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0.  Abstract 

[0] In the analysis of rainfall time series the assumption of stationarity is generally postulated. This key 

assumption undoubtedly facilitates mathematical tractability of stochastic models employed for either 

descriptive or predictive purposes. However, nature is complex enough so as to accommodate alternations 

between stationary and non-stationary modes, possibly co-existing in a time series of rainfall measurements. 

Formal statistical testing of the hypothesis of stationarity in data is very important, since the presence of non-

stationarities can lead to seriously questionable results and misinterpretations of data analyses relying on 

stationarity ad hoc. 

The present work tests the hypothesis of weak stationarity on long rainfall time series records of high 

resolution (8 years with resolution of 1 hour at Marghera, Italy and 25 years with resolution 5 minutes at 

Firenze, Italy). This task is carried out with the implementation of non-parametric statistical procedures 

appropriate for testing homogeneity of mean, variance, and covariance structure, over time. The present 

work is also concerned with the effects of non-stationarity on the variance-time function of series of 

aggregates over a range of temporal scales of aggregation. Such effects are discussed with regard to observed 

rainfall data, and with regard to synthetic data obtained from simulations of certain non-stationary model 

processes constructed here for illustrative purposes. 

INDEX TERMS: 1854 (3354) Precipitation, 1869 (Stochastic processes) 

KEYWORDS: Non-stationarity, rainfall, scaling properties, tests of stationarity, variance-time plot. 

 

 

1.  Introduction 

[1] Stationarity is the most common albeit fundamental assumption made in hydrology and in 

geophysical sciences at large [Bras and Rodriguez-Iturbe, 1985]. However nature’s complexity often cannot 

be represented through a single stationary model. Different types of non-stationarity may be evident in the 

analysis of natural time series [Kottegoda, 1985]. Examples are cyclical changes such as diurnal periodicities 

acting at time scales smaller than daily but larger than hourly, along with seasonal or quasi-seasonal 

periodicities acting at weekly up to monthly scales, possibly combined with inter-annual and inter-decadal 
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cycles and trend effects, due to various sources of non-stationarity attributed to climatic changes or other 

geophysical forcings, and possibly to anthropogenic impacts on the environment.  

[2] The temporal resolution or sampling frequency at which a phenomenon is observed affects the 

evidence upon which the underlying process may be treated as stationary or not. In other words, stationarity 

is a scale-dependent feature of the observed process, in the sense that at some scale of observation 

(resolution) the hypothesis of stationarity may be accepted, while at some other scale associated with coarser 

or finer resolution it may be rejected. Kottegoda [1985] showed evidence of non-stationarity in annual series 

using the evolutionary spectrum. Whitcher et al. [2002] tested stationarity in long annual series (Nile river 

minimum water level) using wavelets. Wilby [1997] presented evidence of non-stationarity in historical 

records of daily precipitation series from Britain, attributing it to certain “links” of daily precipitation with 

several indices of atmospheric circulation dynamics. 

[3] Scale-dependence of stationarity pertains also to time series of aggregates with respect to different 

temporal scales of aggregation. A series of aggregates is obtained from a given time series with fixed 

resolution, called the aggregated series, by summation of observed values over successive disjoint sections 

of some given length of interest called scale of aggregation (an integer multiple of the resolution of the 

aggregated series). If the aggregated series is (weakly) stationary, then all series of aggregates inherit (weak) 

stationarity at every scale of aggregation. If the aggregated series is non-stationary, it is still possible that for 

large enough scales of aggregation (yet short enough so as to allow sufficient number of sections), some 

sources of non-stationarity are alleviated, so that the series of aggregates may render stationarity a reasonable 

assumption to adopt for subsequent analysis or modelling purposes at those scales.  

[4] In particular, rainfall time series are characterized by intermittence between long periods of 

quiescence with very “light” or no rain, and shorter periods of intense activity with very high rain rates, at all 

scales of observation. Intermittence complicates significantly the assessment of stationarity in time series of 

rain rate measurements with high resolution. However, by aggregation of rain rate measurements one may 

obtain series of rainfall accumulation over different temporal scales of aggregation, where it is evident that 

intermittence becomes less pronounced as the scale of aggregation increases (say from hourly to daily or 

weekly scale). Therefore, it is anticipated that assessment of stationarity becomes more feasible at larger 

scales of aggregation, rendering stationarity scale-dependent in this sense too.  
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[5] Under the assumption of stationarity, Marani [2003] argues mathematically on theoretical ground 

that by aggregation of a stationary stochastic process representing instantaneous rainfall intensity in 

continuous time, the variance of the resulting stationary process of rainfall aggregates displays several 

regimes of behavior as a function of the scale of aggregation. These consist of an inner scaling regime over a 

range of small scales of aggregation, an outer scaling regime over a range of large scales, and a transitional 

regime over an intermediate range of scales separating the two scaling regimes. The variance is well 

approximated by a quadratic function of scale (i.e. power-law with exponent 2) over the inner regime, and 

becomes a power-law function with exponent in the interval [1,2) over the outer regime. The characteristics 

of the transitional regime and the exact value of the exponent in the outer scaling regime depend upon certain 

types of asymptotic behavior of the autocorrelation function of the underlying process of rainfall intensity in 

continuous time, to which the author refers as memory and discerns it to finite or infinite memory. These are 

interesting findings in the sense that from the transitional behavior of variance towards the outer scaling 

regime, as the scale of aggregation increases, useful information may be drawn. Such information regards to 

identifying the range of scales in which scaling of variance by a single power-law function of scale holds for 

series of rainfall aggregates, and also furnishes memory properties (i.e. asymptotic behavior of the 

correlation structure) of the underlying process being aggregated, under the assumption of stationarity. 

[6] To support these theoretical findings, Marani [2003] analyzed four long records of rainfall 

measurements from locations of diverse climates (i.e. Marghera-Italy, Ashover-U.K., Matilija Dam-

California, and Lebanon Waterworks-Indiana). However, the very important assumption of stationarity was 

not verified in any quantitative way on the data. Instead, stationarity was merely assumed to hold ad hoc, 

during any given month of the year (e.g. every January), across all years (i.e. interannually) in the record 

available at each site. Therefore, while the issue of testing stationarity withstands the analysis of data 

presented therein, the empirical evidence of two power-law scaling regimes separated by a transitional 

regime in variance-time plots, in our opinion may be merely an artifact of non-stationarities present in the 

analyzed data.  

[7] The purpose of the present work is twofold. First, to highlight the possibility of non-stationarity in 

rainfall time series of high temporal resolution, by raising sufficient statistical evidence against the 

hypothesis of stationarity. To this end, some formal statistical procedures suitable for testing the hypothesis 

of (weak) stationarity are presented in Section 2. Results from the application of these statistical procedures 
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on long rainfall records of high resolution, including the series from Marghera considered by Marani [2003], 

are presented and discussed in Section 3. The second goal is to provide some understanding of the effects of 

non-stationarity on the behavior of variance-time plots of series of aggregates obtained from non-stationary 

processes. This task is undertaken in Section 4 with the construction of suitable examples of non-stationary 

processes for illustrative purposes. Synthetic time series from these non-stationary models do demonstrate 

double scaling regime structure in their variance-time plots. Our conclusions are summarized in Section 5. 

 

2.  Weak stationarity and statistical testing procedures 

2.1 Notation and the concept of weak stationarity 

[8] Let {Xt, t ∈ N} denote a time series process observed at discrete time instants t ∈ N, where the index 

set N denotes the set of natural numbers. Introducing notation and terminology, { }tX XE)t(M =  is the 

mean function, ( ) [ ] [ ]{ })s(X)t(XEX,XCov)s,t(C XsXtstX µµ −⋅−==  is the covariance function, 

and [ ]{ } { }t2
XtX

2
X XVar)t(XE)t,t(C)t( =−== µσ  is the variance function of the process, which is 

said to be a weakly stationary process or wide sense stationary or second-order stationary if and only if the 

following three requirements are fulfilled: 

(S0)         E[Xt
2] < ∞,  for all t ∈ N, 

(S1)         MX(t) = µX,  for all t ∈ N, 

(S2)        CX(t, s) = CX(t + τ, s + τ),  for all t, s, τ ∈ N.  

