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ABSTRACT :  The classical definition of rain rate as the quotient 
of height (or volume) of rainfall water, by the time elapsed during 
its accumulation in a measuring raingauge, is discussed. This 
definition implies or eludes to an inappropriate assumption of 
temporal continuity of rainfall. Our new definition is based on 
associating the population of raindrops produced during a rain 
event, with the corresponding statistical population of diameter 
sizes, and on the assumption that these random diameter sizes 
follow a discrete probability distribution possessing a finite third 
moment. Then, viewing the total rainfall accumulated in a 
raingauge as being the integral over time of the water volume 
added by each raindrop, and based on the above statistical 
assumption, it is shown that the volume V(∆t), the height H(∆t), 
and the classical measure of rain intensity R, corresponding to 
rainfall water accumulated during a time interval of given length 
∆t, are all random integer multiples of certain fundamental 
quantities. We define rain rate as being the elapsed time t0 
between the arrivals of two consecutive raindrops of average size 
at the orifice of the measuring raingauge. According to this 
definition, it is shown that given a probability distribution of 
raindrop diameter sizes, the classical rain rate measured at the 
location of a raingauge of given orifice size α , during a time 
interval of given length ∆t, increases as t0 decreases, and decays 
as t0 increases. Moreover, this new approach may be applied 
towards evaluation of rainfall detectability by Radar, and possibly 
also in assessment of geomorphic implications of the erosional 
effect of rainfall.  
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1. INTRODUCTION 
 
The occurrence of a rain event in a certain place at a certain time is often treated as 
being the outcome of a stochastic process, and the intensity of a rain event is also 
treated as a random variable. The intensity of a given rain event is expressed by a 
physical variable called rain rate, which is measured in units of millimetres per hour 
(mm/hr), and reflects the height of the vertical column of accumulated rainfall per unit 
of time, at a fixed location where a measuring gauge has been installed. This is the 
classical definition of rain rate, which in fact quantifies the average intensity of 
rainfall over the area of the gauge’s orifice during a finite time interval.  

Specifically, let us agree on some small enough time step ∆t (say 1 hour or 1 
minute or 1 second), and let us focus on the volume increment V(∆t) of the water 
accumulated in a rain-gauge of fixed orifice size α during the time step ∆t. Clearly,  

 
V(∆t) = α⋅H(∆t)  (1) 

 
where H(∆t) is the height increment of the cylindrical water column accumulated in 
the gauge during ∆t, and the ratio  
 

R = H(∆t)/∆t  = V(∆t)/(α⋅∆t)  (2) 
 

is the classical definition of average rain rate during a time interval of length ∆t, at 
the fixed location of the rain-gauge.  

The above classical definition of rain rate subtly implies that, in fact, rain rate is 
a space and time average of some other, instantaneously (in time) and pointwise (in 
space) valued latent variable, which is impossible to measure and we shall refer to it 
as latent intensity. Another subtle implication of the classical definition of rain rate is 
that, in order for rain rate to express accurately the space-time average of the latent 
variable, this very latent variable must be varying continuously in space and in time.  

However, it is well known that rain rate itself does not vary continuously over 
space, nor during time, from one value to another, and therefore, one should not 
expect that the latent intensity does so either. For example, it is common practice to 
use the quotient of total rainfall height by the length of a time interval during which 
the accumulation occurred, in order to calculate the (average) rain rate at a certain 
location. Clearly, if the time interval is long enough, say 24 hours, it may very well 
contain subintervals during which there was no rain. In such a case it is clear that the 
obtained value of rain rate shall be incorrect due to the temporal discontinuity of 
rainfall. Also the drawing of isohyetal maps of rainfall, based on interpolation 
techniques between data obtained from “pointwise” measurements of rainfall, relies 
heavily on the assumption of spatial continuity of rain fields. This assumption has 
been criticised  widely by Kay and Kutiel (1994), and Kutiel and Kay (1996), who 
demonstrated the consequences of  this inappropriate approach. 

