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Abstract

Subjectivity in any science means

that we unreveal universal truths

by combining subjective and

objective methods.

– Unknown –

The most important stage of inference in statistics lies in model selection. The same prin-

ciple applies in Bayesian perspective which is going to be examined, in this thesis. Even

though the origin of the philosophy of Bayesian statistics lies way back in the early 18th

century, not much steps forward were made, due to the cumbersome high dimensional

integrals, which were difficult to be computed based on the primary use of techniques

that helped mostly on one dimensional integrals. As years passed, technology made

possible the calculation of challenging computational problems. The usage of Markov

Chain Monte Carlo techniques, which were recently been re-discovered, produced a easy

to implement methodology to deal with those kind of -until then prohibitive- computa-

tions.

In this Master Thesis we will deal with full Bayesian inference in both normal and bino-

mial regression models when there is doubt about the structure of the linear combination

and the parameters of the model. There will be a review of the relative methodology

and emphasis will be placed in possible alternatives a priori distributions which can be

used in such type of problems. The usage of advanced MCMC algorithms for a priori

estimation of parameters, variable selection. In the frame of this Master thesis synopsis,

application and comparison of existing code and programs in R and WinBUGS environ-

ments for variable selection and model averaging will be presented. The methodology

will be applied in both simulated and medical data with emphasis on those derived from

the European Health Interview Survey (EHIS) 2009 held in Greece.
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The fancy way, in which this Msc Thesis is organized, is due to the use of the free and

rather powerful computer typesetting markup language named LATEX. Acknowledge to

the people involved in these license free project. Information about LATEX as presented

in Oetiker et al. (2010) is quoted. A small tribute to those that spent time putting

things together :

LATEX (Lamport 1994) is based on Donald E. Knuth’s TeX typesetting lan-

guage or certain extensions. TEX is pronounced ”Tech,” with a ”ch: [...]

The ”ch” originates from the Greek alphabet where X is the letter ”ch” or

”chi” [...] LATEX was first developed in 1985 by Leslie Lamport, and is now

being maintained and developed by the LaTeX3 Project. LATEX is a document

preparation system for the TEX typesetting program. It offers programmable

desktop publishing features and extensive facilities for automating most as-

pects of typesetting and desktop publishing, including numbering and cross-

referencing, tables and figures, page layout, bibliographies, and much more.

LATEX was originally written in 1984 by Leslie Lamport at SRI International

and has become the dominant method for using TEX; few people write in

plain TEX anymore. The current version is LaTeX2e (styled LATEX 2ε). As

it is distributed under the terms of the LATEX Project Public License (LPPL),

LATEX is free software.

http://www.latex-project.org/
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This thesis as a whole is based on free licensed software. We should not be depended

on franchised and expensive programs that more often offer less than they cost. The

R statistical programming language in cooperation with LATEX provide an optimal,

quite fast and flexible way to create reports. The whole practical section of chapters 2 -

5 - 6 - 7 is programmed in R code and by using the package xtable for exporting tables

to LATEX created an almost automatic way of producing reports. Moreover an automatic

way of saving graphs from R to the Hard Disk Drive was created and then loading them

directly in LATEX as part of the document’s code. Considering the above, the installation

of last minutes changes in core parts of the MCMC and Variable selection sections and

rerun of the whole analysis was easily feasible.

R is a language and environment for statistical computing and graphics. It

is a GNU project which is similar to the S language and environment which

was developed at Bell Laboratories (formerly AT&T, now Lucent Technolo-

gies) by John Chambers and colleagues. R can be considered as a different

implementation of S. There are some important differences, but much code

written for S runs unaltered under R (...)

R, like S, is designed around a true computer language, and it allows users to

add additional functionality by defining new functions. Much of the system

is itself written in the R dialect of S, which makes it easy for users to follow

the algorithmic choices made. For computationally-intensive tasks, C, C++

and Fortran code can be linked and called at run time. Advanced users can

write C code to manipulate R objects directly.

http://www.r-project.org/
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The main software used for the implementation of the fifth chapter’s example is Open-

BUGS. A short overview of its history, current state and future development is presented

here. More information can be easily be found on the program’s website.

BUGS is a software package for performing Bayesian inference Using Gibbs

Sampling. The user specifies a statistical model, of (almost) arbitrary com-

plexity, by simply stating the relationships between related variables. The

software includes an ’expert system’, which determines an appropriate MCMC

(Markov chain Monte Carlo) scheme (based on the Gibbs sampler) for an-

alyzing the specified model. The user then controls the execution of the

scheme and is free to choose from a wide range of output types. (...)

There are two main versions of BUGS, namely WinBUGS and OpenBUGS.

Note that software exists to run OpenBUGS (and analyze its output) from

within both R and SAS, amongst others1. (...)

Initially, BUGS only used fairly specialized algorithms. In 1996, however,

the project moved to Imperial College, London (headed by Nicky Best, who

had already been involved for some years in Cambridge) and work began on

expanding the software’s capabilities. In particular, Jon Wakefield and Dave

Lunn joined the project at this stage to work on implementing non-linear

models, and development of a standalone Windows version of the software

gained momentum. (...)

(...)Now that OpenBUGS has progressed from being somewhat experimental

to a stable and reliable package, we are now focusing all development efforts

on it.

http://www.openbug.info/w/

1http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml
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Chapters’ Description

Chapter 1 focuses on some of the main aspects of Bayesian theory. We attempt a brief in-

troduction to basic notions concerning the prior and the posterior distribution which play an

important role on Bayesian theory. In the end a short comment on Graph Theory is provided,

while references for further reading are attached.

In Chapter 2 the reader is given a first idea of the history and theory of Markov Chains and

how they are combined with Monte Carlo integration to create the Markov Chains Monte

Carlo (MCMC). References for further reading are provided, analytical reviews of the methods

can be found in several articles attached. Advantages and disadvantages of each method along

with the algorithm for simulation are provided. In particular cases figures were created and

attached for visual understanding of the steps of the procedures.

A practical example will be found in chapter 3, using data from the EHIS 2009 study, on

a simple logistic regression problem, with the use of three of those algorithms (Independent

Metropolis Hastings, random walk Metropolis and the Slice sampler). The example finishes

with comparisons between the convergence, properties of the algorithms, posterior summaries

and differences are pointed out between each MCMC method and each sampling scheme with

the use of diagnostic plots and statistical tests. The last, though, are crudely used as no known

theoretical implementation to Generalized Linear Models was found.

Chapter 4 contains a brief review of alternative classical and Bayesian methods for model

choice, comparison and checking. We present a review of classical ways of Model selection

by implementation of Stepwise procedures and the use of Information Criteria concerning non

nested models, most of them based on computation and comparison of the models likelihoods.

Simple model comparison with the use of Bayes Factor, short description of Lindley’s Paradox

and how the Marginal Likelihood is of great importance for latest proposed techniques to com-

pare competitive models. While only a brief summary with appropriate references is provided

concerning direct methods for estimating the marginal likelihood, a larger overview of variable
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/ model variable selection techniques will be found in chapter 5 with examples comparing three

of the techniques mentioned using real and simulated data.

In chapter 6 extra attention is given to the reversible jump Markov chain Monte Carlo (rjM-

CMC). Each chapter includes a quick note on latest techniques in model selection using MCMC

with appropriate references for further reading. The chapter concludes with a short presen-

tation on open research fields of this area of Bayesian Statistics. A practical implementation

of reversible jump with Gibbs sampling on Bayesian Model Selection on Linear Models with

application on data derived from Clyde et al. (2011) for later convenience and comparison is

provided with the use of jumping interface in WinBUGS (Lunn et al. 2009), together with a

comparison to the most flexible of the previously applied methods (GVS).

The last chapter (7) of this MSc thesis provides a short comparison of three well known and

established R packages used for model comparison inside the Bayesian framework (BMA -

BMS - BAS). An example using simulated data already been analyzed in the previous chapter

will be presented, concerning linear regression model selection, while comparative tables both

for replicability and efficiency will lead us towards the end of this Master thesis.

Computations, plots and tables presented in this thesis were carried out in the R programming

language, version >3.0.0 (Masked Marvel) (R Development Core Team 2008) and OpenBUGS

>3.2 (Lunn et al. 2000). The packages used and the summary of the code developed are briefly

provided in the Appendix and will be included in the final thesis digital version.
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Chapter 1

Basic concepts of Bayesian Theory

1.1 Historical Aspects

Every allowed extension

of Aristotelian logic to plausibility theory

is isomorphic to Bayesian probability theory.

- Unknown -

During the 18th century a clerk and amateur mathematician named Thomas Bayes lived in

England. It is estimated that Thomas Bayes was born around 1702 and died in 7th April 1761.

Thomas Bayes is mostly known for having formulated a simple case of the Bayes theorem with

computing a distribution for the probability parameter of a Binomial distribution.

Bayes work was presented as a solution to :

Given the number of times in which an unknown event has happened and failed

[...] the chance that the probability of its happening in a single trial lies somewhere

between any two degrees of probability that can be named (Bayes & Price 1763).

There is great mystery associated with Thomas Bayes. The year of his birth is not exactly

known, his portrait as presented across the scientific field is not that clear and last but more

importantly, is he really the writer of the scientific publication attributed to him? According to
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Stigler’s historical research (Stigler 1986b) the writer of the essay, which lead the theorem to be

named ”Bayes Theorem”, seems to be a Professor of Mathematics named Nicholas Saunderson

born in January 1682, who lived in Cambridge and considered according to Stigler’s research

as the earliest discoverer of Bayes Theorem. The truth of that interpretation was questioned

by Edwards (1986).

The general form of Bayes Theorem was presented by Laplace, a French mathematician and as-

tronomer, introducing a considerably pioneer way of dealing with inference later called Bayesian

Probability. According to Stigler’s research (Stigler 1986b), Laplace is thought not to be fa-

miliar with the work of Bayes, due to the fact that they worked and lived in different locations

and that in France the work of Thomas Bayes was not known.

In recent history, it was Harold Jeffreys, a mathematician, statistician and astronomer, who

revived the Bayesian view of probability with his work ”Theory of Probability”. To conclude

this short historical introduction, Jacob Bernoulli besides the introduction of the ”Law of

large numbers” theorem, in his book ”Ars Conjectandi” also stated the issue of the reverse

probabilities, almost fifty years earlier than Thomas Bayes, without being able though, to

conclude to an equation (Bernoulli 1713).

1.2 Introduction

1.2.1 Do they agree to disagree?

Inside every non-Bayesian

there is a Bayesian

struggling to get out.