The above definition requires that all moments up to second order are finite, and in particular that the mean 

function remains constant, and that the covariance function remains invariant under translations of the origin 

of time, or equivalently that it reduces to an even and non-negative definite function Xγ of temporal lag only, 

                                 ( )




≥−
≤−

===−
st,)0,st(C
st,)ts,0(C

)t,s(C)s,t(Cst
X

X
XXXγ , 

whence the variance function becomes also constant, i.e. 2
XXXX

2
X )0()0,0(C)t,t(C)t( σγσ ==== . 

 [9] Weak stationarity as defined above is the most common and broad sense in which the term 

“stationarity” is usually interpreted or considered, allowing also several other stronger notions of stationarity 

to hold along with it [e.g. see Priestley,1981-a; Yaglom,1987; Brockwell and Davis,1991]. In general, 
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stationarity is a concept addressing stability or homogeneity of the probabilistic behavior of a random 

process over time. Such stability depends much on the physical mechanisms generating the phenomenon 

measured by the random process, and as noted in the Introduction it may depend on the scale at which the 

random process is observed. Some interesting viewpoints on the concept of stationarity have been expressed 

by Mandelbrot [1983, pp. 383-386]. 

 [10] Non-stationarity of a process may be inferred from significant changes over time in either the mean, 

or the variance, or the covariance of the process. On the contrary, weak stationarity is a safe assumption to 

make only if both mean and variance of the process remain constant, and also the covariance function does 

not vary over time, with respect to some quantitative criteria of confidence. For example, given a non-

stationary process {Xt} with finite mean function )t(Xµ , finite and positive variance function )t(2
Xσ , and 

covariance function )s,t(CX , it is clear that the process [ ]{ })()( ttXY XXtt σµ−=  has constant mean 

0)( ≡tYµ , constant variance 1)(2 ≡tYσ , but its covariance function [ ])s()t()s,t(C)s,t(C XXXY σσ ⋅=  

need not be invariant through time, unless if special conditions are imposed on the X-process. Thus, the Y-

process is anticipated to have inhomogeneous covariance function, in general, and therefore to be non-

stationary although its mean and variance are constant.  

[11]  Several statistical procedures are available in the literature for testing the hypothesis of weak 

stationarity on actual time series data of fixed resolution, regarding different aspects of the hypothesis of 

weak stationarity, namely homogeneity of mean, homogeneity of variance, and homogeneity of covariance. 

Existence of moments up to second order, which is part of the definition of weak stationarity, is an 

inescapable assumption made a priori in all these tests. Since no further assumptions are made here about 

marginal or bivariate probability distributions of the observed process (except existence of moments up to 

second order), our interest is focused only on non-parametric testing procedures, briefly presented in the rest 

of this section and applied to actual rainfall data in Section 3. 

 

2.2 Testing homogeneity of mean 

[12] Here we propose a new and relatively simple procedure that we used for testing homogeneity of 

mean. Given a time series process X={Xt, t ∈ N} and a temporal scale of aggregation 1m ≥ , the time series 
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process X(m)={Xt
(m), t ∈ N} of m-aggregates of X is defined by taking ( )

( )∑= +−=
tm

mti i
m

t XX 11 . Clearly, if the 

process X has constant mean Xµ , then the process X(m) also has constant mean given by the formula 

XX
m)m( µµ ⋅= . (1) 

In fact, if X is weakly stationary, then X(m) is also weakly stationary, with covariance function explicitly 

determined by covariances of the original X-process (e.g. see Koutsoyiannis [2002]). In general, we shall 

refer to the functional relationship between the mean of m-aggregates and the scale of aggregation m, as 

mean-time function, and to the plot of sample mean of m-aggregates versus the scale m as mean-time plot. In 

the case of homogeneous mean, equation (1) represents a linear mean-time function, and the mean-time plot 

of the sample mean )m(X
µ̂  of m-aggregates against the scale of aggregation m is expected to fit well along a 

straight line. The intercept term of the best fitted line (say by the method of ordinary least squares) ought to 

be statistically insignificant, and its slope can be used as a working estimate Xµ̂  of the constant mean Xµ . 

[13] Now suppose that a long time series { }T
1ttx =  is divided into 2n ≥  sub-series over disjoint large 

sections of equal length. In the case of homogeneous mean Xµ , the mean-time plot of every subseries (over 

the same scales of aggregation implemented in every section) should yield a strong linear fit. As already 

pointed out, all intercepts of the fitted lines (one line for each subseries or section) ought to be statistically 

insignificant, and the slopes of the fitted lines provide an ensemble of sample estimates { }n,,1j;ˆ
jX L=µ  

of the true constant mean Xµ . Such estimates facilitate the construction of a two-sided confidence interval 

for Xµ , on the basis of which one may assess further the statistical significance of the hypothesized 

homogeneity of the mean, at desired level of significance 0 < α < 1, rejecting the hypothesis of homogeneity 

of the mean if the percentage of the n  estimates { }n,,1j;ˆ
jX L=µ  falling outside that interval is greater 

than α. Alternatively, homogeneity of the mean may also be rejected if the overall sample mean 

( ) ∑
=

⋅=
T

1t
txT/1x , or if the slope Xµ̂  of the overall mean-time plot, falls outside that interval. 

[14] For example, if the estimates { }n,,1j;ˆ
jX L=µ  are not correlated and the shape of their 

distribution is not too skewed, an approximate confidence interval for Xµ  (for sufficiently large n) is 

obtained by the formula  



 7

( )X2/1X sz µµ α ⋅± − , (2) 

where ∑
=

− ⋅=
n

1j
X

1
X j

ˆn µµ  is a new sample estimate of the true constant mean Xµ , 2/1 α−z  is the (1-α /2)-

quantile of the standard normal distribution, and ( ) ( )[ ] ( )
2n

1j
XX

1
X j

ˆ1nns ∑
=

− −⋅−⋅= µµµ  is the standard 

error of the estimate Xµ  (e.g. see Gilbert [1987, sections 11.7, 11.12]). 

[15] If the hypothesis of a constant mean is not rejected, then one should proceed to test for homogeneity 

of variance and covariance in order to establish validity of the assumption of stationarity. Otherwise, if there 

is sufficiently significant evidence pointing to rejection of homogeneity of the mean, then the process should 

be considered non-stationary per se. However, it is worthy to remark that, if one suspects that inhomogeneity 

of the mean is not the only source of non-stationarity, then one ought to estimate (parametrically or non-

parametrically) and remove the estimated inhomogeneous mean function (i.e. trend) from the initial series of 

observed data. Subsequently, the de-trended series should be subjected to tests of homogeneity of variance 

and covariance, and possibly to a test of homogeneity of mean anew as an additional check on the quality of 

the de-trending procedure. 

 

2.3 Testing homogeneity of variance 

[16] Pagan and Schwert [1990] proposed three non-parametric statistical procedures for testing 

homogeneity of variance over time, on the basis of regularly sampled time series data. Namely, these are the 

post-sample prediction test, the cumulative sum test (CuSum in short), and the modified scaled-range test, 

and applied them to investigations of weak stationarity in stock market financial data. The CuSum test is 

closest to the original idea proposed by Mandelbrot [1963] for exploration of existence of variance, and 

homoscedasticity thereof, formalizing that idea into a rigorous testing procedure, which is presented here 

briefly in order to be implemented in Section 3 for the detection of heteroscedasticity in rainfall time series.  