In order to “tame the demon” of temporal and spatial discontinuity of rain rate 
and/or of latent intensity, one may choose to consider only tiny scales of space and 
time, and to adopt that the assumptions of spatial and temporal continuity of rain rate 
hold true there. Still, we think that this would be unrealistic, because even in the finer 
scales of space and time, the mildest rainfall as well as the most intense storm 
materialise in the form of populations consisting of individual droplets of various 
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shapes and sizes which raid the orifice of the measuring gauge intermittently, and not 
as a continuous stream.  

In this article we propose a new approach in order to quantify the notion of 
rainfall intensity. The proposed definition does not rely on any continuity assumptions 
regarding rainfall in space and/or in time. Instead, viewing rainfall as a statistical 
population of falling droplets whose size follows a discrete probability law, we argue 
in Section 2 that the classical notion of rain rate is indeed a quantized variable and not 
a continuous one. The proposed new definition of rain intensity relies on a statistical 
average of time between two “successive” arrivals of droplets into a measuring gauge, 
and is stated in Section 3. Section 4 relates the new definition of rain intensity to a 
coefficient of detectability of a rain droplet by radar. This relation suggests yet 
another possibility of defining rain intensity, linked to a different type of instrument 
used for measuring rainfall, and at the same time showing the inadequacy of radar for 
measuring rainfall. Section 5 concludes this article with some additional remarks. 
 
 
2. ASSUMPTIONS ON A POPULATION OF RAIN DROPLETS 
 
The accumulation of rainfall water in a rain-gauge, when it is raining, is certainly the 
result of addition of the volumes of numerous small droplets of water falling freely 
inside a vertical column of air just above the orifice of the gauge. These droplets are 
of many different sizes, and shapes, carrying different volumes of water, and therefore 
the velocities with which they fall also differ. Without much loss of generality, we 
may assume that, just before entering the measuring gauge, all the droplets have 
spherical shape, of various diameters though, and that they have reached terminal 
velocity. Empirical studies have shown that the terminal velocity of a rain droplet 
with diameter δ>0 is given by the formula [Atlas and Ulbrich (1977), Sumner 
(1988)]: 
 

U(δ) = β⋅δγ  (3), 
 
with empirically determined values for the parameters β=3.78, and γ=0.67.  
The volume of a spherical droplet with diameter δ>0 is  
 

Vδ = π⋅δ3/6  (4). 
 

It is traditional in the meteorological literature to consider the range of sizes of 
rain droplets as being a continuum, and to model the probability distribution of the 
random drop size in terms of a probability density function defined on that range (e.g. 
gamma, log-normal, etc.); see Torres et al. (1994) and references therein. Our 
approach in this article deviates from that tradition. Instead, we shall assume that the 
size of a droplet’s random diameter D attains only countably many possible values {δi 
; i = 1, 2, …}, with corresponding probabilities  
 

pi = P( D = δi ) ≥ 0       for  i = 1, 2, …,       and       p 1i
i 1=

∞

∑ =   (5). 
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Let N(∆t) denote the random total number of droplets which contributed to the  
increment V(∆t) of the volume of the cylindrical column of water accumulated in the 
gauge, during a time interval of length ∆t. Also, for each i = 1,2,…, let  
 

Ni(∆t) = pi⋅N(∆t)  (6) 
 
denote the random expected number of droplets with diameter δi, conditionally on the 
value of  N(∆t), during the same time interval of length ∆t, so that  
 

N(∆t) = N t N t N ti
i 1

1 2( ) ( ) ( )∆ ∆ ∆= + +
=

∞

∑ L  (7). 

