence

intervals [Q(0.025), Q(0.975)] of tail probabilities based on 1000 simulations from the fitted model.

In each simulation a series of length M = 1000 was generated by the fitted model, from which

only the tail segment of length N = 184 (equal to the length of the observed series) was retained.

Experimentation with other values of M showed that M = 1000 suffices to reach stationarity in

the tail segment of the desired length.

Figure 2 depicts sample moments of order 0.1 ≤ k ≤ 4 (with incremental step ∆k = 0.1), cal-

culated from the observed series of pixel counts, along with parametric bootstrap medians Q(0.5)

and 95% percentile confidence intervals [Q(0, 025), Q(0.975)] of moments based on the same 1000

simulations used for Figure 1. Parametric bootstrap percentile estimates of marginal characteris-

tics of the fitted model are implemented as an alternative to unavailable exact formulae for tail

probabilities and (general) moments of the proposed model. However, exact values of (non-central)

moments of integer order k = 1, 2, 3, 4 have been calculated explicitly in terms of the parameters

of the fitted model, and are shown in Figure 2. Note that all moments depicted in Figure 2 are

represented in logarithmic scale, merely for the sake of enhancing clarity. Figures 1 and 2 reassure

the already acknowledged better ability of CML versus MOM options of the fitted model to describe

the empirical probability distribution of the observed time series of counts.

Figures 3-5 correspond to three of the six demonstrative cases considered above. Each depicts

the corresponding time series of pixel counts (continuous line in plots (c)-(f)), along with 1-step-

ahead (plots (c) and (d)) and 2-step-ahead (plots (e) and (f)) integer-valued predictions (dotted lines

in plots (c)-(e)). Specifically, predictions shown in (c) and (e) are based on a single replication from

the MOM fitted model, which for predictive purposes is certainly more adequate than the CML

option. Predictions shown in (d) and (f) are actually parametric bootstrap medians of integer-

valued predictions based on 1000 replications from the MOM fitted model, laying within 95%

parametric bootstrap percentile prediction intervals shown by grey vertical lines. All predictions

follow the observed data with sufficient proximity so as to represent quite adequately the overall

dynamic evolution of the observed series. Notably, the observed counts of pixels lay also well inside

the parametric bootstrap prediction intervals, except in a few instants corresponding to extreme

variability from low to high values and vice versa. It is also worthy to point out that the skewness

of the observed counts is very adequately represented by the (integer-valued) parametric bootstrap

percentiles shown in plots (d) and (f) of Figures 3-5. That is, in Figures 3-4 where the data

are markedly positively skewed (see Table 1), bootstrap medians Q(0.5) are much closer to the

lower ends Q(0.025) of the 95% percentile interval [Q(0.025), Q(0.975)]. Yet, in Figure 5 where the

data are negatively skewed (see Table 1), parametric bootstrap medians Q(0.5) are more centrally

located within the 95% bootstrap percentile intervals [Q(0.025), Q(0.975)], and indeed closer to the

upper ends Q(0.025) during segments where all 64 pixels of the 16Km region are recorded as being

“wet” (an artifact due to deficiencies pointed out earlier).
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Plots (a) and (b) in each of Figures 3-5 depict sample ACF and smoothed periodogram estimates

of power spectra (dotted lines), along with the MOM-fitted model’s exact ACF and exact spectral

density functions (continuous lines), according to formulae (8) and (9) respectively. Percentile 95%

confidence limits via parametric bootstrap based on 1000 simulations of the MOM fitted model

are also provided for the ACF of the fitted model. It is seen that deviations between sample and

model ACF are greater at large lags, while there is generally good agreement for small lags. An

equivalent representation of this behavior is seen by comparing the fitted model’s exact spectra

against sample spectra. There is a clear deficit of exact model spectra versus sample spectra in

the band of low frequencies near the origin, which reduces appreciably and eventually diminishes

in the high frequency band.