[17] The CuSum test presumes that the observed data { }T
tty 1=  are generated by a process { }Nt;Yt ∈  with 

mean zero, and examines the variability of the cumulative sums of the series of squared data { }T
1t

2
ty = , up to r-

fractions of the time of observation T, through the normalized statistic given by the formula 
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( ) ( )
[ ]

∑
⋅

=

−⋅
⋅

=
Tr

1t

2
T

2
t ˆy

Tˆ
1r σ
ν

ϕ , (3) 

where 0 < r < 1 denotes fraction of time, [.] is the integer part function, ( ) ∑
=

⋅=
T

1t

2
t

2
T yT/1σ̂  is a sample 

estimate of variance over the entire record of data (of length T), and ∑
=







 −⋅⋅+=

8

1k
k0 9

k1ˆ2ˆˆ γγν , with kγ̂  

being the sample covariance estimate (at lag 0k ≥ ) computed from the whole series of the squared data 

{ }T
1t

2
ty = . Under the hypothesis of weak stationarity, ν̂  serves as an estimate of ∑

∞

=

⋅+=
1k

k0 2 γγν , with kγ  

being covariance (at lag 0k ≥ ) of the squared process { }Nt;Y 2
t ∈ , provided that ν  is a finite number, i.e. 

if the squared process { }Nt;Y 2
t ∈  possesses finite moments up to second order and also has finite memory 

(see Phillips [1987] for explicit conditions).  

[18] The asymptotic probability distribution of the statistic ϕ(r), for sufficiently large T, is a normal 

distribution with mean 0 and variance r(1-r), a result derived by Lo [1988] under a set of suitable conditions 

formulated by Phillips [1987]. This asymptotic result facilitates the construction of a non-parametric 

confidence region, rejecting the hypothesis of homoscedasticity at desired level of significance 0 < α < 1 if 

the plot of ϕ(r) wanders-off that region during a gross fraction of T that is greater than α. The boundary of 

the confidence region is a closed curve comprising of two arcs, )r1(rz)r(c 2/1 −⋅= −
+

αα  and 

)r(c)r1(rz)r(c 2/
+− −=−⋅= ααα , meeting at the beginning ( 0r = ) and at the end ( 1r = ) of the time 

of observation (i.e. )1(c)1(c0)0(c)0(c +−+− ==== αααα ). 

  

2.4 Testing homogeneity of covariance 

[19] The tests developed by Pagan and Schwert [1990], may also be considered as tests of homogeneity 

of covariance structure, albeit only implicitly as such, in the sense that while testing directly for 

homoscedasticity, under the null hypothesis, the asymptotic behavior of the test statistic ϕ(r) presumes 

stationarity of the covariance structure as well. However, lack of evidence towards rejection of 
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homoscedasticity tested by the procedures proposed by Pagan and Schwert [1990], may be insufficient 

information for acceptance of the stronger hypothesis of stationary covariance.  

[20] Spectral analysis in the frequency domain is generally a more appropriate framework for drawing 

useful information about stationarity or non-stationarity of covariance structure. For example, it is well 

known that for scale-invariant processes the power spectrum )(S ω  is a power-law function of frequencies 

ω  within a certain range of temporal scales [Mandelbrot, 1983; Davis et al., 1996; Kärner, 2002]. That is, 

for ( )ul ,ωωω ∈ , there is 0≥δ , so that )(S ω  is proportional to δω − , and the spectral exponent δ is 

informative about stationarity or non-stationarity of the underlying scale-invariant process. Specifically, the 

Wiener-Khinchine theorem implies that values of δ <1 correspond to stationary processes, and the value 

δ = 0 is associated with white noise. In contrast, values in the range 1<δ <3 are associated with non-

stationary processes having stationary increments [Mandelbrot, 1998, pp.74-79; Malamud and Turcotte, 

1999]. 

[21] Several studies on observed rainfall series support the power-law type of behavior of the spectrum, 

with exponents near zero ( 0≈δ ) for time scales longer than 1-2 weeks, 0<δ < 1 in the range of scales from 

1-2 weeks down to 1-6 hours, and 1<δ <2 for time scales smaller than 1-6 hours [e.g. see Fraedrich and 

Larnder, 1993; Georgakakos et al., 1994; Fabry, 1996; Harris et al., 1996; Tessier et al., 1996; Olsson and 

Burlando, 2002]. These studies verify scale-dependence of stationary and non-stationary behavior in rainfall 

time series, where stationarity tends to settle over a range of larger scales of observation or aggregarion, and 

non-stationarity is more prominent across a range of smaller scales. Similar behavior has also been observed 

in time series of other geophysical variables [e.g. see Davis et al., 1996; Kärner, 2002]. 

[22] The basic tool of spectral analysis is the discrete (or finite) Fourier transform of the data, whose 

squared modulus is known as periodogram, and through which various estimators of the spectrum are 

constructed and studied in the literature. Statistical properties of periodogram based estimators of power 

spectra are well established for weakly stationary processes (e.g. see Priestley [1981-a], Brockwell and Davis 

[1991]). However, when one is concerned about the very assumption of weak stationarity, then the concept 

of evolutionary spectrum introduced by Priestley [1965] is naturally more appealing and appropriate for the 

study of inhomogeneities in the covariance structure of the underlying process (see also Priestley [1981-b]).  
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[23] An important advancement towards rigorous statistical testing of the hypothesis of weak stationarity 

has recently been made by Ahamada and Boutahar [2002], with the construction of a non-parametric 

procedure based on the concept of evolutionary spectrum. The main advantage of this new test, compared to 

previous ones [Priestley and Subba Rao, 1969; Pagan and Schwert, 1990], is that it is highly sensitive to a 

great variety of types of instabilities in the covariance structure, and it is not confined by design to detect 

particular types of instability associated with certain kinds of non-stationarity. This high sensitivity is due to 

the local character of the Fourier transform of the data, subsequently built into the estimator of the 

evolutionary spectral density and also into the proposed test statistic. Here we briefly describe the 

stationarity test of Ahamada and Boutahar [2002], in order to apply it on time series of rainfall in Section 3. 

[24] Consider a time series process { }tY  with zero mean, defined as a stochastic integral 

( ) ( )∫
+

−

=
π

π

ω ωζω deAY ti
tt  (4) 

with respect to a random ζ-process possessing orthogonal increments dζ(ω) on [-π, π], such that 

E[dζ(ω)] = 0 and E[|dζ(ω)|2] = dµ(ω), where µ(ω) is a measure on [-π, π]. The integrated (random) function 

At(ω) is defined at frequencies ],[ ππω −∈ , and for each fixed ],[ ππω −∈  the modulus of the 

(generalized) Fourier transform of the t-sequence {At(ω)} is supposed to have an absolute maximum at the 

origin (i.e. at 0=ω ). Then, the evolutionary spectral density ht(ω) of such an oscillatory process { }tY  is 

defined as 

( ) ( )
ω
ωω

d
dHh t

t = , for  ],[ ππω −∈ , (5) 

where ( ) ( ) ( )ωµωω dAdH tt
2= . An estimator ( )ωtĥ  of the evolutionary spectral density ht(ω) is 

( ) ( )∑
∈

−=
Zv

vtvt Uwh 2ˆ ωω , (6) 

where ( ) ( )∑ ∈
−−

−=
Zu

uti
utut eygU ωω , gu is a Bartlett window, and wv is a Daniel window, defined 

respectively by 

( )






>
≤

=
huif0
huifh2/1

gu
π

         and        




>
≤

=
2/'0
2/''/1

Tvif
TvifT

wv . (7) 
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[25] Given time series data { }T
tty 1=  from a process { }tY  in the class considered above, we take h = 7, 

T ′ = 20, and consider the set of times { }I
ii it 120 == , where I = [T/20], and the set of frequencies 

( ) ( )( ){ }7
1jj 1j3120/

=
−+⋅= πω , as suggested by Ahamada and Boutahar [2002], so that certain desired 

properties are met by the estimates ( )jti
ĥ ω . Then, set ( )jtij i

hV ωˆlog= , ( ) ∑ =
⋅=

7

1j iji V7/1V , 

( ) ∑ =
⋅=

I

1i ijj VI/1V , ( )( ) ∑ ∑= =
⋅⋅=

I

1i

7

1j ijT VI7/1µ̂ , ( ) ( )
2I

1i Ti
2 ˆVI/1ˆ ∑ =

−⋅= µσ , and 

( )( ) ( )∑ =
−⋅=

r

1i Tir ˆVIˆ/1S µσ , for r = 1,…, I , for i = 1,…,I, and for j = 1,…, 7. 