- Denis V. Lindley -

The principal difference between the two major statistical approaches - Frequentic and Bayesian

- is that the one, which we are going to examine more thoroughly, consider parameters not

as constants but as random variables characterized by a prior distribution. Therefore making

inference while taking into account not only one value of the parameter (e.g. the one that
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maximizes the likelihood). There lies one of the biggest advantage/disadvantage of the youngest

brother of those two siblings.

Frequentists statisticians used to treat those in favor of the alternative approach as a minority

until the late 80s. That was a general truth. The Bayesian approach, as examined later in this

thesis, needed computer power to reach its real potential. Trouble appeared while trying to

calculate the posterior distribution, which is needed for assumptions to be reached. Therefore,

data analysis was out of reach, except for special cases where ”Conjugate Priors” created a

bypass for the analyst to reach inference, without the need of calculating the normalizing

constant.

It was only after the introduction of MCMC (Markov Chain Monte Carlo) techniques, and the

rapid progress of informatics and therefore personal computers, that Bayesian statistics started

getting close to what they could truly offer to the statistical society, becoming a valuable tool

to every research’s hand.

Ideas derived from the Frequentic approach :

• The parameters of the population are unknown fixed constants.

• Statistical procedures have a long-term meaning, like an infinite repetition of

the same experiment.

• Probabilities are interpreted as a frequency after a long number of experiments.

Ideas derived from the Bayesian approach :

• The parameters are now considered random variables, as we are not certain of

the real values.

• The way to make inference is just the use of the rules of probabilities.

• Each person has his own way of thinking, so the prior beliefs naturally vary

across people.

• There can be a continuous revision of our beliefs as data come to our hand.

That last two points of Bayesian statistics makes them even more related to real life situations

and as a result a more sensible and natural way of quantifying problems.
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1.2.2 Bayes Theorem

Two possible outcomes of a given situation are considered, A and B. Then, assume that

A = A1 ∪ ...∪An for which Ai
⋂
Aj = ∅ for every i 6= j. Therefore, Bayes’ theorem provides

an expression for the conditional probability of Ai given B, which is equal to

P (Ai|B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (AI)∑n
i=1 P (B|Ai)P (Ai)

(1.1)

P (Ai|B) ∝ P (B|Ai)P (Ai) (1.2)

The last equation (1.2) is also called the Bayes’ rule introduced by Piere Laplace, stating the

proportionality of the two parts, considering P (B) from equation 1.1 to be constant (Hoffmann-

Jørgensen 1994).

One can rather easily notice that Bayes theorem is just a simple result, derived by the use

of probability theory. Its introduction in statistical inference, created a juxtaposition, giving

birth to two separated field in statistics, Bayesian statistics and frequentist statistics (Efron

1986, Berger 2000).

1.2.3 Inference

If we had to summarize in two points what is known as the Bayes solution : (1) We should spec-

ify the ”prior” distribution π(θ), (2) and then use the formula to compute π(θ|y) = f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

Let us consider a random sample y = (y1, . . . , yn), with f(yi|θ) as the distribution function

which describes the random variables y1, . . . , yn. Therefore, the likelihood function is given

by f(y|θ) =
n∏
i=1
f(yi|θ) which sets the probability of observing yi under different values of the

θ parameter. The Bayes Theorem incorporates the information already gathered, our prior

beliefs for the parameter(s), represented by one or more prior distributions, then takes into ac-

count the observed data and make inference. For the case where θ is continuous, the following

equation is obtained representing the posterior distribution

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ) dθ

(1.3)
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where
∫
f(y|θ)π(θ) dθ = f(y) is the marginal likelihood of the data, π(θ) the prior of parameter

θ and f(y|θ) the likelihood of the data given θ.

For the discrete case the equation changes to π(θ|y) = π(θ)f(y|θ)∑
f(θ)f(y|θ) dθ , where

∑
π(θ)f(y|θ) dθ =

p(y) is the marginal likelihood of the data.

According to the Bayes theorem, the posterior distribution of the parameter given the data can

be written as π(θ|y) ∝ π(θ)f(y|θ). Given the above one can, with much ease, point out that

the posterior distribution contains information both from our prior beliefs -Prior distribution

f(θ)- and the data being observed -Likelihood f(y|θ)-.

Controlling the prior distribution can express the fact that we are very certain of our beliefs

by setting the variance of the distribution to a low value, while we can express our prior

ignorance by placing a large variance. This process is called elicitation of prior knowledge.

We must point that in most of the cases in real life prior information is not available. There

are various techniques for specifying our prior ignorance. Either way, the researcher has to

take into account the cases in which the placing of an uninformative prior is improper - does

not integrate to 1 - and therefore will cause computation troubles, especially if the concluding

posterior is simultaneously an improper one, making proper inference rather impossible.

Another point that should make a researcher balance towards Bayesian statistics is that, even

if the observed data are collected one after the other, he can infer at various points using the

updating rule. The current posterior will play the role of the future prior, when new data

is collected and processed. This is one of the most useful and important aspects of Bayesian

thinking. The continuous update of the distribution when new information is at hand with the

use of simple rules of probability.

The general form of the above statement can be expressed as follows for data π(θ|y1, . . . , yt) ∝

f(yt|θ)π(θ|y1, . . . , yt−1) where yt is the data collected in time t.

1.3 Priors

Within the Bayesian field, a prior distribution - prior deriving from the Latin adjective mean-

ing earlier, first, e.t.c.”- of an uncertain quantity, is the probability distribution that would
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represent the beliefs of an individual, before he gets in contact or taking into account the

collected data. Determination of the prior is the main point for criticism of Bayesian inference,

an issue that will haunt us down until the very end of this thesis. The researcher should be

extremely certain of why and when to choose a prior over another.

As already mentioned, one of the most important differences between Bayesian and Classical

statistics is that in Bayesian statistics parameters are treated as random variables and for

the inference to be made, a prior distribution has to be specified for these parameters. The

parameters of the prior distribution itself are called hyper-parameters, so as to be easier to

distinguish them from the others and they also can be given a prior called hyper-prior. A vast

variety of prior ”families” exists, the most important though, especially in the early stages of

the Bayesian statistics history, were the conjugate priors due to special characteristics that

made them easier to handle before the revolution in the computing industry. These different

families of priors are briefly mentioned below : Subjective priors - the result of a person’s

opinion with expertise in the problem, Informative priors - a prior that represents the state

of certain information you possess, Conjugate priors - an easily updateable prior, more

often a member of the exponential family distribution (Morris 1983) (see section 1.3.1), Non-

informative (Low-Information) priors - stating the fact that no prior knowledge exists.

Jeffrey’s Prior being a special case, that also has an important ability of being invariant

under reparameterization, Improper priors - a distribution that does not have the properties

of a proper distribution.

In the following subsections there will be a brief mention of Conjugate and Non-informative

priors (Jeffrey’s prior).

1.3.1 Conjugate Priors

One of the most intensive computational difficulties in Bayesian Inference arise when the nor-

malizing constant in the denominator of the posterior density (eq : 1.3) has to be computed.

Even the simplest choice of priors π(θ) can lead to computational difficulties. That is why

until the arise of the computational era, one should have been cautious in the definition of

that prior distribution. A conjugate prior is a distribution that has identical algebraic form
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as its posterior. As a result, these prior distributions return a posterior of the same family

of distributions, without the need of any extreme analytical computation to take place. All

distributions which are part of the exponential family have conjugate priors (Gelman et al.

2003). Some of those prior distributions are presented in the table 1.1.

The use of conjugate priors simplify the computations to reach to the posterior. Therefore,

when a common distribution, π(θ|φ), is used as a prior some choices are more advantageous

for the calculation of the posterior than others. We can carefully choose that prior, being a

member of a family of distributions which is conjugate to the likelihood, trying to achieve a

posterior that belongs to the same distributional family with the prior, avoiding unnecessary

inconvenient calculations.

Moreover, the use of a mixture of conjugate priors can be used if our beliefs cannot be ex-

pressed with a single conjugate prior, while maintaining the flexibility and the straightforward

computation. A mixture of Normal priors will be used later on the parameters of a model,

while dealing with variable selection.

For a more detailed version of table 1.1 (see Ntzoufras 2011, chap. 2). A review on conjugate

priors can be found among others in Fink (1997).

Distribution Likelihood Prior distribution Posterior parameters

Poisson Yi ∼ Poisson(λ) λ ∼ (α, b) α̂ = nȳ + α,

b̂ = n+ b

Binomial Yi ∼ binomial(λ) p ∼ beta(α, b) α̂ =
∑n

i=1 yi + α,

b̂ =
∑n

i=1Ni + b

Normal (known σ2) Yi ∼ N(λ) µ|σ2 ∼ N(µ0, σ
2
0) µ̂ = wȳ + (1− w)µ0,

σ̂2 = wσ2/n,

w = σ2
0/(σ

2
0 + σ2/n)

Exponential family Yi ∼ α ∼ Dirichlet(α0) α̂ =
∑n

i=1 yi + α0

(φ known) expf(θ, φ, α(), b(), c()) exp{[θθ0 − τ0b(θ)]/α(φ)} θ̂ = nȳ + θ0,

τ̂ = n+ τ0

Table 1.1: Conjugate priors and some of their characteristics for some common used

distributions.
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1.3.2 Low-Information Priors

In Bayesian analysis, there are times in which no prior information concerning the parameter

is available to rely on or maybe the researcher will, to avoid wrongly applying subjective

inference, let the data speak for themselves.

In such occasions the prior π(θ) has to contain no or more precisely low information about

the parameter θ in the sense that no specific value should be promoted over the others. Such

priors are called vague, low-informative or default priors.

In practice in some particular events we can create a vague low-information prior by making

a distribution as flat as possible. This can easily be done by placing large values (e.g. to the

variance of the Normal distribution), which will eventually help the distribution to expand and

approximately be flat for the values we are interested for.

When we deal with a continuous parameter space , θ ∈ Θ = [a, b] bounded by −∞ < a < b <

+∞ then a non-informative prior can be given by the uniform distribution (Bolstad 2007)

π(θ) =
1

b− α
, α < θ < b (1.4)

If the parameter is unbounded the form of a uniform prior is represented by the following form,

π(θ) = c, c > 0.

The researcher should be rather careful when using such priors. If the prior distribution

integrates to infinity and as a result is improper by definition (
∫
π(θ)dθ = ∞), awkward

situations may arise and therefore, preventing the researcher to proceed with proper inference.

Even in cases like the above, there is a way to end up with proper inference, that is by making

the likelihood with respect to θ to integrate into a finite state.