6 Concluding remarks

A general remark about integer-valued time series models, is that statistical inference for their

parameters, integer-valued or “coherent” prediction, and assessment of performance are quite chal-

lenging tasks, both conceptually and computationally, perhaps more so than in linear and non-linear

time series models taking values in a continuum. The additional difficulties stem from complexi-

ties inherent to non-linear dependence structure of such models, in the present case imposed via

binomial thinning, as a means of retaining integer-valued realizations of the model. The degree by

which the integer-valued character of the model complicates very basic concepts, even such as that

of residuals upon which model adequacy might be tested, is well conveyed by Freeland and McCabe

[2004a] in the case of Poisson INAR(1). The model proposed and studied in this article certainly

perplexes all these difficulties, although it is perhaps the simplest possible way of generalizing the

Poisson INAR(1) model towards modelling time series of highly overdispersed count data.

It is worthy to remark that implementation of parametric bootstrap medians for construction of

integer-valued predictions, and of other percentiles for construction of integer-valued 95% prediction

intervals (see again plots (d) and (f) in Figures 3-5), is an idea similar to that of “coherent fore-

casting” introduced by Freeland and McCabe [2004b]. Coherent forecasting is a method producing

integer-valued predictions of minimum mean absolute error (MAE), conditionally on past observa-

tions; see also McCabe and Martin [2005] and Jung and Tremayne [2006]. Although the approach

taken herein towards integer-valued predictions is not “coherent forecasting” per se, parametric

bootstrap medians of k-step-ahead integer-valued predictions produced according to (23) from the

MOM fitted model, for k = 1, 2 are indeed integer-valued too, and do minimize MAE conditionally

on past values of the fitted model (instead of conditionally on past observations).

The herein studied version of INAR(1) has met exceptionally well the marginal statistical prop-

erties of the highly overdispersed pixel count time series to which it was fitted by CML. However, the

same model fitted to these data, even by the MOM option so as to optimize predictive performance,

seems to fall short of capturing fully the complicated dependence structure of the observed process.

This is evident by the earlier noted deviations of the MOM fitted model’s ACF and spectrum from

their sample estimates. These deviations might be interpreted in various ways, pointing perhaps
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to non-exponential ACF (e.g. ACF might be thought of as a linear combination of exponentially

decaying functions of lag, or even as power-law decays), and possibly even to non-Markovian depen-

dence structure. This prompts for consideration of alternative versions of the proposed INAR(1)

model. Different possibilities in that direction might be to introduce dependence among innova-

tions, to make mixed Poisson innovations dependent on past observations, and even to randomize

the binomial thinning parameter α so as to account for possibly varying “survival” probabilities

among pixels. A valuable tool in exploring and deciding such alterations might be the so called

“information matrix” test (IM), if appropriately ramified so as to serve the case of INAR(1) with

mixed Poisson innovations. A version of the IM test and its three components for INAR(1) with

simple Poisson innovations is detailed in Freeland and McCabe [2004a].

Another interesting feature of the pixel count time series modelled here is a set of power-law type

multi-scaling properties of sample moments, with respect to the regional scale (for fixed threshold)

and with respect to the threshold level (for fixed scale). These properties might be interpreted

as indications of multifractal spatial distribution of the temporally evolving rain rate field over

the probed region. Although a detailed presentation of these properties is beyond the scope of

the present article, it is worthy to mention that they are very well reproduced by the parametric

bootstrap estimates of moments from the proposed INAR(1) model fitted to the corresponding series

by CML. Similar multi-scaling properties reported in research literature about spatial moments

of rain rate [e.g. see Gupta and Waymire, 1990, 1993], may in light of the TM be viewed as

consequences of multi-scaling of τ -FRC, which in practice is essentially conveyed by multi-scaling

behavior of counts of pixels where SARR exceeds τ . Therefore, parametric modelling of time series

of counts of pixels where SARR exceeds a given (optimal) threshold τ is further justified by the

need of stochastic mechanisms able to reproduce such multi-scaling properties.

On an even more general note, the earlier discussed idea of recasting (instantaneous) predictions

of tau-FRC, based on pixel counts, to (instantaneous) predictions of spatial moments via TM, can

in principle be also applied for prediction of (instantaneous) moments of the spatial cumulative

distribution function (SCDF) of a temporally evolving non-negative valued random field. That is,

for a spatio-temporal random field with sufficient intermittency between zero and positive values,

so that TM performs well for a broad band of thresholds, and under appropriate assumptions of

temporal stationarity and spatial homogeneity, so that the corresponding SCDF remains stationary.