[26] Under the null hypothesis of weak stationarity of the process { }tY , the limit probability distribution 

of the statistic { }I1 S,,SsupS L= , for T large enough, has cumulative distribution function given by 

( ) ( ) ( )∑∞

=

+ −−⋅−=
1k

22k1
S xk2exp121xF . (8) 

Thus, a test of the null hypothesis of covariance stationarity obtains, at desired level of significance 0<α < 1, 

rejecting the hypothesis if the observed value of the statistic S is greater than the (1-α) quantile of its limit 

distribution. 

Closing this section we should remark that proper implementation of either the CuSum test or of the 

evolutionary spectrum test on non-negative time series of rainfall data { }T
1ttx =  of positive mean, requires that 

the test is applied to the “de-meaned” series { }T
1ttt xxy =−= , provided that the series { }T

1ttx =  has passed a 

test of homogeneity of mean, and in that case its mean is estimated by the sample mean ( ) ∑
=

⋅=
T

1t
txT/1x . 

 

3.  Testing weak stationarity on rainfall data 

[27] The tests presented in Section 2 are applied here in order to check temporal homogeneity of mean, 

variance and covariance on two datasets of rainfall observations, one collected at Marghera over the eight-

year period 1993-2000 with resolution 1 hour, and the other at Firenze, Ximeniano Observatory over the 

twenty-five-year period 1962-1986 with resolution 5 minutes. The first record is available at the web site 

http://www.istitutoveneto.it/venezia/dati/atmosfera, and it is one of the four long records analyzed by Marani 
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[2003]. Respecting the monthly segmentation of each single year in these two time series, the tests were 

separately performed on each month of every year. 

[28] Initially the mean-time plot was calculated over each of the 12 months in each year of the Marghera 

and Firenze data. The range of scales of aggregation implemented on each month of Marghera data is from 1 

hour to 93 hours (with all the integer submultiples of the total number of data (744): 2, 3, 4, 6, 8, 12, 24, 31, 

62 hrs), and the range of scales of aggregation implemented on each month of Firenze data is from 5 minutes 

to 93 hours (with all the integer submultiples of the total number of data, 8928). All the obtained mean-time 

plots agree perfectly with the anticipated linear behavior represented by equation (1). Coefficients of 

determination are strikingly high (exceeding 0.99 in all cases), intercept terms are insignificant indeed, 

residuals in each regression are non-correlated and their standard error is markedly low. The slope of each 

monthly mean-time plot at Marghera (obtained via simple linear regression by ordinary least squares) is 

reported in Table 1. Similar information was obtained for Firenze (not reported here). These findings do 

point to homogeneity of mean over each individual monthly section in both Marghera and Firenze. 

[29] However the estimated slopes of fitted lines vary from month to month within any given year, due to 

anticipated seasonal effects, but also vary significantly from year to year for every given month of the year. 

Using formula (2), a confidence interval at level of significance 05.0=α  was calculated for each month, 

based on the ensemble of estimated slopes obtained for that month from all the available years, in order to 

assess the significance of variability of monthly mean from year to year. For Marghera, these confidence 

intervals are reported in Table 1, and highlighted gray slots indicate months where the slope estimate from 

the corresponding mean-time plot lies outside the 95% confidence interval. Figures 1 and 2 depict these 12 

intervals for Marghera and Firenze respectively. Note that confidence intervals for Firenze are considerably 

“tighter” than those calculated for Marghera, a feature explained by the fact that the number of observed 

years in Firenze is nearly triple that of Marghera (25 versus 8 years) and the resolution in Firenze is twelve 

times higher than that of Marghera (5 minutes versus 1 hour). Clearly, for every given month in either figure, 

the percentage of estimated slopes falling outside the corresponding confidence interval is by far greater than 

5%. Thus, we may claim with 95% confidence that the interannual variability of monthly mean of rainfall, 

over any given month of the year, deviates significantly from the hypothesis of homogeneity, at both Firenze 

and Marghera. 
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[30] Evidence of homogeneity of the mean during every individual month of every probed year in both 

Marghera and Firenze, on the basis of linear regression statistics obtained from mean-time plots, allows 

direct implementation of CuSum-test and evolutionary spectral test on each monthly section, after 

subtraction of the corresponding sample mean from the observations of that month. Tables 2 and 3 report p-

values obtained from the implementation of CuSum test (for each month of each year) on Marghera and 

Firenze data respectively. Similarly, Tables 4 and 5 report p-values obtained from the evolutionary spectrum 

test applied on the same monthly sections of Marghera and Firenze data too.  

[31] The symbol NaN appearing in some slots of Tables 3 and 5, regarding mostly summer months at 

Firenze, indicates that the observed rainfall was constantly zero (i.e. no rain) during those months of those 

particular years, thus supporting the hypothesis of stationarity despite the fact that a p-value is not obtainable 

in those cases. Highlighted gray slots in Tables 2-5 indicate months where the corresponding p-values are 

below the 5% level of significance, and therefore the hypothesis of stationarity ought to be rejected in each 

of those months with 95% confidence. For example, the month of January at Marghera supports the 

hypothesis of homoscedasticity at 5% level of significance in four out of the eight observed years (see 

Table 2), but supports the hypothesis of homogeneous covariance (also at 5% level) only in two out of the 

eight years (see Table 4), incidentally a subset of the four slots where homoscedasticity is supported. 

Figure 3 shows the variability of the ϕ-statistic given by (3), during the month of January at Marghera in the 

year 1997 (figure 3a) and in the year 1998 (figure 3b), and the rejection region associated with the CuSum 

test at 5% level of significance, respectively. 

[32] The CuSum test and the covariance stationarity test were also applied on the annual sections of the 

two time series, and to the entire record of each of these two series, and p-values of the tests are also reported 

in Tables 2-5. The hypothesis of homoscedasticity is rejectable by the CuSum test (at 5% level), in 5 out of 

the 8 available years for Marghera (percentage 63%), and in 17 out of 25 available years for Firenze 

(percentage 68%). The hypothesis of homogeneous covariance is rejectable by the evolutionary spectrum test 

(at 5% level), in 6 out of 8 years for Marghera (percentage 75%), and in all 25 years (percentage 100%) for 

Firenze. Both tests reject the hypotheses of weak stationarity (at 5% level) in both Marghera and Firenze, 

when applied to the entire records of available data.  

[33] Overall, we see that in either monthly, or annual, or global time scales, the information from Firenze 

supports the rejection of weak stationarity more decisively than the information from Marghera, which may 
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be a consequence of the significant differences in the length and the temporal resolution of the two records, 

besides other interpretations of climatological content that one might speculate. In any event, the analysis 

just presented raises rigorous statistical evidence against the hypothesis of weak stationarity of observed 

rainfall processes at Marghera and Firenze. In light of this evidence, the assumption of weak stationarity is 

rejectable for the Marghera data, whose variance-time plot was studied by Marani [2003] assuming 

stationarity. 

[34] Figures 4 and 5 show evidence of scale-dependence of stationarity in the two records of data from 

Marghera and Firenze respectively. Specifically, a raw periodogram estimate of the power spectrum was 

obtained for the month of January in every year, and the average of those estimates (8 for Marghera and 25 

for Firenze) is plotted against (Fourier) frequencies (as log-log-plot). Three bands of frequencies have been 

identified in each of the two plots, each band expressing a power-law function of frequency. For Marghera, 

there is a band of high frequencies corresponding to small temporal scales up to 1.5 hours, where the 

estimated value 1.97 of the spectral exponent δ is clearly greater than unity, a band of intermediate 

frequencies corresponding to time scales ranging from 1.5 hours to 120 hours (about 1 week), where the 

spectral exponent shifts to a value close to unity (estimate 1.06), and a band corresponding to larger scales 

ranging from 120 hours to one month, where the spectral exponent is nearly zero, thus indicating white noise 

(see Figure 4). For Firenze, three different bands of frequencies are shown in Figure 5, and the corresponding 

estimates of spectral exponent δ are, 1.19 in the range from 5 minutes to 1 hour, 0.77 over the intermediate 

range of time scales from 1 hour to 1 day, and 0.22 (i.e. closer to zero) for larger scales ranging from 1 day to 

1 month. 