The use of the uniform prior to state that no prior information is available and therefore can

be considered a simple solution, the main disadvantage of such a choice is that the uniform

distribution is variant to reparameterization, which means that π(θ) may give low or no infor-

mation for θ but π(γ) may contain information to γ, when γ = g(θ). The use of the Jeffrey’s

non-informative prior which is invariant to transformation is a general solution to these types

of issues (Jeffreys 1946).
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1.3.3 Jeffreys’ prior

In general when using flat priors, we are unable to end up with posteriors in closed forms,

therefore, the use of a set of techniques called Monte Carlo Markov Chains is inevitable.

Jeffreys’ prior is a non-informative prior which is invariant to 1-1 transformations and has the

form πo(θ) = |I(θ)|
1
2 , where I (θ) is the expected Fisher information matrix, with elements i, j.

Iij(θ) = −EX|θ
[

∂2

∂θi∂θj
log f(x|θ)

]
. Calculating I(θ) can be cumbersome in high dimensional

problems, so the common approach is to obtain a Jeffreys’ prior for each parameter individually

and then form the joint prior from the product of the individual priors. It should also be noticed

that Jeffreys’ prior is not necessary a flat prior.

Moreover, Jeffreys’ prior is consistent to the main principle in determining the prior, the fact

that we should not take into account the data first, be being determined in such a way that

makes use of the form of the likelihood and not the actual data. Even though Jeffreys’ prior

is objective as described above, for many parameterizations, it favors some values be giving

them more weight than others, often ending up being informative.

1.4 Bayesian Inference

As we have already mentioned, all information about θ after analyzing the data can be rep-

resented by π(θ|y) the posterior distribution. The posterior density graph contains all the

information about Bayesian statistical inference. The researcher can, each time, point out the

location, dispersion and shape of the posterior and immediately conclude to what areas are

more plausible than others.

However, due to the fact that such visualization becomes difficult under multi-parameter prob-

lems and also because a lot of researchers from other scientific fields, are familiar to the clas-

sical ways of results representation, we can easily, by using decision theory, estimate points

and create credible regions, making the inference presentation more user friendly and easy

to be understood. For models where no conjugate prior is available, modern computational

techniques unfetter our hands and compute features like the mean, the mode, the standard

deviation or the quantiles of the posterior distribution.
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1.4.1 Point estimation - Credible sets

But how to make a choice under various certain conditions of uncertainty? This question is

easily answered with the use of a loss function. Let Θ be a set of possible states of nature θ,

and let α ∈ A be the set of actions available. Then define l(θ, α) as the loss that the researcher

has to pay by taking action α when the state of nature is θ (Berger, 1985). One of the rules to

choose among A actions is to select an α that minimize that loss particular chosen function.

As a consequence of the existence of many loss functions, each researcher will conclude in a

different estimate according to the loss function that he selected.

Therefore, when a point estimation is required so as to reduce the dimension of the information

to a single number, we can make use of Bayesian decision theory. However, a part of the

statistical community believes that if we try to reduce the posterior to a number, we can easily

be misguided concerning our final results. So other alternative measures should also be noted.

The statistic will depend on the random sample, therefore it is a random variable, and its

distribution is its sampling distribution.

While it is easy to demonstrate examples for which there can be no satisfactory

point estimate, yet the idea is very strong among people in general and some statis-

tician in particular that there is a need for such a quantity [...] statements about

uncertain quantities ought to be made in terms which reflect that uncertainty as

nearly as possible (see Box n.d., pg.309-310).

Frequentist statistics emphasize on unbiased estimators because averaged over all possible

random samples, an unbiased estimator gives the true value. In contrast, Bayesian statistics

does not place any emphasis on being unbiased. In fact, Bayesian estimators are usually biased

(Bolstad 2007).

From a Bayesian perspective, point estimation means that we would use a single statistic to

summarize the posterior distribution. The most important number summarizing a distribution

would be its location. The posterior mean or median would be two right candidates.

Measures derived directly from the posterior distributions provide information for both location

and dispersion. As mentioned before adequate choices for location measures are either the
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mean, the median or the mode, where appropriate quantities for measuring the dispersity are

among others the variance, the standard deviation.

One can summarize beliefs over θ using a single statistic, providing a not that competent value

for θ. The usage of such an approach is criticized negatively as it does not provide us with

information concerning the uncertainty of θ. An even more complete analysis could be reached

by presenting the uncertainty over θ. Therefore, is necessary alternative ways to represent the

shape and dispersion of π(θ) to be used.

One of those alternative ways are the so called ”Credible sets” which are somehow the Bayesian

equivalent of the Frequentist confidence intervals. They are called credible sets or credible

regions. By definition, a 100 x (1 − α)% credible set for θ is a subset C of Θ such that

1− α ≤ Pr(C|y) =
∫
C π(θ|y)dθ where integration is replaced by the summation over discrete

components of θ. In other words, represent direct probability statements of the likelihood of θ

falling inside C while using credible sets.

”The probability that θ lies in C given the observed data y is at least (1− α).”

this is in total contrast to the frequentist confidence interval statement, which clearly contain

the necessity of repetition of the experiment a large number of times. During the end of only

one experiment (which is the case, most of the times) we are in physical possession of only one

group of data. Immediately the possibility of our computed C containing θ, using Frequentist

credible intervals, will be either 1 or 0 (Carlin & Louis 2011).

It is most often preferable to create the Highest Posterior Density (HPD) credible set, defined

as the set C(x) = θ ∈ Θ : π(θ|y) ≥ γ, where γ is the largest constant satisfying P (C|y) ≥ 1−α

which contains the ”most likely” θ values (Carlin & Louis 2011).

1.4.2 Predictive Distribution

An other important ability of Bayesian statistical analysis is the fact that all inference about fu-

ture observations comes easily only by using the posterior distribution π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

.

The predictive distribution f(y|x) =
∫
f(y|θ)π(θ|x)dθ is the way to acquire information about

new observations given the data observed, the proposed prior and the likelihood. The predictive

11



Chapter 1 Basic concepts of Bayesian Theory

inference in Bayesian statistics comes from the posterior predictive distribution. Even though

the most common and appropriate way to make decisions on model selection is the Bayes

Factor, the predictive distribution can also play an important role for decisions on model

selection, as we will notice later in this thesis.

The posterior density of θ also provides the information necessary to test hypotheses about

θ. Hypothesis testing in Bayesian statistics highly depends on model selection. Posterior

probabilities as well as Bayes Factor are crucial when one tries to perform model selection and

hypothesis testing. Posterior predictive p-values are also used in Bayesian inference indicating

the probability that replicated data is more extreme than the data observed (Rubin 1984).

More details on Bayesian p-values in Gelman, Meng & Stern (1996), while more information

on Bayes Factor can be found in Section 4.2.1.

1.5 Probabilistic Graphical Models- Bayesian Networks

The first paper in the graph theory’s history is regarded to be ”The Seven Bridges of Konigs-

berg”, written by Leonhard Euler and published in 1736 (Euler 1736), proving, with the use

of graph theory, that there can be no possible solution for a particular problem.

The way of denoting the structural conditional independence which took off only in the early

90’s, except from the known conventional copulas, is graphical models. (see Pearl (1988)

and Lauritzen & Spiegelhalter (1988)). A graphical model is a probabilistic model where

the conditional independence structure between variables are denoted by a graph and as a

result for better understanding and compact specification of full joint distributions. Those

models are used generally in statistics, but more especially in Bayesian statistics and Machine

Learning. When such a network structure is a directed acyclic graph (DAG), the graphical

model indicates a factorization of the joint probability of the whole set of random variables.

Belief Networks (Bayes’ Networks) are one way to state the independence assumptions made

in a distribution.

Probabilistic Graphical Models provide new insights into existing models, a new user-friendly

framework for designing models making them easier to be efficiently implemented in existing

12
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software. OpenBUGS a computer software for Bayesian analysis of complex statistical models

using Gibbs sampling, a program that will be used for the examples presented in Chapter 5 and

6, uses that kind of graph based algorithms for computation using a platform called Doodle

(Spiegelhalter et al. 2003). For a researcher with limited initial understanding of statistics is

the best way for a quick introduction in more complex concepts.

Many examples (e.g. The famous Burglar - Alarm Network) and more insights can be found

in Pearl (1988), while definitions and an introduction to Bayesian reasoning and more complex

notions of this area of research in David Barber (2010)

1.6 Closing remarks

This chapter attempted a small introduction to the basic concepts of Bayesian Statistics,

while a short comment with appropriate references were provided on Probabilistic Graphical

Models. In the next chapter (2) we will provide a short introduction to the field of simulation

Markov Chains and the use of Markov chain Monte Carlo, containing with an overview of basic

techniques and notions. In chapter 3, the implementation of part of those techniques in data

derived from the EHIS Greece 2009 study is provided in R. Further details on EHIS 2009 study

can be found in Chapter 3.
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Chapter 2

Introduction to MCMC

Where a calculator on the ENIAC is equipped

with 18,000 vacuum tubes and weighs 30 tons,

computers in the future may have only 1,000

vacuum tubes and perhaps weigh 1 to 2 tons

- Popular Mechanics, March 1949 -

The main reason for the widespread interest in MCMC methods is that these methods are

extremely general and versatile and can be used to sample univariate and multivariate distri-

butions when other methods (e.g. classical methods that produce independent and identically

distributed draws) either fail or are difficult to be implemented. As we will notice, the fact

that MCMC methods produce dependent draws causes no substantive complications in sum-

marizing the target distribution. These methods have proved useful in all aspects of Bayesian

inference, in the last two decades even on the computation of quantities used for comparing

competing Bayesian models.

The posterior distribution is the only tool for the researcher to make inference using Bayesian

Statistics. Having access to the posterior we can calculate any value and therefore produce and

summarize results. Computation of moments, percentiles is always a process of summarizing

posterior information with the use of the posterior distribution computed from complex inte-

grals. The latter being a huge drawback, decelerating the application of Bayesian statistics,

during the mids of the previous century.

14



Chapter 2 Introduction to MCMC

During the first years of theoretical establishment of the Bayesian approach we were obliged

to use conjugate priors for inference. Basic inference for generalized linear models was easy

to be implemented, due to the fact that distributions of the exponential family, as we have

seen before (table 1.1), always have a conjugate prior (Morris 1983). Before the computing

evolution and the advance in the methods used for simulation, the large sample theory made

the application of asymptotic methods available ” Normal - Laplace approximation ” (Tierney

& Kadane 1986). Such methods were used to acquire analytic approximations of the posterior

being subject to limitations concerning the sample size and the number of dimensions.