In such a setting, predictions made via a parametric stationary model for time series of pixel counts

could in principle be recast to temporal predictions of moments of the SCDF of the probed random

field. Non-parametric methodology for prediction of the SCDF random functional (at fixed time),

based on sub-sampling schemes, along with definitions of SCDF, its moments and quantiles, and

an application to predicting SCDF of an ecological index for maple tree foliage, is given in Lahiri

et al.[1999].
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APPENDIX A: Properties of Binomial Thinning

In the following list of properties X and Y denote non-negative integer-valued and stochastically

independent random variables, and the symbol
D= denotes equality of probability distributions.

A1. The characteristic function of α ◦X, is Φα◦X(u) = E
(
eiu·(α◦X)

)
= E

{(
1− α + αeiu

)X
}

,

for u ∈ R. For a proof, first condition on X, account for the fact that the conditioned random

variable (α ◦X|X) follows the binomial distribution Bin(X,α), and then take expectation of the

conditioned quantity. Direct consequences of A1 are the following properties.

A2. 0 ◦X
D= 0 & 1 ◦X

D= X.

A3. α1 ◦ (α2 ◦X)
D= (α1α2) ◦X, for every α1, α2 ∈ [0, 1].

A4. α ◦ (X + Y )
D= (α◦X) + (α◦Y ), for every α ∈ [0, 1].

Non-central moments µ′r(α ◦X) = E [(α ◦X)r] of α ◦X are obtained directly from A1, provided

that µ′r(X) = E (Xr) < ∞, for r = 1, 2, 3, 4 respectively:

A5. µ′1(α ◦X) = αµ′1(X),

A6. µ′2(α ◦X) = α2µ′2(X) + α(1− α)µ′1(X),

A7. µ′3(α ◦X) = α3µ′3(X) + 3α2(1− α)µ′2(X) + α(1− 3α + 2α2)µ′1(X),

A8. µ′4(α ◦ X) = α4µ′4(X) + 6α3(1 − α)µ′3(X) + α2(1 − α)(7 − 11α)µ′2(X) + α(1 − α)(6α2 −
6α + 1)µ′1(X).

Central moments µr(α◦X) = E [(α ◦X − E(α ◦X))r], for r = 1, 2, 3, 4, are obtained by elementary

algebraic calculations, exploiting the previous formulae for non-central moments:

A9. µ2(α ◦X) = V ar (α ◦X) = α2V ar (X) + α(1− α)E(X),

A10. µ3(α ◦X) = α3µ3(X) + 3α2(1− α)V ar(X) + α(1− 3α + 2α2)E(X),

A11. µ4(α ◦X) = α4µ4(X) + 6α3(1− α)E(X3) + α2(1− α)(7− 11α)E(X2) + α(1− α)(6α2 −
6α + 1)E(X)

−12α3(1− α)E(X)E(X2)− 4α2(1− 3α + 2α2)[E(X)]2 + 6α3(1− α)[E(X)]3.

APPENDIX B: Central Moments of Stationary INAR(1) Processes

While the central moments of first and second order are given by (5), the central moments of

third and fourth order of a stationary INAR process can also be derived directly from (1). First

recall that central moments of third and fourth order of X + Y when X and Y are stochastically

independent, are given by µ3(X + Y ) = µ3(X) + µ3(Y ) and µ4(X + Y ) = µ4(X) + µ4(Y ) +

6V ar(X)V ar(Y ). Applying these formulae to the RHS of (1), and accounting for stationarity so

that µ3(Xt+1) = µ3(Xt) and µ4(Xt+1) = µ4(Xt), one obtains:

B1. (1− α3)µ3(X) = µ3(ε) + µ3(α ◦X),

B2. (1− α4)µ4(X) = µ4(ε) + µ4(α ◦X) + 6σ2
ε

[
α2σ2

X + α(1− α)µX

]
,

whereupon a further calculation is possible by employing A10 and A11, respectively. For example,

substituting µ3(α◦X) according to A10 in the RHS of B1, and then substituting E(X) = µX and

V ar(X) = σ2
X according to (5), after some algebraic calculations one obtains

B3. µ3(X) =
[

3α3

1+α + α(1− 2α)
]
µε +

[
3α2

1+α

]
σ2

ε + µ3(ε).
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• Remark 1: When the innovations follow a Poisson Law Poi(λ), then µε = σ2
ε = µ3(ε) = λ,

and µ3(X) in B3 simplifies to the third central moment of the Poisson law Poi(λ/(1 − α)),

as expected.