 
Moreover, for each i = 1,2,…, and conditionally on the value of N(∆t), we may also 
define the random expected partial increment of the column’s accumulated volume, 
due to the contribution by droplets of diameter δi, during the time interval of length ∆t 
 

V ( t) N ( t)i i
3

i∆ ∆= ⋅ ⋅
π

δ
6

 (8) 

 
and analogously to equations (1) and (2) we define Hi(∆t) and Ri via the equations 
 

Vi(∆t) = α⋅Hi(∆t)  (9) 
 

Ri = Hi(∆t)/∆t  = Vi(∆t)/(α⋅∆t)  (10) 
 
That is, conditionally on the value of N(∆t), Hi(∆t) = Vi(∆t)/α is the random expected 
partial increment of the column’s height, and Ri = Hi(∆t)/∆t is the random expected 
average rain rate, due to the contribution by droplets of diameter δi, during the time 
interval of length ∆t.  
 
 
2.1 Quantization  of  Classical Rain Rate 
 
It is clear that if the third moment of the drop size distribution is finite: 
 

( )E D p  3
i

i 1
i
3= ⋅ < ∞

=

∞

∑ δ  (11), 

 
then employing equations (6) and (8) we obtain the limit of the series 

 

( )V t p N( t) = E D N( t)i
i 1

i
3

i 1
i

3( )∆ ∆ ∆= ⋅ ⋅ ⋅ ⋅ ⋅
=

∞

=

∞

∑ ∑ π
δ

π
6 6

 (12). 

 
Since the series (12) must balance with the total volume increment V(∆t), we have 
 

V(∆t)  = ( )V t E D N( t)i
i 1

3( )∆ ∆= ⋅ ⋅
=

∞

∑ π
6

 (13). 
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Similarly, under the assumption (11), using (6), (8), and (9) it follows that 

 

H(∆t) = ( )H t E D
N( t)

i
i 1

3( )∆
∆

= ⋅ ⋅
=

∞

∑ π
α6

 (14), 

 
and using (6), (8), and (10) we obtain that 

 

R = ( )R E D
N( t)

ti
i 1

3= ⋅ ⋅
=

∞

∑ π
α6
∆
∆

 (15). 

 
As intermediate steps, equations (8), (9), and (10), combined with (6), yield 
 

V ( t) p N( t)i i
3

i∆ ∆= ⋅ ⋅ ⋅
π

δ
6

  (16), 

H ( t) p N( t)i i
3

i∆ ∆= ⋅ ⋅ ⋅
π
α

δ
6

 (17), 

R
t

p N( t)i i
3

i= ⋅ ⋅ ⋅
π
α

δ
6 ∆

∆   (18), 

 
which combined with (13), (14), and (15), respectively, yield the analogies 

 

( )
V ( t)
V( t)

H ( t)
H( t)

R
R

p

E D
i i i i i

3

3

∆
∆

∆
∆

= = =
⋅δ

  (19). 

 
Equations (13), (14), and (15) show that under the assumption of a discrete drop size 
distribution, with finite third moment (i.e. E(D3) < ∞), the increments of volume 
V(∆t), and of height H(∆t), of the water column accumulated in a rain-gauge of 
orifice size α, during a time interval of length ∆t, and also the average rain-rate 
during the same time interval at the location of the gauge, are random integer 
multiples of the ‘‘fundamental’’ quantities ( )π  E D / 63 ,  ( )π α E D / (6 )3 ,  and  

( )π α E D / (6 t )3 ∆  respectively.  
The above argument demonstrates in an elementary manner the discontinuous 

nature of classical rain-rate in the course of time, at a fixed location of size 
comparable to that of a rain-gauge. The argument stems entirely from the single 
assumption that drop sizes do not form a continuum, but instead, drop diameter size is 
a random quantity with discrete probability distribution {pi ; i = 1, 2, …}, supported 
only on a countable set of possible values {δi ; i = 1, 2, …}. 
 