Recent developments in the area of computer hardware made the generation of random draws

from the posterior feasible. The Monte Carlo integration is used for calculating any summary

for which we are interested for. Monte-Carlo (MC) methods were introduced during World

War II for nuclear physics calculations at Los Alamos National Labs, where the first computer

(ENIAC1) was located. The first MCMC algorithm though, is associated with a second com-

puter, called MANIAC2, built in Los Alamos under the direction of Metropolis in early 1952

(Robert & Casella 2011).

The next sections present a brief overview of certain Markov chains and MCMC methods.

2.1 Random Variable Generation

Let assume that a way exist that our computer can provide as with IID random variables

from a uniform distribution U ∼ (0, 1) and interpreting it as probability. The next methods

describe how that IDD sample will be used to create random variables from any distribution

under consideration (Normal, exponential, Binomial and others).

Let assume that a CDF exists of a distribution F that can describe a random variable X. We now

want to generate values distributed according to F. By following the inverse transformation

method one should attempt the next steps : (1) Generate a random number from U ∼ (0, 1),

(2) Compute x while F(x)=u holds. Then x can be consider a random draw from distribution

1Electronic Numerical Integrator and Computer
2Mathematical Analyzer, Numerator, Integrator, and Computer
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F. For details and proof of the above one can search (see Devroye 1986, Chapter 2) among

others.

With the accept reject method we can generate Y distributed by f using this algorithm.

Let assume that c is a constant such that f(x) ≤ cg(x). We then can (1) Generate X ∼ g and

U ∼ U(0, 1), (2) Then set Y=X if U ≤ f(X)

cg(X)
, (3) If not then repeat step 1. This method is

also called Rejection Sampling and will be examined in section 2.3.

Details for another method called Composition - Convolution which is rather useful for

generating from compound distributions can be found in L’Ecuyer (2012).

2.2 Markov Chains

A collection of random variables θt where t ∈ T is called a stochastic process. T is called

the parameter space. The values that such a process can generate are the state space. In

a Markov Chain process the past and future states are independent given the present state,

P (θ(t+1)|θ(0), θ(1), ..., θ(t)) = P (θt+1|θt).

Such a process to be a Markov Chain should be (i) Irreducible, no matter where it starts

has the ability to reach another state with positive probability, (ii) Aperiodic, if there are

parts of the state space that can be visited at any spaced times. Periodic if the above does

not happens and parts of the state space can only be visited at certain spaced times and (iii)

Positive Recurrent, if for all states I, if the process starts at i, it will return there with π = 1

and also the waiting time until it first returns is finite.

Moreover, a positive recurrent and aperiodic chain is called ergodic. While, if the chain is

also irreducible then the stationary distribution is unique. By creating an ergodic and

irreducible Markov Chain with stationary distribution you can, to some accuracy, calculate

the mean, the standard deviation or the quantiles of π, simply by waiting until stationarity is

established and then monitor for a long period applying MCMC diagnostics, then producing

the needed posterior summaries.
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2.3 Rejection & Importance sampling

Rejection sampling is a method for generating an independent and identically distributed

(IID) sample from a distribution which is known up to a normalizing constant (Neumann 1963).

Suppose that we desire to acquire a sample from p(θ|y) which is known up to a normalizing

constant, p∗ ∝ p. Then if you can find a integrable envelope function q(θ|y) such that : (i)

Mq(θ|y) ≥ p(θ|y) ∀ θ and (ii) g(θ|y) is chosen as a distribution easy to sample from.

Even though, considerable flexibility is permitted in the choice of envelope function, in cases

where θ is a high dimensional vector, in practice is often difficult to figure out, how to make the

Rejection sampling algorithm creates an IID sample. In that case, we can relax the assumptions

of independence considering samples the form a Markov chain (Section 2.2).

A special case of rejection sampling is the Adaptive Rejection Sampling, a method that only

works for log concave densities and was firstly introduced for application to Gibbs sampling for

dealing with full conditionals that are algebraically messy but often log-concave (Gilks et al.

1995). The idea behind this technique is to create an upper envelope on p(x) and use this in

replacement of Mq(x) in Rejection Sampling.

Let assume that we need to compute the expected value of f(x) with respect to a probability

distribution p(x). Importance sampling is the first useful algorithm which was introduced

for computing the
∫
f(x)p(x)dx due to the complexity of p(x).

In importance sampling, to deal with this difficulty, another distribution q(x) is introduced

from which we will draw samples from. This distribution is called the sampling distribution.

The basic notion of importance sampling is to draw from a distribution similar to p(x) and

then weight the result so as to correct the bias introduced by sampling from the q(x) - the

wrong distribution. Our actual p(x) or q(x) will often be unnormalized and we have to use

the set of our samples from q(x) in order to estimate the normalization factor. The algorithm

name rather misinform the reader of what it really does, importance approximation should

be a more appropriate name. q(x) should be picked such that the variance of f(x)w(x) is

minimum.

17



Chapter 2 Introduction to MCMC

In importance sampling we can not acquire samples from p(x) directly, we can easily over-

come this with a process called Sampling Importance Re-Sampling (Rubin 1987). Other newer

techniques based on importance sampling, which firstly introduced weights, are the Adaptive

Importance Sampling (AIS) (Cheng & Druzdzel 2000) and the Sequential Importance Resam-

pling (SIR) (Gordon et al. 1993). The resampling stage of the first has no statistical advantage,

and the latter can be problematic using a very small or very large step size. However, both of

them are producing smaller errors and have vastly improve the speed given the precision we

desire in comparison to the simple Importance Sampler.

2.4 Markov Chain Monte Carlo

The basis of the Monte Carlo approach, obtaining numerical approximations to posterior, is

the Law of Large Numbers and therefore, the Central Limit Theorem. IID sampling creates

estimates of true summaries of the posterior through Monte Carlo integration. As the number

of iterations m←∞ these summaries become consistent.

The fundamental references for connecting the Markov chain theory and MCMC methods can

be found among others in Nummelin (1984) and Meyn et al. (2009). So, if you can construct

an ergodic and irreducible Markov Chain with the following three (3) desirable properties :

(a) Should have the same state as θ, (b) Should be rather easy to simulate from and (c) Its

stationary distribution is p(θ|y).

Due to the fact that p(θ|y) is usually known up to a normalizing constant, it is appropriate

to appear in calculations only through rations of the following form p(θ|y)
p(θ∗|y) . Provided that

you only do the monitoring of the Markov Chain after it has reached stationarity, the MCMC

estimates are still consistent because of the ergodic theorem. Therefore the MCMC and the

IID Monte Carlo approaches described earlier are equally valid.

Let assume that you have then obtained a sample from p(θ|y), then one can estimate the mean

and the standard deviation by µ̂ = θ̄ =

n∑
i=1
θ(i)

n
, SD =

√√√√√ n∑
i=1

(θ(i) − θ̄)2

n− 1
, compute quantiles

and produce histograms that summarize posterior information.
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2.4.1 Metropolis Hasting Algorithm

Metropolis Hastings (M-H) is a generalized version of the basic Metropolis Algorithm intro-

duced by Hastings (1970). The M-H algorithm is based on the existence of a proposal/candi-

date distribution qt(θ
t−1, θt) which is part of a transition kernel. In the case of the metropolis

algorithm is restricted in symmetric candidate distributions, q(θ
′ |θ(t)) = q(θ(t)|θ′). As we have

already mentioned if the number of iterations is large (weak law of large numbers), iterations

from the transition kernel converge to the equilibrium distribution. In Metropolis Algorithm

we follow iteratively the next steps

• Initiate values for θ(0).

– Generate θ
′

from a candidate distribution q(θ|θ(t)).

– Calculate αM = min

(
1, p(θ

′ |y)q(θ(t)|θ′ )
p(θ(t)|y)q(θ′ |θ(t))

)
– Set θ(t+1) = θ

′
with probability αM otherwise set θ(t+1) = θ(t).

A frequent proposal of candidate distribution is q(θ
′ |θ(t)) = N(θ̄, Sθ). Where Sθ is the covari-

ance matrix which controls the convergence of the speed.

According to Gelman et al. (2003) a good candidate distribution should have the next properties

: (a) Easy to sample from q(θ
′ |θ(t)), ∀ θ, (b) Easy calculation of the probability of transition

α = (θ
′ |θ(t)), (c) Each move or jump should travel a considerable distance within the parameter

space and (d) The jumps are not rejected frequently (in need of calibration of the tuning

parameters).

One approach suggests to run an initiative chain, then obtain a crude estimation and then

using it as the scale of the candidate distribution (Carlin & Louis 2011). In absence of general

rules, the scale selection is a process to be calibrated. We change the scale so as to achieve an

acceptance ration between (0.3 - 0.5) for univariate distributions (Gelman, Roberts & Gilks

1996).

Metropolis Hastings - Pros and Cons

(+) Can work with both discrete and continuous distributions.
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(+) Able to perform in any dimensions x ∈ <p.

(+) Easy to be implemented.

(–) Produce auto–correlated samples.

(–) The chain can be slow in mixing.

(–) The chain may get trapped in just a part of the distribution.

There are several extensions of the general Metropolis–Hasting (MH) algorithm. In the first

Metropolis algorithm only symmetric proposals were considered q(θ
′ |θ) = q(θ|θ′) (Metropolis

et al. 1953). The random-walk Metropolis (RWM) considers a even more special case where

q(θ
′ |θ) = q(|θ− θ′ |), where every next step is dependent to the previous. Another special case

of the MH algorithm is the independent sampler which proposal distribution does not depend

on the previous state of the chain as in RWM.

The Independent Metropolis–Hastings (IndMH) and the RWM will be implemented in a chap-

ter’s 3 example and compared to the slice sampler introduced in section 2.4.4. In that way we

will be seeing the difference between one algorithm that explores local information (RWM),

one that ignores it (IndMH) and one introducing auxiliary variables to reach convergence.

2.4.2 The Gibbs Sampler

Geman and Geman introduced the Gibbs sampler for optimization in a discrete image process-

ing problem without completion (Geman & Geman 1984). In this algorithm a component in

each step is updated from the corresponding conditional posterior, so when θ has n dimensions

we need n steps in each iteration. The acceptance ratio for performing a move in Gibbs sampler

is equal to 1. As a result, every simulated quantity is accepted and thus the convergence as-

sessment for the Gibbs sampler must be differently be treated from the MH techniques. From

the conditional distributions, the researcher can with great ease, create the joint distribution,

using the Hammersley - Clifford theorem, which indicate that with knowledge of conditional

probabilities we are capable of reaching the joint probability (Hammersley 1971). Gibbs sam-

pler works relatively well in missing data models and with convenience can perform really well

with high-dimensional problems as well.
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The following steps are used to simulate a Gibbs sample

• Initiate values for θ(0).