• Remark 2: If the law of the innovations is positively skewed (i.e. µ3(ε) > 0), then the

stationary INAR(1) process shall be positively skewed too, since the quantities in brackets in

B3 are all positive.

Non-central moments can be derived via standard formulae relating central moments and non-

central moments (e.g. see Kendall et al. [1994], Chapter 3).

APPENDIX C: Properties of Mixed Poisson Laws

Verification of convergence condition (3).

For given integer j ≥ 1, P (εt ≥ j) =
∞∑

x=j
P (εt = x) =

∞∑
x=j

(
m∑

i=1
pie

−λi
λx

i
x!

)
=

m∑
i=1

pie
−λi

(
∞∑

x=j

λx
i

x!

)
,

and by rewriting the last inner sum as
∞∑

k=0

λj+k
i

(j+k)! = λj
i

(j−1)! ·
∞∑

k=0

λk
i

j(j+1)···(j+k) , and then dividing by j,

we obtain

P (εt ≥ j)
j

=
m∑

i=1

pie
−λi

λj
i

j!

( ∞∑

k=0

λk
i

j(j + 1) · · · (j + k)

)
≤

m∑

i=1

pie
−λi

λj
i

j!

( ∞∑

k=0

λk
i

k!

)
=

m∑

i=1

pi
λj

i

j!
.

Thus,
∞∑

j=1

P (εt ≥ j)
j

≤
∞∑

j=1

(
m∑

i=1

pi
λj

i

j!

)
=

m∑

i=1

pi




∞∑

j=1

λj
i

j!


 =

m∑

i=1

pi

(
eλi − 1

)
< ∞.

Formulae for moments.

Let Λ be a discrete random variable assuming only m positive values, λ1, . . . , λm with probabil-

ities p1, . . . , p(m), respectively. Then the non-central moments µ′r(ε) = E [εr
t ] of order r = 1, 2, 3, 4

for the mixture of the m Poisson laws Poi(λi), i = 1, . . . , m are given by the formulae:

C1. E(ε) = µε = E(Λ),

C2. E(ε2) = E(Λ2) + E(Λ),

C3. E(ε3) = E(Λ3) + 3E(Λ2) + E(Λ),

C4. E(ε4) = E(Λ4) + 6E(Λ3) + 7E(Λ2) + E(Λ),

The central moments µr(ε) = E [(εt − E(εt))
r], for r = 2, 3, 4 are given by the formulae:

C5. µ2(ε) = V ar(ε) = σ2
ε = E(ε2)− [E(ε)]2 = E(Λ2) + E(Λ)− [E(Λ)]2 = E(Λ) + V ar(Λ),

C6. µ3(ε) = µ3(Λ) + 3V ar(Λ) + E(Λ),

C7. µ4(ε) = µ4(Λ) + 4V ar(Λ) + 3E(Λ2) + E(Λ) + 6(E(Λ3) + [E(Λ)]3 − 2E(Λ2)E(Λ)).

C1-C4 can be calculated directly from (12) by the derivatives µ′r(ε) = [drψ(eu)/dur]u=0. How-

ever, formulae C1-C7 remain valid even for general mixtures (i.e. not necessarily finite mixtures)

of Poisson laws (e.g. see Johnson et al. [1993]).

Regarding Remark 2 in Appendix B, it is noted that when µ3(Λ)+3V ar(Λ)+E(Λ) > 0 the

innovations are positively skewed, and then also the corresponding stationary INAR(1) distribution
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is positively skewed too. Also note that C1-C2 yield ID(ε) = 1 + V ar(Λ)/E(Λ) > 1. Thus,

according to (6), any stationary INAR(1) process driven by innovations with a finite mixture

distribution of Poisson laws is overdispersed relative to Poisson laws.
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scale (Km) 120 60 60 32 16 8