 
3. A  NEW  DEFINITION  OF  RAIN  INTENSITY 
 

As we have already mentioned, N(∆t) is the total (random) number of droplets 
that have been captured in the rain-gauge during a time interval of length ∆t>0. The 
finite population of these N(∆t) droplets consists of droplets with different sizes, and 
according to our previous model it is partitioned to countably many sub-populations, 



 6

each containing an expected number Ni(∆t) = pi⋅N(∆t) of droplets with the same size 
of diameter δi . Apparently, these droplets do not arrive one at a time into the gauge’s 
catchment, but rather as layered or stratified groups of droplets, each group 
containing droplets of several sizes, distributed as a random spatial pattern of ‘‘points 
or disk-like sections’’- so to speak - over the gauge’s orifice area [Guttorp (1995), pg. 
251].  

Despite this reality, let us idealise the formation of the droplets’ arrivals, 
assuming that droplets arrive into the gauge as singletons and not as layered groups. 
Of course, each droplet may enter the gauge for landing by arriving anywhere in the 
area of the gauge’s orifice. Moreover, let us assume that all the droplets have the 
same size, equal to the size of a fictitious prototype droplet whose volume equals the 
mean  

 

( )V0
3 3

i
i 1

i= E
6

D
6

E D
6

p
π π π

δ⋅⎛
⎝⎜

⎞
⎠⎟
= ⋅ = ⋅ ⋅

=

∞

∑ 3   (20) 

 
of the probability distribution of the possible droplet volumes. Let us also assume that 
all the droplets are free-falling with fixed uniform terminal velocity, equal to the 
mean terminal velocity of the true droplet population. According to equation (3), this 
mean terminal velocity is   
 

( ) ( )u E U E D E D pi i
i

0
1

= = ⋅ = ⋅ = ⋅ ⋅
=

∞

∑( ) β β β δγ γ γ    (21) 

 
Under these idealisations, it is reasonable to consider an equipartition of the 

time interval during which the total of arrivals occurred, so that the interarrival time 
between any two consecutive droplets at the orifice of the measuring gauge is   

 

t
t

N( t)0 =
∆
∆

  (22) 

 
It is this quantity t 0  which we propose as a new definition of rain rate or 

intensity of a rain event of duration ∆t, consisting of a random total number of 
droplets N(∆t), whose diameters follow a discrete probability distribution with finite 
third moment. 

 
It is important to note that t 0  is a random quantity, since N(∆t) is random, 

assuming different values during the progression of a rain event, at any given 
location.  

By solving each of the equations (13), (14), (15) for N(∆t), one obtains the 
following three equivalent expressions  
 

N(∆t) = ( ) ( ) ( )
6 6 6

π
α

π
α

πE D
V( t)

E D
H( t)

t
E D

R3 3 3⋅ = ⋅ = ⋅∆ ∆
∆

  (23) 

 
which if substituted into (22) yield three equivalent expressions of  
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( ) ( ) ( )t0 6 6 6
= ⋅ = ⋅ = ⋅
π π

α
π

α
E D

t
V( t)

E D
t

H( t)
E D

1
R

3 3 3∆
∆

∆
∆

  (24) 

 
Several remarks are due in order to justify the intuitive appeal of the new 

definition of rain rate or intensity via equation (22), and its consequence (24) relating 
the new with the classical notion of rain rate.  

First of all the new notion of rain rate is sensibly related with the classical one. 
More specifically, equations (15) and (24) show that the randomness of both R and t 0  
stems from the same random factor N(∆t) (i.e. total number of raindrops collected 
during ∆t), and both are proportional to the third moment of droplet diameter. 
Moreover, (24) implies that the product R⋅ t 0  remains constant, meaning that a fixed 
volume of water V(∆t) accumulated during a fixed length of time ∆t, has occurred 
from more intense rainfall when the mean volume of its droplet population is small, 
and from milder rainfall when the mean droplet volume is large. This is indeed 
reasonable, in the sense that the population with droplets of small mean volume will 
consist of more N(∆t) drops, and therefore the denominator of (22) will be larger than 
in the case of a population with large mean volume. This in turn implies that the 
ratio t 0  with fixed numerator ∆t in (22) will be smaller.  
 