• For t = 1, ..., T the next actions take place.

– Set θ = θ(t−1).

∗ For j = 1, ..., d, update θj ∼ f(θj |θ/j , y)

– Set θ(t) otherwise set θ(t+1) = θ(t).

where θ/j is the parameter vector θ without parameter j.

Then one can easily approximate the marginal distribution having samples from the whole

set of full conditionals. Figure 2.1 represents who the algorithm explores the space in Gibbs

sampling in two dimensions. One should notice that the steps are vertical and horizontal,

which is anticipated as every parameter is individually updated. More information concerning

the Gibbs sampler can be found in Gilks et al (1996), Robert and Casella (2004)

Gibbs Sampler - Pros and Cons

(+) easy to understand, easy to implement

(+) good trade off between acceptance and mixing − > acceptance ratio is always 1!

(+) open - source, black box implementations OpenBUGS - WinBUGS.

(–) the form of all univariate conditional distributions will not always be known. (see Section

2.4.3)

Implementation of Gibbs sampler - WinBUGS

One certain concern should be as to how to derive all the different univariate priors for any

model under consideration with ease. The team at the MRC Biostatistics Unit (Cambridge),

consisted be David Spiegelhalter, Gilks and others provided as with a free software package

that implements the Gibbs sampler under a rather wide variety of situations. The software is

called WinBUGS and stands for Bayesian inference using Gibbs Sampling. Using it, one simply
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Figure 2.1: Example of Gibbs sampler parameter space exploration.

needs to make general considerations, while it computes all the required univariate marginal

distributions (see e.g. (Thomas et al. 1992), (Spiegelhalter et al. 2003))

(Marginalize whenever you can!)

2.4.3 The Metropolis within Gibbs Algorithm

In the previous section we described how using the Gibbs sampler one can get the joint dis-

tribution of interest. The Gibbs sampler algorithm though, requires that the full conditionals

of all unknown parameters are of know form and easy to generate from. In times that is not

the case, as we do not know the exact form of part or the whole set of the full conditionals.

It is often impossible to obtain the full conditionals of all the parameters. In such a case it is

advantageous to make use of hybrid MCMC chains. The Metropolis-Hastings algorithm can be

used to generate sample from the conditionals of a parameter of unobtainable form. In other

words, we are making Metropolis-Hastings step within the framework of the Gibbs sampler.

The convergence of this algorithm is not very clear, as the MWG is more of a combination

of algorithms, which each one of them alone would not converge. However, if the proposals

used for each component are chosen in such a way that their property of irreducibility and
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aperiodicity remains, each component will tend to its equilibrium and convergence will be

reached (Carlin and Louis, 1996).

Metropolis Within Gibbs Sampler - Pros and Cons

(+) Can perform when no information on one / all full conditional distributions exists.

(+) In contrast to RWM is more efficient converging faster during the iterations.

(–) Autocorrelation again may be strong and as a result the mixing becomes really slow.

(–) While the number of parameters increases and the model becomes more complex the run

time per iteration decreases.

The advantage of MWG over RWM is that it is more efficient with information per iteration,

so convergence is faster in iterations. The disadvantages of MWG are that covariance is

not included in proposals, and it is more time-consuming due to the evaluation of the model

specification function for each parameter per iteration. As the number of parameters increases,

and especially as model complexity increases, the run-time per iteration decreases for a given

time interval. Since fewer iterations are completed in a given time-interval, the possible amount

of thinning is also at a disadvantage.

2.4.4 Slice Sampler

All methods described above have some limitations when it comes to automatically construct a

Markov chain sampler from ones model specification. Until now we have clearly stated that, to

implement Gibbs sampling, one may need to devise methods for sampling from non-standard

univariate distributions and to use the Metropolis based algorithms must find an appropriate

”candidate” distribution that will eventually lead to efficient sampling. An alternate way to

sample from f(x) , p(x) was introduced by Neal (2003), overcoming the above difficulties.

The general approach is to sample from f(x) from which sample is generally difficult to be

generated. For that, one can specify u auxiliary variables and the conditional f(u|x) to form

the joint distribution f(u, x) = f(u|x)f(x). Then with the use of a MCMC algorithm sample

from (x, u) and marginalizing with computations over u to obtain samples from f(x).
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Even though the choosing of the auxiliary variables are usually a hard question to answer and

mostly depends on each problem and its physical meaning, a usual choice of f(u|x) is the

uniform distribution U(0, f(x)).

The steps of the algorithm can be summarized as follows

• Generate u v f(u|x) = U(0, f(x))

• Generate an interval (xl, xr), x ∈ (xl, xr)

– Generate x v f(u|x)f(x) = U(xl, xr)

– If f(x) > u stop the inner loop

– If not make the interval (xl, xr) shorter.

A graphical representation of how the slice sampler operates can be found in figure 2.2. The

gray lines depict the intervals that will be considered for each of the uniform univariate draws.

Figure 2.2: Example of Slice sampler with auxiliary variable (u)

Slice Sampler - Pros and Cons

(+) almost fully automated procedure - there’s only one tuning parameter, w, that can be

fixed in an adaptive tuning phase.

(+) easy to adapt if the variable has a bounded support.

(+) it usually can outperform the Metropolis - Hastings algorithm.

(+) avoids random walking.

(–) multimodality can be problematic - modes can be missed if the support is unbounded.
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(–) univariate slice sampling can perform poorly when variables are highly correlated.

(–) the chain is often highly correlated due to expansion.

More details on the Slice sampling can be found in Neal (2003), extensions of the algorithm

includes the Hyperrectangle slice sampling (Neal 2003, Thompson 2011) and the Reflective

slice sampling, for sampling from multidimensional slices with the use of ballistic dynamics

with specular reflections off the interior boundaries of the slice (Downs et al. 2000).

2.5 Convergence Diagnostics

There are numerous graphical and numerical proposals for measuring whether or not our chain

has reached its equilibrium. A graphical way to monitor the convergence of the algorithm is

to take into consideration plots of the iterations versus the generated values (Trace Plots). If

all the values are within an area without strong periodicities and tendencies, then convergence

may be assumed. The Running (Ergodic) Mean plots provide us with a way to check how

well our chains are mixing. Another commonly used graph is the Autocorrelation plot. As it

is widely known the MCMC output has positive autocorrelations which can be dealt with by

keeping the first generated values in every batch of k iterations (sampling lag), resulting in the

need to produce a larger output.

2.5.1 Monte Carlo Error

A way to monitor the variability of each estimate due to the simulation is the Monte Carlo

Error (most commonly using the Batch Mean Method). For any k(θ) quantity that we are

interested for, we partition the sample {θ1, ..., θN} into K batches Bb , b = 1, ...,K. The

estimate of the Monte Carlo error of K(θ̂) is given by the standard deviation of the batch

means estimates MCE =
√

1
K(K−1)

∑K
b=1[k(θ̄)b − k(θ̄)], where k(θ̄), the sample mean is given

by k(θ̄) = 1
K

∑K
b=1 k(θ̄b)

The advantage of the Batch Means method is that is easy to be implemented. On the other

hand, we require a large enough number of batches for the Central Limit Theorem to be
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reasonable and also the size of each batch should be large enough so as the batch mean

estimates are somehow independent. Taking the previous into account N might some times

have to be very large. More details on the Batch Means method can be found in Carlin and

Louis (2000, p172) among others.

Another method of estimating the standard deviation of the MCMC chain is called Window

Estimator and estimates the variance directly. The main advantage of Windows estimate is

that it does not rely on approximation theory to the same extent as the Batch Means method.

However, more time and work intensiveness is required to compute the latter. More information

on convergence diagnostics, used for the binomial case, are given in the example of the next

chapter (see sections 9.3.5.1 to 9.3.5.5)

2.5.2 Multiple Chains

Lastly, without providing much details, we have to mention that one can run multiple chains

with different starting points to reach convergence more securely, a detail review of similar

methods and arguments concerning these techniques can be found in Brookst (1996). When

the lines of those different chains cross in trace or in ergodic mean plots (see section 3.2.1),

convergence is highly ensured. This technique is very common to graphically inspect whether

or not our chain has reached convergence.

2.6 Conclusion

In this chapter we visited the early origins of MCMC Theory, dedicated a section for describing

how the Markov Chains work and some simple but important for the time they were intro-

duced algorithms. A connection with MCMC with notice to basic sampling scenes (Metropolis

Hastings Algorithm, Gibbs Sampler and the Slice sampler) in detail with references for further

reading. The next chapter present a practical implementation of IndMH, RWM and the Slice

sampler while considering a simple binomial regression model using the MCMCpack package

(Martin et al. 2011) in R statistical programming language.
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Europe Health Interview Survey study

– Greece 2009

The European Health Interview Survey consists of health interviews which try to offer a com-

prehensive health status and other health-related factors of the countries in the European

Union. For that to be accomplished a series of personal home-based interviews are being

held. The European Health Interview Survey (EHIS), is organized and managed by Eurostat,

is conducted and as a result contains information from all European Union (EU) Member

Countries.

One of the primary objectives of these surveys is for the European Commission to strengthen

its disease alert system. Every five years the surveys are to be repeated. Each of the Mem-

ber States have the possibility to add information to be surveyed into their questionnaire.

However, the main statistical methodology and the key variables to be measured have to be

remained unchanged, mainly for comparison reasons. A health interview survey should cover

the following topics among other

• Self-reported health status.

• Physical related data (Height / Weight).

• The decrease in activities that a person performed due to health issues.

• General health problems and chronic illnesses
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• Smoke and alcohol consumption and other habits.

The EHIS 2009 - Greece survey covered around 6200 private households from the entire country,

leading to an equal number of responders, given the condition that the surveyed persons are

over 15 year old. A dataset coming from the health interview survey, which was conducted

in Greece during 2009, will be used in this example of this chapter and for chapter’s 5 real

data example. The usage of those example will not only try to help readers understanding

the theory presented throughout this thesis, but also report part of the results of the current

survey, while performing comparative analysis. For an extensive descriptive analysis of the

results please follow the Hellenic Statistical Authority which was mainly responsible to carry

out the study in Greece 1.

The real data collected from the above study were extracted from the National Health Map

Database for use in this MSc Thesis. Extra information concerning the dataset was provided

after formal requests from the Health Map’s Office based in the Hellenic Center of Disease and

Control Prevention of Greece2.