threshold (mm/hr) 5 1 20 10 0 2

CML mean 54.026 25.891 2.376 0.730 39.206 0.098

MOM 90.906 41.792 3.464 1.055 45.837 0.114

CML ID 110.441 62.757 14.963 7.261 6.643 2.778

MOM 36.031 28.085 9.625 5.802 5.757 2.545

CML IS 1.99 2.08 3.72 5.63 -0.13 7.02

MOM 0.82 0.92 2.38 3.51 0.22 6.36

CML IK 5.97 6.92 17.52 48.06 2.51 61.86

MOM 8.61 7.18 14.12 31.6 4.76 54.4

CML P (X = 0) 0.168 0.388 0.663 0.798 0 0.95

MOM <0.0001 0.002 0.385 0.666 <0.0001 0.937

CML m 9 9 3 4 4 2

MOM 7 7 3 4 3 2

CML α 0.00398 6E-06 0.112 0.2499 0.376 0.129

MOM 0.82 0.76 0.58 0.59 0.76 0.27

CML Log-L -841.51 -646.99 -249.78 -129.9 -732.33 -44.617

MOM -2269.2 -1189.2 -317.38 -140.98 -918.91 -45.477

CML D 11412951 6888093 12808 2241.29 730.835 10352.3

MOM 84.469 119.468 346.058 321.681 133.678 2283.193

CML P-value 0 0 0 0 0 0

MOM 0.07 0.3 0.25 0.53 0.09 0.58

Table 2: Information on marginal characteristics and measures of performance for the CML and

MOM fitted model.
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scale = 120 Km (m = 7) scale = 60 Km (m = 7) scale = 60 Km (m = 3)

threshold = 5 mm/hr threshold= 1 mm/hr threshold= 20 mm/hr

π D Log-L mean D Log-L mean D Log-L mean

0 (MOM) 84.469 -2269.168 90.906 119.468 -1189.212 41.792 346.058 -317.376 3.464

0.1 105.789 -1833.274 73.213 142.711 -1035.532 35.695 410.828 -304.069 3.219

0.2 141.693 -1556.156 65.479 176.719 -935.932 32.274 498.900 -292.798 3.034

0.3 202.580 -1373.076 61.418 226.967 -846.721 30.228 621.493 -283.188 2.884

0.4 309.102 -1225.659 58.928 302.684 -795.957 28.887 797.284 -275.032 2.761

0.5 506.135 -1140.181 56.975 420.391 -746.946 28.111 1059.048 -268.182 2.662

0.6 904.999 -1046.806 56.028 611.123 -725.790 27.314 1468.290 -262.316 2.593

0.7 1837.491 -983.138 55.247 939.621 -707.709 26.839 2150.615 -257.187 2.529

0.8 4660.094 -929.664 54.707 1555.822 -670.400 26.522 3396.122 -253.192 2.465

0.9 19940.453 -887.964 54.351 2871.620 -661.300 26.187 5999.228 -250.668 2.413

1 (CML) 4201804 -857.056 54.028 6359.663 -659.549 26.034 12808.441 -249.783 2.376

scale = 32 Km (m = 4) scale = 16 Km (m = 3) scale = 8 Km (m = 2)

threshold = 10 mm/hr threshold = 0 mm/hr threshold = 2 mm/hr

π D Log-L mean D Log-L mean D Log-L mean

0 (MOM) 321.681 -140.976 1.055 133.678 -918.912 45.837 2283.193 -45.477 0.114

0.1 363.814 -138.328 0.982 146.954 -871.850 43.636 2543.711 -45.331 0.112

0.2 416.285 -136.197 0.922 163.631 -838.222 42.197 2852.752 -45.197 0.110

0.3 482.369 -134.509 0.873 184.546 -814.725 41.195 3222.958 -45.075 0.109

0.4 566.694 -133.198 0.835 211.181 -794.143 41.170 3671.345 -44.964 0.107

0.5 675.955 -132.195 0.806 244.211 -775.821 40.641 4221.251 -44.866 0.105

0.6 820.111 -131.426 0.784 286.088 -761.917 40.218 4905.358 -44.783 0.104

0.7 1014.472 -130.825 0.769 339.710 -751.521 39.909 5770.571 -44.714 0.102

0.8 1283.507 -130.353 0.756 409.142 -743.906 39.668 6886.108 -44.662 0.101

0.9 1668.203 -130.025 0.743 500.294 -739.035 39.432 8357.540 -44.629 0.100

1 (CML) 2241.288 -129.902 0.730 622.062 -737.359 39.207 10352.280 -44.617 0.098

Table 3: Log-likelihood and D statistics measuring performance of the fitted model for several

values of the weight 0 ≤ π ≤ 1 used between MOM (π = 0) and CML (π = 1) versions of the fitted