But shorter interarrival time t 0  quantifies exactly what is meant by more 
intense rain !!! 
 

Second, if identical rainfall heights were accumulated in two different 
raingauges, measuring rainfall events with identical probability distributions of 
droplet size, during the same time interval, then the rainfall measured by the gauge 
with the larger orifice size must have been more intense, corresponding naturally to 
smaller t 0 . 

Third, for fixed mean droplet volume (i.e. fixed probability distribution of drop 
diameter size), fixed ∆t, and fixed orifice size α, larger height of accumulation H(∆t) 
implies smaller t 0  , and thus more intense rain as well. 

Fourth, for fixed mean droplet volume, fixed ∆t, and fixed orifice size α, larger 
rain rate R implies also smaller t 0  and thus more intense rain. 

The above remarks are direct mathematical consequences of equation (24), 
showing good and sensible agreement between the intuitive implications of both the 
classical notion of rain rate R and the new one introduced via t 0 .  
 
 
4. DETECTABILITY  OF  RAIN  DROPLETS  BY  RADAR 
 
In this section we shall try to give a heuristic argument on the basis of which one may 
calculate explicitly a coefficient of detectability of a single rain-drop via a radar-beam 
scanning the column of air just near the orifice of a rain-gauge.  
 
4.1 Empty  Space  Ratio 
 
Continuing our line of thought about the idealised formation of single droplet arrivals 
at the orifice area, each with fixed uniform terminal velocity u0  and interarrival time 
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t 0 , it is clear that during any time interval of length t 0  there is only a single droplet in 
the cylindrical air column of height 
 

h u t0 0 0= ⋅   (25) 
just above the measuring gauge, falling towards the orifice of the gauge. That is, h0  
can be thought of as being the average height difference between two rain drops 
which arrive consecutively at the gauge’s orifice area, both falling with terminal 
velocity u0 . This implies that the air column of volume  
 

 V a  h =a  u tc = ⋅ ⋅ ⋅0 0 0   (26) 
just above the orifice area of the gauge contains only one single droplet of volume V0 , 
and the rest of its space is empty of droplets. Thus, it is natural to define a 
dimensionless quantity which we shall refer to as the empty space ratio  
 

 q
V V

V
V
V

c

c c
=

−
= −0 01   (27) 

 
which after some elementary algebra via a series of substitutions from previously 
derived formulae reduces to 

 q
R
u

= −1
0

  (28) 

 
From equation (27) it is clear that 0 1≤ ≤q  for every rain event, where the 

value q = 1 corresponds to the case of no rain, and the value q = 0  corresponds to the 
case of extremely intense rainfall so that every bit of the column just above the orifice 
is occupied by falling droplets. That is, the empty space ratio during a rain event of 
classical rain rate R, is equal to 1 minus the ratio of R over the mean terminal velocity 
of the population of falling droplets. It is interesting to note that since R and u0  are 
both expressed in units of length over time [L/T], q is indeed a unitless quantity, 
expectedly much smaller than 1, since the average rain rate expresses a much smaller 
“speed” than the mean terminal velocity u0  of the free-falling droplets. Equation (28) 
and its equivalent 

R u q= ⋅ −0 1( )   (29) 
 
establish a relation between classical rain rate R, the average terminal velocity u0  of 
falling droplets, and the empty space ratio q. This suggests yet another possibility of 
defining rainfall intensity via the empty space ratio, so that intense rain corresponds 
to low values of the empty space ratio, and mild rainfall corresponds to values near 
the upper bound 1 of the empty space ratio.  
Moreover, equation (29) reveals that during any rain event the intensity of rain cannot 
exceed the upper bound defined by the average terminal velocity u0  of falling 
droplets. This is a rather remarkable point which can be useful in further modelling of 
the probability distribution of rain rate not on the unbounded interval [0,+∞) as 
usual(Kedem and Pavlopoulos 1991, Pavlopoulos and Kedem 1992), but on the finite 
interval [0, u0 ) or  [0, u0 ] instead. 
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4.2 Coefficient  of  Detectability 
 