The National Health Map is a project seeking to collect all available health information in-

cluding data from a variety of sources. Apart from raw information it collects data from both

Public and Private Health entities in Greece. More information can be found on the Health

Map’s Website3.

3.1 Generalized Linear Models

Generalized linear models are used for the analysis of both continuous and discrete response

variables (McCullagh & Nelder 1989). In that way they may be considered as a generalization

of normal linear regression models. The most common distributions can be used with these

type of models as they are theoretically based on the exponential family of distributions (Nor-

mal, Binomial, Poisson, Gamma, e.t.c.). For details on some properties of the most common

distributions of the exponential family see Table 1.1 in Chapter 1.

1
http://www.statistics.gr/portal/page/portal/ESYE/BUCKET/A2103/Other/A2103_SHE22_MT_5Y_00_2009_00_2009_01_F_EN.pdf

2
http://www.keelpno.gr/

3
http://www.ygeianet.gov.gr/
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The Generalized linear models (GLMs) have become popular because of their generality which

leads to a vast range of application. They have provided a general way of dealing with the

formulation of statistical models. They consist of certain components. (1) The stochastic

component yi, (2) the systematic component also called the linear predictor which consist of

a linear function of explanatory variables and (3) the link function, which is the function that

connects the response parameters with the explanatory variables.

The density function of the exponential family distributions is given by

f(y|θ, φ) = exp

(
yθ − b(θ)
φ+ c(y, φ)

)
(3.1)

where φ is the dispersion parameter and θ is the canonical parameter. The mean and the

variance are given by

E(Y ) =
db(θ)

dθ
= b

′
(θ) (3.2)

V (Y ) =
d2b(θ)

dθ2
α(φ) = b

′′
(θ)α(φ) (3.3)

The link function is of crucial meaning for GLMs. It is the way that the parameters of the

response, are matched with the linear predictor and the covariates included in the model. The

link function must every time be used wisely as it should map the range of values in which the

parameter of interest lies with the set of real numbers in which the linear predictor takes values

(Ntzoufras 2009). In our case the binomial, the link function should map the probability of

success from [0,1] to the set of real numbers.

The most widely used link function of the binomial models is logit. In the next table, the most

common link functions for the binomial model are presented.

Within the framework of Bayesian inference, βs in GLMs take zero values for prior mean and

most usually large values for prior variance. In this way the researcher expresses his prior

ignorance for the size of each effect.
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Common Binomial Link Functions

Title Link Function

Logit (Canonical) g(p) = (
p

1− p
)

Probit g(p) = Φ−1(p)

Complementary log − log g(p) = log[−log(1− p)]

Table 3.1: Table containing the most common Binomial Link Functions

More information concerning details and points of GLMs can be found in a plethora of books.

(e.g. McCullagh and Nelder, 1989). Details concerning Bayesian inference on GLMs and recent

developments can be found in Congdon (2006), while, for ways of analytical implementation

using WinBUGS software one should look in Ntzoufras (2009).

3.2 Self-assessed health Vs. Education

Derived from the above study, one of the key questions is how a person judge his/her general

health status. Many of the answers reported were above fair. In particular 67% of our sample

claims to have good or very good health status.

Several studies have reported that many socioeconomic factors and especially the educational

levels are related to the SRHS. Kunst et al. (2003) reported inequalities in ”diseased weighted”

self-reported health according to the level of education in 12 European countries of larger or

smaller magnitude but still of significant substantial size. The findings in Montazeri (2008)

indicated an inverse relationship between educational level and self reported health status.

Following the above claims we will search if something similar can be reported in Greece’s

EHIS 2009 data.

In this chapter’s naive example we are investigating if the education level of the responder

plays an important role on how he/she judge his/her general health. Of course, we are not

capable of pointing out a causal relation between those two variables due to various restrains.

(a) Our study is a cross sectional one, presenting only a ”photo” of the current population

and (b) they may of course be other covariates that are simultaneously correlated with both
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”Education status” and ”Self-Reported health status” which if taken into account will diminish

any relation found during this naive test (Secondary associations). A more complex model

taking into account simultaneously other measured quantities is presented later on in this

thesis in Chapter 5 while taking into account model uncertainty.

We assume that the levels of the variable ”How is your health in general?”, from now on

called as ”Self-Reported Health Status (SRHS)”, are ordinal and one category differs from the

one right before and right after it by a constant value of 1. So the values of the levels are

Very Bad=1, Bad=2, Fair=3, Good=4, Very Good=5. For this example will only use the ones

reporting bad health status=1 : (bad, very bad) and good health status=0 : (good, very good),

creating a binary response variable. The analysis could be performed without reducing the

levels of the response variable to 2 categories with the use of ordinal multinomial regression.

For more information see e.g. Congdon (see 2007, Chapter 7).

Therefore, our sample size reduces to 4855 from 6172. The descriptive relation between the

Education level and the ”Self reported Health Status” can be noticed in table 3.2

What is your highest education degree?

ISCED Level ISCED 0 ISCED 1 ISCED 2 ISCED 3 ISCED 4 ISCED 5 ISCED 6

Very Good - Good 159 828 565 1313 248 1017 10

Very Bad - Bad 214 323 71 72 7 28 0

Total 373 1151 636 1385 255 1045 10

Table 3.2: Number of answers in each category of the ”Self-reported Health Status”

according to the education level of the responder (ISCED 0 - ISCED 6).

The logit model will be used to model these data as it most commonly used in such type

of data, while other frequently used link functions are the probit and the cloglog as we have

already seen in table 3.1. The levels of SRHS will be represented by y and will take the place

of our dependent variable, while the levels of education will be the explanatory variable x.

If the probability of those having reported a {good, very good} health status is p and n is

the total number of persons, while the subscript i=1,...,7 represent the levels of self-observed

Self-Reported Health, then 1− pi is the probability of having reported {bad, very bad} within
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the ith level and ni the number of persons that have answered the ith level as their level of

education, i ∈ {1, 7}, then

logit(pi) = b0 + b1xi

and yi|pi ∼ Bin(ni, pi) , for i = 1, ... ,7.

The logit model as we can see has as a dependent variable a transformation of pi that represents

the odds of the unknown probabilities. This element can be expanded as the probability of a

person having reported {good, very good} health status pi, over the probability an individual

reporting {bad, very bad} health status (1− pi).

logit(pi) = log

(
pi

1−pi

)
for i = 1, ... ,7.

We calculated the Maximum Likelihood Estimates of b0 and b1 along with their corresponding

standard deviations, b̂0 = 0.9402( 0.11√
4855

) and b̂1 = −0.9166( 0.04√
4855

) using classical procedures.

eb̂1 = e−0.9166 ≈ 0.40 is the odds ratio of the ith level versus the (i + 1)th, meaning that for

every increase of the educational level by one level, an increase of 1/eb̂1 = 2.5 on the changes

of reporting a {good, very good} SRHS is reported. In figure 3.1 the contour plot of the

log likelihood values of the above considered model is presented. We can see that parameter

β0 cover almost three times the interval of β1, which points that correlation worthy to be

mentioned between the two parameters should exist.

The MCMCpack (see Appendix for details) was used to implement the following examples.

The function MCMCmnl which simulates from the posterior distribution of a multinomial

logistic regression model - in our case a simple bivariate logistic regression - using either

an Independent MH (IndMH), a random walk Metropolis algorithm (rwM) or a univariate

slice sampler. The simulation part is done in compiled C++ code to maximize speed and

efficiency.

Even though we mentioned earlier that the two parameters seems to be correlated, we adopt a

multivariate Normal prior on β with independent components for convenience β v N(βi, τ
−1
βi

)

The Metropolis proposal distribution is centered at the current value of β, except stated

otherwise and has variance-covariance matrix V = T (τβi + Σ−1)−1T , where T is a matrix
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Figure 3.1: Logit Regression Contour plot of Log Likelihood values of β0 Vs. β1, with

confidence intervals of {0, 0.5, 0.75, 0.9, 0.95, 0.99}

formed using the tune parameter, τβi is the prior precision, and Σ is the large sample variance-

covariance matrix of the MLEs.

In our example an independent bivariate Normal prior on β =

β′0
β
′
1

 is assumed.

β′0
β
′
1

 ∼ Normal
β0

β1

 ,

Sβ2
0

0

0 Sβ2
1

 (3.4)

Therefore in each step, the proposed values of β
′

will be generated from β
′
0 ∼ N(β0, Sβ2

0
) and

from β
′
1 ∼ N(β1, Sβ2

1
)

The likelihood of the model will be

f(y|β0, β1) =

N∏
i=1

(
β0 + β1xi

1 + β0 + β1xi

)yi(
1

1 + eβ0+β1xi

)1−yi

(3.5)
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while the posterior distribution

f(β0, β1|y) ∝ f(y|β0, β1)f(β0, β1)

∝
N∏
i=1

(
β0 + β1xi

1 + β0 + β1xi

)yi(
1

1 + eβ0+β1xi

)1−yi

− exp

(
−
(
β0 − µβ0√

2σβ0

)2

−
(
β1 − µβ1√

2σβ1

)2
) (3.6)

In our examples i = 1, 2, while the unknown parameters are β0 the constant and β1 the effect

of the model. In most cases, any prior distribution can be used to represent prior information.

The choice of the prior may include informative priors, if previous knowledge of our data is

available. In our case we take a ”non - informative” prior indicating our possession of no clear

prior information with two different starting points. In the last case though, a prior with small

variance and mean far away from the MLE estimates to test how well the algorithm work in

conditions where wrong a priori information is available. The information of the examples

that follow are summarized in table 3.3. The calibration of the RWM acceptance rate should

be even more careful, because high acceptance rates have the tendency to ruin the sampling

procedure. The acceptance rates were stabilized each time around 0.30 using the procedures

tuning parameter T, except for the Slice Sampler in which by definition the acceptance rate

equals to 1.

Quantities of MCMC examples initial runs

Set Initial Beta Prior Mean Prior Precision Acceptance Rate Burn-in Iterations

1st & 2nd set (MLE) / (10,10) (0,0)

0.001 0

0 0.001

 ≈ 0.30* 3000 5000

3rd set (10,10) (10,10)

0.1 0

0 0.1

 ≈ 0.30* 3000 5000

Table 3.3: Summary of the changes in various quantities of examples 1.1 to 3.3 *Except

for the Slice Sampler which acceptance rate is by definition equal to 1.