INAR(1). The number of Poisson components in the mixture law of innovations, m, is chosen by

optimization of the AIC as shown in Table 4, using MOM (π = 0). The mean of the fitted model

is also reported.
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scale = 120 Km, threshold = 5 mm/hr scale = 60 Km, threshold = 1 mm/hr

m Log-L AIC BIC D Log-L AIC BIC D

1 -4730.399 9462.798 9463.063 84.017 -3082.490 6166.980 6167.245 118.994

2 -3020.503 6047.006 6047.800 84.500 -1596.888 3199.776 3200.570 119.317

3 -2591.699 5193.398 5194.722 84.260 -1276.478 2562.956 2564.280 119.405

4 -2335.357 4684.714 4686.568 84.366 -1232.281 2478.562 2480.416 119.454

5 -2289.661 4597.322 4599.705 84.487 -1203.214 2424.428 2426.811 119.439

6 -2277.539 4577.078 4579.991 84.456 -1192.989 2407.978 2410.891 119.453

7 -2269.168 4564.336∗ 4567.779∗∗ 84.469 -1189.212 2404.424∗ 2407.867 ∗∗ 119.468

8 -2269.010 4568.020 4571.992 84.467 -1187.754 2405.508 2409.480 119.453

9 -2268.497 4570.994 4575.496 84.467 -1186.882 2407.764 2412.266 119.459

scale = 60 Km, threshold = 20 mm/hr scale = 32 Km, threshold = 10 mm/hr

m Log-L AIC BIC D Log-L AIC BIC D

1 -687.762 1377.524 1377.789 344.831 -273.165 548.330 548.595 321.591

2 -367.229 740.458 741.253 345.691 -150.770 307.539 308.334 321.577

3 -317.376 644.752∗ 646.076∗∗ 346.058 -143.041 296.082 297.406∗∗ 321. 684

4 -316.703 647.407 649.261 346.050 -140.976 295.953∗ 297.807 321.681

5 -316.699 651.397 653.781 346.050 -140.976 299.953 302.336 321.681

scale = 16 Km, threshold = 0 mm/hr scale = 8 Km, threshold = 2 mm/hr

m Log-L AIC BIC D Log-L AIC BIC D

1 -1377.723 2757.446 2757.711 134.842 -64.058 130.117 130.382 2282.450

2 -982.298 1970.595 1971.390 134.207 -45.477 96.954∗ 97.748∗∗ 2283.193

3 -918.912 1847.824∗ 1849.148∗∗ 133.678 -45.440 100.879 102.203 2283.241

4 -917.595 1849.189 1851.043 133.760 - - - -

Table 4: Selection of the number of Poisson components in the mixture law of innovations, m,

by optimization of AIC and BIC, using MOM (π = 0). Log-likelihood and D statistics, reflecting

performance of the fitted INAR(1) model, are also reported. Optimal values of m are indicated by
∗ under AIC and by ∗∗ under BIC.
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Figure 1: Plots of tail probabilities P (X > k), for integer k ≥ 0. Empirical values from the observed

series of pixel counts are depicted with ◦. Parametric bootstrap medians of tail probabilities based

on 1000 replications from the fitted INAR(1) model are depicted with N. Using parametric boot-

strap percentiles, based on the same 1000 replications, 95% confidence intervals are also computed

and depicted by grey vertical line segments. The left column of plots corresponds to the MOM

version of the fitted model, and the right column to the CML version.
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Figure 2: Plots of (non-central) log-moments, log{µ′k(X)} = log{E(Xk)}, for equi-spaced values of

0.1 ≤ k ≤ 4 with step ∆k = 0.1. The continuous line depicts sample moments from the observed

series of pixel counts. Parametric bootstrap medians of moments based on 1000 replications from

the fitted INAR(1) model are depicted by the dashed line. Using parametric bootstrap percentiles,

based on the same 1000 replications, 95% confidence bounds are also computed and depicted by

the two dotted lines. The four H in each plot depict exact values of moments of integer order

k = 1, 2, 3, 4 for the fitted model. The left column of plots corresponds to the MOM version of the

fitted model, and the right column to the CML version.
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Figure 3: Case of threshold = 5 mm/hr in the region with scale = 120 Km. The corresponding

time series of pixel counts is depicted by the continuous line in each of (c)-(f). Sample ACF and a

smoothed periodogram estimate of the spectrum are depicted by dotted lines in (a) and (b). Exact