Let us now suppose that a precipitation radar has been installed at certain distance 
from a fixed rain gauge. Using the notions defined earlier, and the notion of 
detectability as defined later in this subsection, we shall heuristically argue so as to 
reveal some limitations of the radar’s ability to detect a population of falling droplets. 

Radar beams are projected with an inclination of 1o from the ground, so as to 
avoid interference of any echoes from the ground. The width of a radar beam depends 
on the type of radar, but it is usually about  1o as well. Therefore, we may assume that 
at any given instant the scanning radar beam has a cone-like shape, with an opening 
angle of 1o, whose axis of symmetry is also tilted by an angle of 1o from the ground. 
This geometric setting produces some problems as the distance of target from the 
radar increases, because the beam scanned area also increases in such a way that the 
intensity of reflection decreases. That is, in long distances, light rain may be missed 
due to the weakness of the reflected radiation, or it may even be totally masked by 
very strong rainfall reached before it, in shorter distance from the radar. Another 
problem is that due to the inclination of the beam, and because the globe is curved, at 
longer distance from the radar the beam hits higher levels of the atmosphere. Mainly 
for these reasons, the use of radars for detection of rainfall is limited to distances 
within which they are still effective. 

In order to overcome concerns of those types, in the following calculations we 
consider a very tiny beam, that is, a very small part of the entire 1o beam mentioned 
earlier. For such a beam one may further assume that within a certain range from the 
location where the radar is installed, it moves horizontally, and also does not diverge, 
so that the intensity of its radiation remains rather uniform, as long as it does not hit 
any obstacles on its way. 

A new dimensionless quantity Q, referred to as coefficient of detectability of 
raindrops, is defined by the ratio 

 

Q
A
Ac

= 0   (30), 

 
where A0  is the area covered by the horizontal projection of a falling droplet of 
spherical volume V0  and terminal velocity u0 , and Ac  is the area covered by the 
horizontal projection of the cylindrical volume Vc , along the direction of the radar’s 
scanning beam.  

The coefficient of detectability may be interpreted as being a geometric 
probability of the event that an average rain droplet is detected by a tiny radar beam 
scanning horizontally the space just above the orifice of a fixed rain-gauge. That 
space is defined to be a cylinder of height h0 , with a circular base of area a  equal to 
the orifice size. From a frequentist’s point of view, assuming that detections of 
average droplets in a series of such non-overlapping cylinders, falling one after the 
other towards the orifice of the gauge, form a Bernoulli process with probability of 
success Q , then the reciprocal coefficient of detectability 1/Q  may be interpreted as 
the least number of cylinders needed to be scanned, so that expectedly at least one of 
them will be detected to contain a droplet. Recall that each cylinder of height h0 , and 
with circular base of area a  equal to the orifice size, by definition contains exactly 
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one average droplet falling with terminal velocity u0 , which is either detected with 
probability Q  or is missed with probability 1- Q  by the horizontally scanning beam. 

In order to calculate the coefficient of detectability Q , we first note that the 

spherical volume V0  has radius of length (1/2) E(D )33⋅ ,  and therefore its horizontal 
projection is just a circular disk with area  

 

( ){ }A
4

E D0
3 2

= ⋅
π

  (31). 

 
On the other hand, the horizontal projection of the cylindrical volume Vc  is a 

rectangle of area  

( )A 2h
a

2u t
a 1

3 a
E D

u
Rc 0 0 0

3 0= = = ⋅ ⋅
π π

π
  (32). 