[35] Although these results, based on raw periodogram estimates, are not as rigorous as those obtained by 

the formal statistical tests presented above, they are in good agreement with similar results reported by 

Olsson and Burlando [2002], who used four time series of rainfall (Camaldoli, Firenze, Livorno, and 

Vallombrosa) with a resolution of 20 minutes from year 1962 up to 1986, and found power-law spectra with 

δ > 1 for time scales shorter than 2-6 hours (depending on the location), and with an exponent δ < 1 for 

scales ranging from 2-6 hours to around 1 week up to 1 month. Note that our data for Firenze cover the same 

span of years (1962-1986), but at finer resolution (5 minutes), which affects the bands where the spectrum 

behaves as a power-law function of frequency, and also affects the estimates of spectral exponents. In any 
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event, these results along with those obtained by Olsson and Burlando [2002] confirm non-stationarity over 

small time scales and a tendency towards stationarity over large time scales, i.e. scale-dependence of 

stationarity.  

Closing this section we should like to mention that, as a check of the performance of the tests presented 

above, we also applied them to synthetic time series data obtained from simulations of specific stationary 

model processes with long-range dependence, namely fractional Gaussian noise processes (see Section 4). In 

all those cases, the hypothesis of stationarity was accepted at the canonical levels of significance 5% and 1%. 

 

4.  Effects of non-stationarity on the variance-time plot 

4.1 Pertinence to long-range dependence  

[36] The functional relationship between the variance of the process X(m) of m-aggregates, of a given 

process X, and the scale of aggregation m, is known as variance-time function of X, and the plot of sample 

variance of m-aggregates versus the scale m is referred to as variance-time plot. The variance-time plot is 

one among several statistical procedures available in the literature for detecting the presence of long-memory 

or long-range dependence in a stationary process. A stochastic process possessing this property is referred to 

as long-range dependent process, in short LRD. A thorough monograph about LRD processes and their 

statistics is that of Beran [1994].  

[37] The very notion of long-memory remains open to controversy among statisticians and other 

scientists; see Sections 3.2, 3.7, and 8.3 in Embrechts and Maejima [2002]. The most commonly adopted 

interpretation or definition of the concept of LRD is that of a stationary process with covariance function 

asymptotically proportional to a power-law function at very large lags, or equivalently with spectral density 

function asymptotically proportional to another power-law function at very low frequencies. In fact, the 

exponents of these two asymptotic power-laws (in time domain and in frequency domain) are determined or 

characterized by a common parameter of memory denoted by H, referred to as Hurst exponent, and taking 

values in the open interval 0.5 < H < 1. By any definition, however, long-memory presumes (weak) 

stationarity of the LRD process. Thus, rigorous testing of the hypothesis of (weak) stationarity is very much 

a key issue, to be addressed before any interpretation of results obtained from analysis of the variance-time 

plot, or of any other tool available for long-memory analysis. Consequently, a relevant issue is to understand 
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how the behavior of the variance-time plot is influenced by various sources of non-stationarity in the process 

of interest (i.e. the aggregated process). The examples that we consider in this section contribute to this goal. 

[38] Teverovsky and Taqqu [1997] and Dang and Molnar [1999] showed that it is difficult to discern an 

LRD-process from a non-stationary process. Similar concerns have also emerged in recent econometric 

literature [Diebold and Inoue (2001) and Mikosch and Stǎriča (2000, 2001)] about the subtlety of long-

memory, arguing that long-memory is falsely claimed or inferred in some cases of non-stationary Markov 

processes with short-memory (e.g. GARCH processes), while it is merely an artifact or disguise of non-

stationarity. Bhattacharya, Gupta, and Waymire [1983] started the investigation of long-memory (via R/S-

analysis) in the presence of some mild deviations from stationarity, namely under the influence of what they 

refer to as “slow trend”; also see Künsch [1986] and Bhattacharya and Waymire [1990, Section I-14]. Dang 

and Molnar [1999] studied the influence of two different deterministic sources of non-stationarity (level 

shifts and linear trends) on long-range dependence, and investigated the associated problem of estimation of 

the Hurst exponent H relying on various methodologies and tools (i.e. variance-time plot, R/S-analysis, 

periodogram analysis, and wavelets). Estimates of H based on methods that rely strongly on the assumption 

of stationarity (i.e. variance-time plot and periodogram analysis) were poor compared to estimates obtained 

by methods that are more robust to non-stationarities (i.e. R/S-analysis and wavelet based estimation), 

pointing to a partial conclusion that variance-time plots should not be trusted without preliminary testing of 

the assumption of stationarity. 

 

4.2 Illustrating examples 

[39] The stochastic ingredient of our examples is drawn from the class of fractional Gaussian noise (FGN 

in short) processes, originally introduced by Mandelbrot and his co-workers in an effort to understand the 

famous Hurst effect [e.g. see Beran, 1994; Samorodnitsky and Taqqu, 1994; Koutsoyiannis, 2002]. A process 

{ }tX  belongs to the FGN class if and only if it is a stationary Gaussian process, say with mean Xµ  and 

variance 2
Xσ , and with covariance function defined on integer lags h by 

( ) ( ) ( ) ( ){ }H2H2H22
XX 1hh21h2/h −+−+⋅= σγ , in short writing )H,,(FGN~X 2

XX σµ . It can be 

shown that an FGN process with 0.5< H < 1 is an LRD process, whence the parameter H is referred to as 

memory parameter or Hurst exponent. Due to the importance of FGN processes in modeling random 



 17

phenomena with long memory, several computational algorithms are broadly available for their numerical 

simulation, and herein we have implemented the algorithm of Paxson [1995]. 

[40] Our first example is a process { }tZZ = , such that ttt AXZ +=  for every t, where { }tXX =  is a 

)H,,(FGN 2
XX σµ  process with long memory (i.e. 0.5< H < 1), and ( )T/t2sinaAt ⋅⋅= π  is a 

deterministic sinusoidal trend function with period T and amplitude a. The parameter X/a σ  introduces a 

“signal-to-noise” type of ratio for comparison of the amplitude of the harmonic trend against the standard 

deviation of the FGN process. The variance of the process ( ){ }m
tX , of m-aggregates of the X-process at given 

scale of aggregation 1m ≥ , is given by the formula ( )
2
X

H22
X

mm σσ ⋅=  (e.g. see Beran, 1994). An 

immediate consequence of this formula is that the plot of ( )( )2log mX
σ  versus )log(m  is a straight line with 

slope 2H and intercept ( )2
Xlog σ . That is, the variance-time plot of an FGN process with Hurst exponent 

0.5<H<1, is a power-law function of the scale of aggregation m, with (scaling) exponent 1<2H<2.  

[41] Since m-aggregates {At
(m)} of the harmonic trend also form a deterministic function of time, and 

)()()( m
t

m
t

m
t AXZ +=  for every t, it follows that the processes of aggregates {Zt

(m)} and {Xt
(m)} have the same 

variance. That is, ( ) ( )
2
X

H22
X

2
Z

mmm σσσ ⋅== , for every scale of aggregation 1m ≥ , showing that the two 

processes also have exactly the same variance-time function (a single power-law with exponent 2H), 

although Z and its aggregates are non-stationary processes, while X and its aggregates are stationary. In 

particular, when the scale of aggregation is some integer multiple of the harmonic period T, say Tkm ⋅= , 

with integer 1k ≥ , then it is elementary to see that At
(kT) = 0, and therefore Zt

(kT) = Xt
(kT), showing that in such 

case the two processes of aggregates have identical sample paths (not just equal variances). That is, the non-

stationarity of aggregates of the Z-process is totally eliminated by this particular choice of scale of 

aggregation.  

[42] A synthetic time series of length n = 214 was obtained by simulation of an )7.0,1,0(FGN  process, 

whose initial section for 1000t1 ≤≤  is shown in Figure 6(a), and Figure 6(b) depicts the harmonic 

function tA  with period T = 50 and amplitude a = 1 over the same section of instants t. The ratio n/T 

quantifies the number of complete periods (of the sinusoidal trend) spanned by the simulated time series. 