Diagnostic test are to be discussed and at the same time applied, while a function to summarize

the posterior information into a graph, containing graphs mostly produced from the coda

package was created and used in the following examples.
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3.2.1 Diagnostic Plots

In order to check if the chain has reached convergence and other properties, a series of plots is

available and will be plotted. The traceplot follows the iterations and plots sampled values for

each variable, while the running mean (ergodic mean) plot, generates a time series plot

of the ”running” mean for each parameter. The ”running” mean is the mean of all sampled

values up to a given iteration, including that of the last iteration. The density plot, creates

the probability density function from the simulated data, while the autocorrelation plot is

a tool for checking if randomness exists in our simulated data. This property is ascertained by

evaluating autocorrelations for data values at a variety of time lags.

From now on when noticing a particular sampling scheme with number ∈ (1, 2, 3) we will be

referring to table’s 3.3 first column’s numbers, describing each of our sampling schemes. To

distinguish the use of sampling schemes among different MCMC algorithms, the names of each

algorithm will be mentioned as IndMH (Independent Metropolis Hastings), RWM (random

walk Metropolis) and Slice (Slice sampler).

3.2.1.1 Example 1 - Independent Metropolis Hastings

IndMH algorithms are of certain interest, but as we have discussed their practical implemen-

tation is often problematic. Both the construction and the choice of the proposal are crucial

and often complicates the procedure. In the IndMH algorithm as we already have mentioned

every next draw is independent from the previous. The step is based on a bivariate normal

proposal with mean equal to the posterior mode.

In the following section the IndMH example’s plot diagnostics are presented. The 2nd sampling

scheme converged without difficulties. A small autocorrelation issue was noticed on the last

scheme. The IndMH reached convergence for the set of three schemes, with some difficulties

noticed for the 3rd sampling scheme. The lag in the first two schemes was limited to 5 and for

the last scheme was raised to 10 for the autocorrelation plot. The diagnostic tests showed that

the IndMH has issues when wrong information is known and as a fact a not so appropriate

prior is selected, in comparison to selecting a non informative prior with prior mean either

equal to zero or derived from the MLE estimators.
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3.2.1.2 Example 2 - random walk Metropolis

While the IndMH algorithm applies mostly in specific problems, RWM can be applied to a

wider set of cases. In the RWM algorithm every next draw is dependent to the previous. So

the step is based on a bivariate normal proposal with mean equal to the previous step. Even

though random walk has the ability to deal with a lot of different situations it is not always the

most efficient solution. Difficulties such as regions with low probability between modal regions

require many iterations to be explored and due to its symmetric features lot of time is spent

revisiting regions that are have already been explored. Alternatives that are not that easy to

implemented exist, that overcome difficulties using perfect symmetry (see Robert & Casella

2009, chapter 6).

As it was anticipated the autocorrelations of the chains in comparison to the IndMH are

higher in all sampling sets. More iterations seems to be needed for convergence to be reached

in comparison to the IndMH. In particular, in the 2nd & 3rd set, the algorithm had not reached

convergence even after 1500 iterations.

3.2.1.3 Example 3 - Slice sampler

The Slice sampler uses latent variables to sample from the target distribution. That feature

is what makes the sampling schemes under the Slice sampler to need more time to execute

given the number of iterations. In the slice sampler the proposals are generated by a truncated

bivariate normal distribution. Details on how the slice sampler is implemented for Generalized

Linear Models can be found in Damlen et al. (1999)

In our examples the Slice sampler performed really well and with only just a few iterations

reached convergence in the sets of schemes, it seems to performs similar to the IndMH but not

outperforming it.

As we have noticed in section 2.4.4 the sample would, by construction, be high correlated due

to expansion. The slice sampler seems to have the biggest autocorrelations of all examples pre-

sented in this chapter. Comparisons between algorithms and between their sampling schemes

will be presented in sections 3.2.2 to 3.2.3
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3.2.2 Diagnostic Tests

Diagnostic tests were carried out, with the majority of them pointing to similar results. The

data used in the following diagnostics are the iterations of each sampling scheme with the

initial burn-in sample included, therefore N = 8000.

The whole set of sampling schemes created chains that converged. The RWM seems to have the

most difficulties in the 2nd and the 3rd sampling schemes, but eventually reaching convergence.

As a whole, the slice sampler seems to be working faster (needing the least iterations) than

RWM and slightly better than IndMH, even when taking into account the autocorrelation

introduced by the slice sampler into the produced MCMC sample. In the 3rd sampling scheme

the IndMH seems not to have reached its equilibrium and more iterations are suggested by the

Heidelberger-Welch diagnostic.

For more details on the application of the tests with the coda package refer to the Appendix’s

section 9.3.5 on the functions used, see coda’s functions and parameters placed in the appendix.

For a comparative study on diagnostic tests one can refer to Cowles & Carlin (1996).

3.2.3 Samplers Comparison for Simple Logistic Regression

Further on, plots presenting the ergodic mean of each algorithm given the sampling scheme

(1 - 3) are provided. With starting points, both from the beginning of the chain and after

discarding the sample of the burn-in period (T=3000). The two random walk’s schemes 2nd

and 3rd, for which we assumed distant initial betas, seem not to be working well. For that

reason, those schemes were excluded from the plotting of the whole chain and only plotted

after discarding the burn-in period in figures 3.5b and 3.5c. This is because the first 1.500

iterations of the RWM wandered away and only after a considered number of iterations the

chain converged to its equilibrium. The last figure (3.5c) of this section includes the ergodic

mean of the slow converging RWM algorithm for the 2nd sampling scheme, we can clearly

see that the algorithm’s property of exploring local regions is not very helpful, leading the

algorithm to slower reach its equilibrium.
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3.2.4 Other ways of diagnosing convergence

3.2.4.1 Graphical analysis of contour plots

A presentation of the 3rd sampling scheme is attempted in figures 3.6, 3.7 and 3.8, where the

prior mean=(10,10), the prior Standard Deviation = 5 and the βinitials = {10, 10}. The plots

describe how each one of the three algorithms (IndMH, RWM, Slice sampler) move around the

space discovering the joint distribution. Of the three sampling schemes considered only the

3rd will be presented, as we noticed that all algorithms had difficulties to reach convergence

given this scheme.

Here we can notice again that the IndMH explores the posterior distributions with much

ease and achieves to produce values from the whole space much quicker that the other two

algorithms, though having difficulty exploring the tails of the distribution. The RWM seems

to be having the worst exploration, one can notice that after 50 iterations the mode has been

visited very few of a times but after one thousand iterations seems to be sampling better that

the IndMH. The Slice sampler behaves well throughout the sampling process, but needs the

most running time for the same number of iterations to be attempted (see table 9.1 in the

Appendix)

3.2.5 Posterior Summaries - Interpretation

After checking the diagnostic plots and the diagnostic tests, we concluded that the IndMH

and the Slice sampler seem to converge faster in the whole set of sampling schemes while the

RWM is slower for the 2nd and the 3rd. In that way we have to use a smaller burn-in period

for those two, as we are in a way throwing away valuable sample that would lower the MCMC

error in a given number of iterations. The burn-in period for all sets of posterior summaries is

considered to be 3000.

We will present the posterior summaries of each MCMC algorithm sampling scheme in three

separate tables, one for each of the algorithms. The set corresponds to the number of the

sampling scheme, while the parameter to each of the two parameters estimated for my simple

logistic model.
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Figure 3.6: IndMH - Logit Regression Contour plot of the joint Log Likelihood, {β0, β1}

for 10, 50, 1000 Iterations

Figure 3.7: RWM - Logit Regression Contour plot of joint Log Likelihood, {β0, β1} for

10, 50, 1000 Iterations

Using the standard method of MLE we computed β0 = 0.9402 with SD equal to 0.0015 and

β1 = −0.9166 with SD equal to 0.0006. The estimates are really close to these values, this may

be due to the size of our dataset’s sample N = (4855), that diminishes any prior knowledge
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Figure 3.8: Slice sampler - Logit Regression Contour plot of joint Log Likelihood,

{β0, β1} for 10, 50, 1000 Iterations

provided. The 1st and the 2nd sampling schemes provide closer estimates to the MLE in

comparison to the 3rd only for the IndMH and the RWM algorithms. We should notice that

for the Slice sampler the 2nd sampling scheme performed better in the way that it returned

means closer to the MLEs.

As for the MC error it is clear that given the separate algorithms and constant burn-in period

equal to 3000, for the IndMH the MC error takes lower values under the 1st and higher under

the 2nd scheme for both parameters, while for the RWM algorithm it is not clear which of the

sampling schemes has lower/higher MC errors. As far as the Slice sampler is concerned even

though the 2nd scheme seems to have the most accurate mean estimates, it also has the higher

MC error among the different sampling schemes of the algorithm. In all cases though the MC

error is well below the threshold of three significant digit accuracy (MC error < 0.01).

For the running times of each sampling scheme under the three algorithms used in MCMCpack’s

function MCMCmnl see the Appendix (table 9.1).
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Parameter Set* Mean SD Naive SE Time-series SE 2.5% 97.5%

1st 0.9408 0.1120 0.0016 0.0024 0.7338 1.1413

β0 2nd 0.9405 0.1055 0.0015 0.0040 0.7434 1.1401

3rd 0.9535 0.1194 0.0017 0.0035 0.7331 1.1871

1st -0.9175 0.0418 0.0006 0.0009 -0.9972 -0.8401

β1 2nd -0.9180 0.0402 0.0006 0.0015 -0.9956 -0.8452

3rd -0.9214 0.0444 0.0006 0.0012 -1.0052 -0.8402

Table 3.4: Posterior Summaries of the IndMH according to the scheme of iteration (*de-

tails in table 3.3). Contains the mean, the standard deviation, a naive s.e. of

the mean (ignoring autocorrelation of the chain) and a time-series s.e. based

on an estimate of the spectral density at 0 (Plummer et al. 2006).

Parameter Set Mean SD Naive SE Time-series SE 2.5% 97.5%

1st 0.9405 0.1055 0.0015 0.0040 0.7434 1.1401

β0 2nd 0.9424 0.1081 0.0015 0.0038 0.7330 1.1567

3rd 0.9468 0.1071 0.0015 0.0042 0.7306 1.1548

1st -0.9180 0.0402 0.0006 0.0015 -0.9956 -0.8452

β1 2nd -0.9183 0.0412 0.0006 0.0015 -0.9963 -0.8341

3rd -0.9194 0.0408 0.0006 0.0015 -0.9992 -0.8369

Table 3.5: Posterior Summaries of the random walk MH according to the scheme of

iteration (details in table 3.3. Contains the mean, the standard deviation, a

naive s.e. of the mean (ignoring autocorrelation of the chain) and a time-

series s.e. based on an estimate of the spectral density at 0 (Plummer et al.