ACF and exact spectral density function of the MOM-fitted model (see formulae (8) and (9)) are

depicted by continuous lines in (a) and (b) respectively. The dashed lines in (a) depict 95% con-

fidence bounds for the ACF, using parametric bootstrap percentiles based on 1000 replications of

the MOM-fitted model. The dotted lines in (c) and (d) depict 1-step-ahead integer-valued predic-

tions made by the MOM-fitted model. Predictions shown in (c) are based on a single replication,

while predictions shown in (d) are parametric bootstrap medians of 1-step predictions from 1000

replications of the MOM-fitted model. The grey vertical line segments in (c) are 95% prediction

intervals constructed from parametric bootstrap percentiles of the 1000 1-step predictions. The

dotted lines and the grey intervals in (e) and (f) depict similar information as in (c) and (d), but

for 2-step-ahead predictions based on a single and on 1000 replications of the MOM-fitted model.
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Figure 4: Case of threshold = 1 mm/hr in the region with scale = 60 Km. The corresponding

time series of pixel counts is depicted by the continuous line in each of (c)-(f). Sample ACF and a

smoothed periodogram estimate of the spectrum are depicted by dotted lines in (a) and (b). Exact

ACF and exact spectral density function of the MOM-fitted model (see formulae (8) and (9)) are

depicted by continuous lines in (a) and (b) respectively. The dashed lines in (a) depict 95% con-

fidence bounds for the ACF, using parametric bootstrap percentiles based on 1000 replications of

the MOM-fitted model. The dotted lines in (c) and (d) depict 1-step-ahead integer-valued predic-

tions made by the MOM-fitted model. Predictions shown in (c) are based on a single replication,

while predictions shown in (d) are parametric bootstrap medians of 1-step predictions from 1000

replications of the MOM-fitted model. The grey vertical line segments in (c) are 95% prediction

intervals constructed from parametric bootstrap percentiles of the 1000 1-step predictions. The

dotted lines and the grey intervals in (e) and (f) depict similar information as in (c) and (d), but

for 2-step-ahead predictions based on a single and on 1000 replications of the MOM-fitted model.

37



lag ( x 20 minutes)

ac
f v

al
ue

0 5 10 15 20 25 30

-0
.2

0.
2

0.
6

1.
0

(a) ACF

frequency

po
w

er
 d

en
si

ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
20

0
40

0
60

0

 (b) Spectrum

time (x 20 minutes)

co
un

t o
f p

ix
el

s

0 50 100 150

0
20

40
60

(c) 1-step predictions from  one replication

time (x 20 minutes)

co
un

t o
f p

ix
el

s

0 50 100 150
0

20
40

60

(d) 1-step percentile predictions from 1000 reps

time (x 20 minutes)

co
un

t o
f p

ix
el

s

0 50 100 150

0
20

40
60

(e) 2-step predictions from one replication

time (x 20 minutes)

co
un

t o
f p

ix
el

s

0 50 100 150

0
20

40
60

(f) 2-step percentile predictions from 1000 reps

Figure 5: Case of threshold = 0 mm/hr in the region with scale = 16 Km. The corresponding

time series of pixel counts is depicted by the continuous line in each of (c)-(f). Sample ACF and a

smoothed periodogram estimate of the spectrum are depicted by dotted lines in (a) and (b). Exact

ACF and exact spectral density function of the MOM-fitted model (see formulae (8) and (9)) are

depicted by continuous lines in (a) and (b) respectively. The dashed lines in (a) depict 95% con-

fidence bounds for the ACF, using parametric bootstrap percentiles based on 1000 replications of

the MOM-fitted model. The dotted lines in (c) and (d) depict 1-step-ahead integer-valued predic-

tions made by the MOM-fitted model. Predictions shown in (c) are based on a single replication,

while predictions shown in (d) are parametric bootstrap medians of 1-step predictions from 1000

replications of the MOM-fitted model. The grey vertical line segments in (c) are 95% prediction

intervals constructed from parametric bootstrap percentiles of the 1000 1-step predictions. The

dotted lines and the grey intervals in (e) and (f) depict similar information as in (c) and (d), but

for 2-step-ahead predictions based on a single and on 1000 replications of the MOM-fitted model.
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