Figure 6(c) depicts the initial section of the synthetic time series of the non-stationary Z-process, obtained by 
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the superposition ttt AXZ += of the harmonic trend and the simulated FGN series. Note that 1/ =Xa σ  

and [ ] 327T/n = . From the data of the entire synthetic series of the Z-process we computed an estimate of 

its variance-time plot for scales of aggregation in the range 1 ≤ m ≤ 500. The results are shown in 

Figure 6(d), in a log-log plot (i.e. ( )( )2ˆlog mZ
σ  vs. )log(m ), together with the estimate of the variance-time 

plot of the synthetic series of the X-process (i.e. ( )( )2ˆlog mX
σ  vs. )log(m ). The estimated variance-time 

function from the simulated X-series fits quite well the theoretical one with H = 0.7 (the fitted exponent is Ĥ 

= 0.688). 

[43] Figure 6(d) shows that the variance-time plots of {Zt} and {Xt} tend to coincide for scales of 

aggregation 150m ≥ , defining an “outer” regime of power-law scaling of the variance of aggregates. An 

“inner” regime of power-law scaling of variance is also very distinct in Figure 6(d), over the range of small 

scales of aggregation 25m < . These two scaling regimes are separated by a “transitional” regime over the 

intermediate range of scales 150m25 << . This transitional regime presents an interesting structure, 

alternating between “plateaus” (e.g. 50m25 << , 100m75 << , 150m125 << ), and intermediate 

scaling regimes (e.g. 75m50 << , 125m100 << ) with exponents approaching the exponent of the outer 

regime. For example, over the four ranges of scales 25m1 ≤≤ , 75m50 ≤≤ , 125m100 ≤≤ , and 

150m ≥  we obtained estimates of the corresponding scaling exponents 1.668, 2.215, 2.166, and 1.351 

respectively, which after division by 2 tend eventually to the true Hurst exponent H = 0.7 (compare with the 

previous estimate Ĥ = 0.688 too). 

[44] This example shows that, although the variance-time function of the non-stationary Z-process should 

theoretically be identical to that of the stationary X-process, the actual effect of the harmonic trend is to 

deform the variance-time plot of simulated Z-series, by introducing several power-law scaling regimes which 

eventually tend to settle on the theoretically anticipated single outer scaling regime. The evolution of scaling 

regimes, from the inner towards the outer, follows closely the period T = 50 of the harmonic trend, with 

scaling forming in the first half of that period and fading to a “plateau” in the second half. In this example, 

attainment of the outer scaling regime occurs for aggregation scales greater than about three times the period 

(i.e. for 150m ≥ ). Similar behavior is found also in variance-time plots obtained from synthetic Z-series for 
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several other values of the Hurst exponent (e.g. H = 0.5, 0.6, 0.8, 0.9), and of the period of the sinusoidal 

trend (e.g. T = 25, 75, 100), as long as the “signal-to-noise” ratio is near or below unity (i.e. 1/a X ≈σ ). 

[45] When the ratio X/a σ  becomes substantially larger than unity, then the effects of the sinusoidal 

trend become much stronger, deforming more severely the variance-time plot of the Z-process across a much 

wider range of scales of aggregation. Such an example is shown in Figure 6(f), depicting the variance-time 

plot of a synthetic series ttt AXZ += , in comparison to that of the X-series, where again 

)7.0,1,0(~ FGNX  and tA  has period 50T = , but amplitude 10a = , so that 10/a X =σ . Figure 6(e) 

depicts the initial section ( 1000t1 ≤≤ ) of this synthetic time series (of total length n = 214). Comparing the 

variance-time plots shown in Figures 6(d) and 6(f), one can discern again an inner scaling regime over the 

same range of small scales (m < 25), but no outer scaling regime is immediately evident in 6(f). However, 

one may argue the existence of an outer scaling regime settling at very large scales of aggregation, by 

extrapolating the behavior seen in the plotted part of the transient regime ( 500m25 << ). The argument is 

as follows. First note that the transient regime consists of a sequence of “funnels” (e.g. 75m25 << , 

125m75 << , etc.) forming between consecutive local maxima and an intermediate local minimum. The 

decreasing branch of each funnel represents a further distortion of a previous plateau (e.g. compare 

50m25 << , 100m75 << , etc. in 6(d) and 6(f)), while its increasing branch represents a further 

distortion of a previous intermediate scaling regime (e.g. compare 75m50 << , 125m100 << , etc. in 

6(d) and 6(f)). The sequence of maxima, attained at scales that are integer multiples of the half-period, forms 

an upper envelope of the transient regime. Evidently, this upper envelope conforms to a power-law with 

some positive exponent smaller than the scaling exponent 2H of the variance-time plot of the X-series, and 

depends on the ratio X/a σ . At the other end, the sequence of local minima, attained at scales that are 

integer multiples of the full-period, forms a lower envelope of the transient regime. Therefore, according to 

an earlier comment, these local minima fall exactly on the variance-time plot of the stationary X-series. 

Consequently, the two envelopes are anticipated to eventually meet and merge after some large multiple of 

the period (say m = 1500 = 30 x 50 in 6(f), instead of m = 150 = 3 x 50 in 6(d)). From that scale onward an 

outer scaling regime will settle in, recovering again the true variance-time plot of both processes X and Z. 

This behavior can be verified via synthetic series of much longer length than (say n=218). 
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[46] In our second example we introduce “intermittence”, by modifying the sinusoidal trend tA  so as to 

become a new deterministic function [ ]∑
∈

+⋅=
Pp

Tpptt tIAB )(2/, , where )(]2/,[ tI Tpp +  is the indicator function 

of the interval [p, p+T/2], and p assumes values from a finite set of integers NP ⊂ . Specifically, for a 

synthetic trajectory of length n = 214 (Figure 7a), we consider P = {1, 8000, 16000}, for a given period 

T = 50 (Figure 7b). Non-stationarity is now represented only by very few sinusoidal bursts (e.g. three in the 

current example), but with much greater ratio 50/a X =σ  of amplitude (a = 50) versus FGN variance 

( 1X =σ ), while almost all the time the new non-stationary process Wt = Xt + Bt coincides with the FGN 

process X. This effect might be reminiscent of the behavior of stormy rainfall with brief intervals of intense 

activity interrupting long intervals of quiescence (see Figure 7c). Since )m(
t

)m(
t

)m(
t BXW += , the processes 

of aggregates {Wt
(m)} and {Xt

(m)} have equal variances, and thus identical variance-time function 

( ) ( )
2
X

H22
X

2
W

mmm σσσ ⋅== , which is again a power-law function of the scale of aggregation m, with 

exponent 1<2H<2. 

[47] The variance-time plot of a simulated W-series, with )7.0,1,0(~ FGNX , has been computed for 

scales of aggregation in the range 1 ≤ m ≤ 500, and it is compared with that of the stationary X-process (see 

Figure 7d). Notably in this case the two variance-time plots do not overlap at all, showing clearly the 

extremely strong influence of non-stationarity at all scales of aggregation. Two power-law scaling regimes of 

variance are clearly present again, with scaling exponents estimated by the value 1.875 over the “inner” 

regime (scales m < 25), and by the value 1.015 over the “outer” regime (scales 252/Tm => ). Note that 

the exponent of the outer regime yields a very poor estimate (Ĥ = 0.507) of the true Hurst exponent H=0.7. 