 
Thus, dividing (31) by (32) one finds the coefficient of detectability 

 

( ){ }
Q

a

E D

R
u3

0
= ⋅

3

4
1 3

π
/   (33), 

 
which in light of equation (29) is also related with the empty space ratio q by 
 

( ){ }
Q

a

E D
1 q

3
= ⋅ −

3

4
1 3

π
/ ( )   (34). 

 
For the reasons mentioned earlier, the quantity t /Q0  is a lower bound of the 

length of scanning time until expectedly at least one average droplet shall be detected 
by the (tiny) horizontal beam, just above the orifice of the gauge. Taking this very 
line of thought one step further, from the temporal frame over the orifice of a fixed 
gauge, to the spatial frame at a fixed instant of time, the quantity a/Q  is a lower 
bound of the size of area covered by a dense array of gauges, over which 
simultaneous horizontal scanning by parallel radar beams shall detect expectedly at 
least one average droplet. 
 
 
5. DISCUSSION AND CONCLUSIONS 
 
The approach we adopted in the present study relies on the understanding that rainfall 
is not a continuous process, neither in space (not discussed in this study), nor in time. 
Instead, rainfall is manifested as being a discrete process in both space and time. Once 
adopted, this approach excludes the use of techniques or terms based on continuity in 
order to describe a rain event. Thus, for example, the spatial distribution of a single 
storm should not be represented by systems of continuous contours, known as 
isohyetal curves [Kutiel and Kay (1994), Kay and Kutiel (1996)]. 
 Likewise, the use of units of length over time [L/T], such as mm/hr, in order to 
measure instantaneous rainfall intensity is also inappropriate. In fact, any measure 
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according to which a unit of length (e.g. mm, Km, etc.) is divided by a unit of time 
(e.g. min, hr, etc.), implies measurement of speed or velocity, which is a physical 
variable continuous with respect to time. As much as units like Km/hr are appropriate 
for measurement of speed of a running vehicle, they should not be used to describe 
rain rate. For vehicles, there is a physical constraint according to which, when the 
vehicle accelerates, say from 60 Km/hr to 90 Km/hr, it has to run exhaustively at all 
instantaneous speeds between 60 Km/hr and 90 Km/hr, without skipping any 
subinterval of them, say between 70 Km/hr and 80 Km/hr. On the other hand, this 
physical constraint of continuity is no longer valid in the case of statistical 
populations of falling raindrops, manifesting a discrete process with respect to time.  
 According to our new notion of rain rate, as being the elapsed time between the 
entering of two consecutive raindrops into a measuring raingauge, the intensity of 
rainfall may increase, say from 0.75 sec to 0.15 sec, at a certain location and during 
the same rain event, without necessarily being forced to reach all the intermediate 
values, and this is another manifestation of the discontinuous nature of rainfall !!! 

This shows that the use of units such as mm/hr for the measurement of rainfall 
intensity may convey a misleading understanding about the physical variable intended 
to be measured. However, equation (24) reconciles a relationship between the new 
and the classical notions of rain rate, in the sense that one may still use the classical 
notion of rain rate in a merely conventional way, accounting also for the statistical 
properties of the population of falling raindrops. These statistical properties have been 
summarised in this article simply by a discrete probability distribution with finite 
third moment, governing the limiting relative frequencies of the random diameter 
sizes of falling raindrops. The task of more detailed modelling of such candidate 
probability distributions of diameter size is a much deeper one, which should be 
pursued later on in a sequel article.  

Nevertheless, we believe that the proposed new approach is quite appealing 
from the viewpoint of its possible applications. For example, in Section 4 we 
demonstrated a way of assessing quantitatively the ability Q of an ideal Radar beam 
to detect falling raindrops, and its limitations in time and space. Another interesting 
application may be the quantitative assessment of geomorphic consequences resulting 
from erosional effects of rainfall, which are highly dependent on both the 
instantaneous rate of rainfall-runoff and the rate of infiltration. 
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