We also note that there is no apparent intermediate regime of transience, as the two scaling regimes shape 

almost perfectly an obtuse angle. This lack of transitional regime matches well the intuitively anticipated 

abrupt shift, from the strong effect of non-stationary bursts at small scales of aggregation, to the relaxation of 

such effects at large scales of aggregation, setting by construction the cut-off near the half-period scale 

2/Tm = . Similar behavior is also noted on variance-time plots of synthetic W-series obtained for several 

values of amplitude (e.g. a = 40, 75, 100), period (e.g. T = 25, 75, 100), and sets of bursts P, when 

superposing a highly intermittent sinusoidal trend to FGN with long memory. 
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5. Conclusions 

[48] The present work aimed primarily to raise some points of skepticism about scientific statements 

regarding rainfall behavior, when those statements are based merely on mathematical theory, or on analysis 

of data that may not fulfill fundamental theorized assumptions, e.g. stationarity. We have shown that the 

theorized assumption of stationarity must be tested thoroughly and much more rigorously from a statistical 

standpoint. Formal statistical procedures, suitable for testing homogeneity of mean, variance, and covariance, 

were applied to Maghera and Firenze data, raising reasonable doubts about the extent up to which 

stationarity is a safe and valid assumption to adopt with regard to those data. Specifically, homogeneity of 

mean holds within individual monthly sections (Table 1), but not inter-annually for any given month of the 

year (Table 1 and Figures 1-2). Furthermore, homogeneity of variance and covariance is rejectable with at 

least 95% confidence over monthly, annual, and multi-yearly (i.e. global) time scales, for the majority of 

sections representing those time scales in the data (Tables 2-5), while scale-dependence of stationarity is 

evident over shorter than monthly time scales (Figures 4-5). 

[49] Subsequently, we concerned ourselves with the effects that certain types of deterministic trends bear 

on the variance-time plot, when superposed on stationary processes whose variance-time plot is a single 

power-law function of scale of aggregation (e.g. on FGN processes with long memory). These examples 

demonstrate very clearly that variance-time plots obtained from raw data, without previous exploration of 

possible sources of non-stationarity present in them, can be extremely misleading if used as a tool for 

identifying regimes of scales of aggregation over which the variance of aggregates may be scaled by power-

law scaling. Specifically, estimated variance-time plots exhibit several power-law scaling regimes, separated 

by intermediate transitional regimes, while their theoretical counterparts are indeed single power-law 

functions of the scale of aggregation (recall that ( ) ( ) ( )
2
X

H22
X

2
Z

2
W

mmmm σσσσ ⋅=== ). The sharpness or 

subtlety of such distortions is appreciably controlled, by tuning certain features (e.g. signal to noise ratio and 

intermittence) built into these examples. In any event, these distortions are plainly artifacts of the 

deterministic harmonic trend, and they do not characterize the stochastic behavior of the underlying 

aggregated non-stationary processes (i.e. Z and W). The examples considered above, bear no direct 

connection with rainfall dynamics, and they are not portrayed here as models of rainfall at any scale, 
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although they were motivated by an interest to imitate apparent scale-dependence of stationarity in rainfall 

time series, and also to demonstrate variance-time plots (e.g. Figure 7(d)) similar to those obtained by 

Marani [2003] from rainfall time series. In light of these examples, one may safely conclude that even if the 

regimes detected by Marani [2003] are not artifacts of intermittent non-stationarities, they are not signaling 

an exclusively special property of temporal rainfall processes. 
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January February March April May June July August September October November December
1993 0.001 0.013 0.049 0.062 0.016 0.050 0.154 0.027 0.148 0.109 0.101 0.038
1994 0.102 0.058 0.001 0.162 0.060 0.038 0.103 0.074 0.153 0.087 0.088 0.019
1995 0.053 0.111 0.084 0.089 0.223 0.276 0.075 0.121 0.165 0.030 0.010 0.189
1996 0.094 0.072 0.016 0.250 0.080 0.098 0.044 0.126 0.096 0.188 0.079 0.228
1997 0.109 0.007 0.016 0.068 0.050 0.084 0.133 0.045 0.041 0.057 0.183 0.119
1998 0.043 0.011 0.015 0.159 0.079 0.137 0.062 0.024 0.162 0.229 0.022 0.020
1999 0.045 0.028 0.056 0.126 0.044 0.191 0.137 0.039 0.044 0.157 0.218 0.091
2000 0.001 0.010 0.075 0.077 0.087 0.037 0.056 0.107 0.111 0.216 0.190 0.073

0.056 0.039 0.039 0.124 0.080 0.114 0.096 0.070 0.115 0.134 0.111 0.097
0.043 0.038 0.031 0.065 0.062 0.084 0.042 0.042 0.051 0.075 0.078 0.078

[0.026, 0.086] [0.013, 0.065] [0.017, 0.060] [0.079, 0.169] [0.037, 0.123] [0.056, 0.172] [0.067, 0.125] [0.041, 0.100] [0.080, 0.150] [0.082, 0.186] [0.057, 0.165] [0.043, 0.151]

( )Xs µ
( )XX sz µµ ⋅± 975.0

Xµ

 
Table 1. Slopes of mean-time plots for every month and year, from 1993 to 2000, Marghera. Moreover, for each month 
of the year, the sample mean of slopes across years is reported, along with its standard error and 95% confidence 
interval. 
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January February March April May June July August September October November December Year

1993 3.2 0.0 1.1 3.6 0.0 22.3 4.6 0.2 0.4 8.6 0.3 0.5 9.7
1994 0.0 5.1 0.0 0.1 32.7 17.0 12.0 0.0 24.0 0.0 1.7 20.3 2.5
1995 15.3 0.0 0.6 0.4 0.0 11.0 0.2 0.2 10.4 0.0 0.4 0.0 1.1
1996 10.6 0.0 27.0 0.0 0.2 1.5 3.0 8.5 0.0 0.0 2.0 14.5 10.0
1997 0.0 30.0 0.0 0.0 20.5 16.5 32.0 17.0 10.0 17.5 0.2 0.4 2.1
1998 11.0 3.0 0.0 5.0 0.0 0.0 23.0 0.0 0.3 0.0 0.1 22.3 1.1
1999 8.0 9.5 5.7 3.0 27.5 21.0 17.0 14.0 4.8 6.0 1.2 0.0 1.2

2000 0.5 24.5 0.0 0.0 5.7 28.0 13.5 2.8 0.0 0.2 1.7 0.0 7.8

All years 2.8
 

Table 2. p-values of CUSUM stationarity tests for every month and year, from 1993 to 2000, along with p-value for 
each annual series (last column), and p-value over the entire record (last row), Marghera. 

 
 

January February March April May June July August September October November December Year
1962 13.8 0.0 3.0 2.4 5.7 0.5 1.0 NaN 8.0 0.0 0.3 0.0 29.7
1963 0.0 7.1 0.0 5.0 7.5 6.5 24.5 14.7 2.0 0.0 2.7 0.0 0.5
1964 1.9 0.5 0.0 0.0 0.0 15.2 11.4 12.6 3.6 0.0 0.0 0.0 2.7
1965 0.0 0.0 0.0 0.2 0.0 0.0 1.3 0.7 8.6 0.0 5.3 0.5 0.0
1966 1.5 0.1 10.0 27.0 4.5 23.5 10.2 0.0 0.0 0.1 0.1 0.0 0.1
1967 0.0 0.5 0.2 6.0 4.8 18.4 15.2 2.0 0.1 0.0 0.0 0.0 4.9
1968 0.0 1.0 3.9 0.0 0.0 3.3 1.5 0.0 12.5 6.3 0.1 0.1 0.2
1969 1.8 3.0 1.0 0.0 5.8 0.0 10.0 8.0 13.6 0.0 25.0 0.3 1.3
1970 29.7 1.0 0.0 0.2 15.0 0.7 0.1 1.5 7.5 0.0 0.4 0.0 1.1
1971 0.1 0.0 2.5 4.5 0.0 0.5 17.0 13.5 15.2 1.5 1.4 0.0 8.6
1972 0.0 2.5 0.8 0.0 4.9 0.2 18.0 0.1 0.0 0.3 16.8 0.0 0.0
1973 0.1 0.0 0.1 0.2 NaN NaN NaN NaN 0.1 7.4 0.1 0.0 0.0
1974 0.0 0.0 0.0 0.0 0.4 4.0 2.5 0.4 0.0 12.0 3.5 0.0 0.9
1975 0.0 0.0 4.5 0.0 19.0 0.0 0.0 9.8 0.1 0.1 0.4 0.0 1.1
1976 0.0 0.0 0.0 0.0 0.0 0.0 24.5 18.4 0.5 0.0 0.1 0.0 0.1
1977 0.1 0.7 0.0 0.1 19.5 0.1 0.0 16.8 0.0 0.0 18.4 0.0 10.4
1978 0.0 0.0 3.0 8.0 0.0 4.5 0.0 0.9 0.0 0.0 0.0 9.8 0.0
1979 0.0 0.0 1.5 0.3 NaN 0.2 0.0 12.0 0.4 23.0 0.2 0.1 10.4
1980 0.4 0.0 3.5 0.2 0.0 0.1 13.0 13.5 2.1 10.4 0.0 0.0 5.9
1981 0.0 0.0 0.0 0.0 2.0 1.5 20.0 25.0 8.0 0.0 0.0 0.4 0.4
1982 0.0 0.0 6.5 4.0 6.0 1.5 0.1 25.5 0.0 0.3 2.5 2.1 0.0
1983 18.3 0.0 0.0 0.0 0.1 0.0 1.2 0.8 0.0 0.1 0.0 0.0 16.8
1984 0.1 0.0 0.0 0.0 0.2 0.0 27.0 5.4 3.0 0.0 1.1 3.5 0.8
1985 0.1 3.8 0.0 4.0 0.0 0.1 0.0 4.0 29.7 0.0 0.0 0.0 15.2
1986 0.0 0.1 0.0 2.5 1.1 0.0 0.2 0.0 2.3 0.0 0.0 0.0 7.8

1.0All years
 

Table 3. p-values of CUSUM stationarity tests for every month and year, from 1962 to 1986, along with p-value for 
each annual series (last column), and p-value over the entire record (last row), Firenze. 
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January February March April May June July August September October November December Year
1993 2.0 19.9 16.6 1.5 21.7 88.0 17.2 0.0 0.6 25.9 0.1 49.2 0.0
1994 0.0 15.1 5.4 0.1 13.3 87.1 31.7 0.4 23.3 3.8 33.9 20.5 1.5
1995 0.0 1.3 2.8 0.2 2.2 3.8 6.3 40.5 50.1 66.9 18.4 0.1 11.9
1996 27.1 15.3 4.3 1.9 54.9 0.2 15.6 60.9 31.4 15.6 32.1 16.9 0.0
1997 0.2 71.7 0.7 0.8 18.2 37.8 47.6 71.0 14.3 26.4 18.6 54.0 1.7
1998 3.6 11.5 36.4 12.5 13.7 3.5 20.6 2.4 12.8 0.1 1.9 14.6 2.2
1999 42.7 18.6 11.3 4.6 8.5 12.3 18.1 45.9 0.1 0.0 28.6 8.9 22.1
2000 0.2 0.5 0.3 0.0 52.1 9.2 34.9 8.1 15.1 0.0 15.6 0.3 0.0

All  years 1.1
 

Table 4. p-values of covariance stationarity tests (Ahamada & Boutahar test) for every month and year, from 1993 to 
2000, along with p-value for each annual series (last column), and p-value over the entire record (last row), Marghera. 

 
 

January February March April May June July August September October November December Year
1962 0.0 0.0 0.0 0.0 6.8 0.1 10.7 NaN 0.0 0.0 0.0 0.0 0.0
1963 0.0 0.0 0.0 0.0 3.1 0.0 4.2 31.0 0.0 0.0 0.0 1.8 0.0
1964 0.0 0.0 0.0 0.0 0.1 0.2 14.1 3.5 0.0 0.6 0.0 0.0 0.0
1965 0.3 0.1 0.0 0.0 0.0 0.0 60.1 0.0 0.0 1.0 0.0 0.0 0.0
1966 0.4 0.0 0.0 0.3 0.1 3.1 0.1 0.0 0.0 0.0 0.3 0.0 0.0
1967 0.0 0.0 0.2 15.7 0.0 0.4 42.7 5.5 0.5 0.0 0.0 0.0 0.0
1968 0.0 0.2 1.4 0.2 0.0 3.4 0.0 8.7 33.1 0.0 0.0 0.0 0.0
1969 0.0 0.0 0.8 0.3 0.3 0.0 2.5 0.0 0.0 10.5 0.0 0.1 0.0
1970 1.3 0.0 0.0 1.0 5.3 3.8 43.9 1.4 22.4 15.0 0.0 0.0 0.0
1971 0.0 0.7 0.0 3.5 0.0 0.1 19.9 2.2 0.7 1.9 0.0 0.0 0.0
1972 0.0 9.8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 3.5 0.0 0.1 0.0
1973 0.0 0.0 0.0 0.0 NaN NaN NaN NaN 0.0 0.0 0.0 0.7 0.0
1974 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 3.7 0.2 1.1 0.0
1975 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
1976 1.0 0.0 0.5 0.0 0.1 0.0 10.1 0.7 0.0 4.4 0.0 0.0 0.0
1977 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.2 0.0 0.1 0.0
1978 0.6 0.0 0.0 0.2 0.3 0.0 0.0 1.3 18.6 0.0 0.0 0.0 0.0
1979 0.0 0.0 0.0 0.0 NaN 0.1 0.0 0.5 0.0 0.0 0.0 0.0 0.0
1980 2.1 0.0 0.0 0.0 5.2 0.0 3.6 0.4 39.7 0.1 0.0 0.0 0.0
1981 0.0 0.0 0.0 0.0 1.1 0.0 2.1 14.3 0.0 0.0 1.4 0.3 0.0
1982 0.2 0.0 4.3 0.4 0.0 0.0 0.0 0.1 5.7 0.1 0.0 0.0 0.0
1983 51.6 0.0 0.0 0.0 0.0 0.0 0.3 0.0 16.1 0.0 0.0 0.0 0.0
1984 0.0 0.0 0.0 0.0 0.1 0.0 6.0 0.2 0.0 0.0 0.0 2.5 0.0
1985 0.0 0.7 0.0 0.0 0.0 0.0 4.6 20.0 67.4 0.0 0.0 0.0 0.0
1986 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0

All years 0.0
 

Table 5. p-values of covariance stationarity tests (Ahamada & Boutahar test) for every month and year, from 1962 to 
1986, along with p-value for each annual series (last column), and p-value over the entire record (last row), Firenze. 
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Figure 1. 95% confidence interval of the mean of hourly rainfall, µX, for each month and comparison with sample 

estimates, Marghera. 
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Figure 2. 95% confidence interval of the mean of 5 minutes rainfall, µX, for each month and comparison with sample 

estimates, Firenze. 
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(b) 
Figure 3. CUSUM stationary test for January hourly rainfall at Marghera: (a) for 1997 year and (b) for 1998 year. The 
plot shows the sampling Pagan & Schwert [1990] statistics versus time, and its associated rejection region  (5% level of 
significance). 
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Figure 4. Average power spectrum of January hourly rainfall data, Marghera. 
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Figure 5. Average power spectrum of January 5-minutes rainfall data, Firenze. 



 34

 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

t

X t

(a) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

t

A t

(b) 

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900 1000

t

Z t

(c) 

1

10

100

1000

10000

1 10 100 1000

m

σ
2 (Z

t(m
) ), 
σ

2 (X
t(m

) ) 

(d) 

-30

-20

-10

0

10

20

30

0 100 200 300 400 500 600 700 800 900 1000

t

Z t

(e) 

1

10

100

1000

10000

100000

1 10 100 1000

m

σ2 (Z
t(m

) ), 
σ

2 (X
t(m

) ) 

(f) 
Figure 6. Datagrams of synthetic data, and variance-time plots: (a) Xt ~ FGN(0, 1, 0.7). (b) At =sin(2πt/50). (c)  Zt = Xt + At. 
(d) Variance-time plot of Xt (black dots), and of Zt = Xt + At (gray dots). (e) Zt = Xt + 10At. (f) Variance-time plot of Xt (black 
dots), and of Zt = Xt + 10At (gray dots). 
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Figure 7. Datagrams of synthetic data and variance-time plots: (a) Xt ~ FGN(0, 1, 0.7). (b) Bt is an “intermittent” sinusoidal 
function. (c)  Wt = Xt + Bt (superposition of the “intermittent” sinusoidal trend to the Fractional Gaussian Noise). (d) Variance-
time plot of Xt (black dots), and of Wt (gray dots). 

 
 