2006).

3.3 Model Checking

There are a number of techniques used when the chain fails to converge. The researcher can

change the priors carefully but avoiding the chance of truncating. Moreover, an increase of the
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Parameter Set Mean SD Naive SE Time-series SE 2.5% 97.5%

1st 0.9471 0.1037 0.0015 0.0049 0.7376 1.1378

β0 2nd 0.9387 0.1033 0.0015 0.0058 0.7390 1.1427

3rd 0.9431 0.1039 0.0015 0.0046 0.7480 1.1541

1st -0.9198 0.0393 0.0006 0.0019 -0.9933 -0.8436

β1 2nd -0.9165 0.0389 0.0006 0.0021 -0.9933 -0.8403

3rd -0.9178 0.0390 0.0006 0.0018 -0.9953 -0.8429

Table 3.6: Posterior Summaries of the Slice Sampler according to the scheme of iteration

(details in table 3.3. Contains the mean, the standard deviation, a naive s.e.

of the mean (ignoring autocorrelation of the chain) and a time-series s.e.

based on an estimate of the spectral density at 0 (Plummer et al. 2006).

number of chains should be considered, the alteration of parameters are another way to tune

the algorithm so as to reach convergence faster. More information can be found in Gilks et al.

(1996), Cowles & Carlin (1996).

Caution

Even after checking histograms, traceplots, autocorrelation plots and the convergence

diagnostics there is no guarantee that a chain is stationary.

A limitation of the techniques used in this chapter is that they are not capable of identifying

multimodal distributions and draw sample. One way to make sure a bigger part of the space

is explored is by using multiple chains with different starting points. A lot of proposals are

presented for dealing with an unknown change point analysis in logistic regression see e.g. Gössl

& Kuechenhoff (2001). Lastly, a menu-driven program in R obtaining convergence diagnostics

and other functions for MCMC outputs is called BOA (Smith 2005) and is suggested as an

alternative of coda package mostly used throughout this chapter.
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3.4 Closing Remarks

Part of chapter’s 2 mentioned algorithms were presented in practice using data from the EHIS

2009 study. Comparisons between the techniques and advantages/disadvantages of each one

was presented in theory as well as in practice.

The next chapter (4) is devoted to an introduction in variable and model selection techniques

when question over the model itself is considered. Details for Model comparison both for the

Classical and the Bayesian approach are included. A comparison between three presented

techniques using MCMC is performed in WinBUGS and thoroughly explained in chapter 5

with the use of an Empirical Bayes dependent prior. This brief review on Bayesian variable

selection methods is based on O’Hara & Sillanpää (2009), Ntzoufras (1999, 2011), Congdon

(2007) and other sources. In chapter 6 we discuss the Reversible Jump MCMC introduced by

Green in 1995 and we present the Jump Interface created by Lunn et al for WinBUGS in 2006

(Lunn et al. 2006), for practical use of the reversible jump MCMC for variable selection using

a hierarhical model with Gibbs sampling.
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Introduction to Model Selection

All models are wrong,

but some are useful.

- George Box -

When we have a number of possible predictors it can be difficult to find the ”best” model.

Questions of the type, which covariates should be included in the model as main effects and

which interactions to take into account, arise. Model selection attempts to make this task

easier for the researcher. For such a procedure to be created one needs, a criterion to be able

to compare two models and to create a strategy for comparison.

4.1 Classical Model Comparison

In that way model selection attempts to find this subset of predictors (covariates) that explain

part of the response variability in the ”best” way. Any unnecessary predictors should be ex-

cluded, as they will only add noise in how quantities are being estimated. Classical ways to deal

with variable selection have been developed both using significant tests (e.g. in GLMs using

the F and X2 distribution) and alternative methods mostly using model selection criteria.
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4.1.1 Stepwise Procedures

Methods that became widely used after their initial development of Efroymson in the early 70’s

are the stepwise methods (Efroymson 1960). The initial idea concerned implementation of the

procedure in multiple linear regression. It is a fact that stepwise methods contain a plethora

of different strategies e.g. forward and backward selection, stepwise forward and backward

selection.

Problems arise when considering the limitation that are introduced by the use of such tests

during model selection. In large datasets, p-values tend to be pretty small, and the continuous

calculation of sequential significant tests introduces Type I and Type II error, including not

important covariates or dropping out of the model significant ones. However, the main issue

with the usage of such techniques is the selection of just one model between a huge number

of possible models, producing effects considering only the selected model, while at the same

time ignoring model ascertainty. In that way, selection of one model may insert bias in our

inference.

Another measure to assess the fit of a model, the Cp statistic, which can be also used as

criterion to stop the above stepwise procedures, was introduced by Mallow’s in 1973 (Mallows

1973). Other popular model selection criteria, choose the model with the minimum values of

MSE or looking at types of R2 coefficients of determination. Among the different types of

R2 the most widely used is the R2
adj. a measure that takes account the number of variables

contained in each model, while also maintaining the ability to be used for comparison among

models of unequal size.

Instead of using the simple formula for calculating R2 we can compute it using cross validation

or bootstrap techniques. There are many cross-validation type techniques. A summary of

different cross validation schemes is described briefly in (Syed 2011). Austin (2008) claims

that bootstrap model selection appears to have similar performance compared to backward

selection.

Finally, the level of efficiency of such methods has been summarized by Copas (1984) in the

next quote ”Stepwise methods are frequently used, frequently abused and poorly understood

procedure of applied statistics”.
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4.1.2 Information Criteria

Model selection criteria contains a family Information Criteria who are based on the idea

of maximizing the likelihood. The IC family can be written in the most general form as

IC = −2logL(θ̂|y) + d(p, n). This equation contains the negative logarithm of the likelihood

and a function of mostly (p) the parameters of the models and (n) the number of observations.

The values of IC are used to compare model of different size. They try to balance between

penalizing for extra parameters adding complexity in the model and goodness of fit. A great

number of different IC were introduced taking into account relaxed initial assumptions or just

trying to boost its initial properties.

In Appendix’s table 9.3 some Information Criteria are summarized, with both the equation

for their computation and the date they were published. Among the ones we have chosen to

cite, all have the same elements in the first half (likelihood part) but differ on how they weight

the information in the second part. In other IC that is not always the case. AIC tries to find

the true model from where the data were generated asymptotically. TIC (Takeuchi 1976) can

be considered a more general AIC, where it is often hard to estimate J(θ̂) and I(θ̂), therefore

becomes more difficult to be applied. AIC and BIC (Schwarz 1978) have a lot in common,

however the second one is more strict whenever the model becomes more complex with the

introduction of extra covariates. Hanna-quinn (Hannan & Quinn 1979) is a special case, which

while often cited, seems to have seen little appraisal in practice as stated by Burnham &

Anderson (2002). AICc (Hurvich & Tsai 1989) is a corrected form of AIC, which tries to

work out the problem of selecting overfitted models when the number of observations is small

compared to the number of regressors.

4.2 Bayesian Model Comparison

4.2.1 Bayes Factor

The formal Bayesian model choice procedure rests on work by Jeffreys (1961). As there is

no constrain in the number of simultaneous hypotheses testings nor do any need to be nested
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within any of the others, from now on we change the notation of ”hypotheses” Ho to ”models”

Mi, i = 1, ...,m (Carlin & Louis 1997).

Comparison between models, involves comparison of marginal likelihoods. The marginal like-

lihood is the probability of the data y given a particular model m, and is obtained by taking

the average over the priors assigned to the parameters of m. The comparison of two competing

models is based on the ratio of marginal likelihoods, or Bayes factor of model M1 against model

M2. The introduction of that ratio diminishes the normalization constant, as it is ruled out

by the devision.

Let us assume that we only have two competing models in the world M1 and M2, θ0 and θ1

the parameters corresponding to each of one of the models. Each model has a prior p(Mi)

with i =1,2 and p(M1) + p(M2) = 1. Applying the Bayes theorem (section 1.2.2) the posterior

probability of any of the models is given by

p(Mi|y) =
p(y|M1)p(M1)

p(y|M1)p(M1) + p(y|M2)p(M2)
, (4.1)

for i =1,2.

The posterior odds PO12 of model M1 versus model M2 are given by

PO12 =
p(M1|y)

p(M2|y)
=
p(y|M2)

p(y|M1)

p(M2)

p(M1)
, (4.2)

The fraction BF12 is called Bayes Factor of model M1 versus model M2.
p(M1)
p(M2)

is the prior

odds of model M1 versus model M2. In other words (4.2) can be rewritten as

Posterior Odds = Bayes Factor X Prior Odds (4.3)

p(y|Mi) is the marginal likelihood of the data given a specific model Mi and is given by

p(y|Mi) =

∫
θ1

p(y|θi,Mi)p(θi|Mi)dθi (4.4)

The above comparison of two models can be extended to more. Approximate values for inter-

preting the Bayes factors provided by Kass & Raftery (1995) and are given in Tables 4.1 and
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4.2. For values of BF<1, evidence for supporting the other model exist. Taking twice the log

of the Bayes factor returns the same scale as the conventionally used deviance and likelihood

ratio statistics (see Congdon 2007, page 27). Even though those are consider to be the most

appropriate interpretations, one should be very careful when applying them in practice. The

logarithms of the marginal probability of the data can also be used as a predictive score.

Log10 BF10 BF10 Evidence Against M0

0 to 0.5 1 to 3.2 Not worth than a bare mention

0.5 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

Greater than 2 Greater than 100 Decisive

Table 4.1: Bayes Factor and its logarithm interpretation (Kass & Raftery 1995)

2Ln BF10 BF10 Evidence Against M0

0 to 2 1 to 3 Not worth than a bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

Greater than 10 Greater than 150 Decisive

Table 4.2: Bayes factor and twice its natural logarithm interpretation (Kass & Raftery

1995)

Lindley-Bartlett Paradox

In 1957 Lindley (1957) noticed a rather interesting behavior of the Bayes Factor and called

it a paradox. When n → ∞ then the posterior odds → ∞ for any given significance level,

leading to the support of the simpler hypothesis. In classical statistics, significance tests, when

n is very large, tend to reject the null hypothesis. Therefore, according to what methodology

is selected for drawing inference, the researcher will end up ”correctly” supporting different

hypotheses.

Bartlett then observed that for variance of great magnitude the posteriors odds support the

null hypotheses. Given this finding, one should carefully select priors with large variance and
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the use of improper priors should be avoided. More specifically this paradox had lead to many

suggestions for priors on model selection, some of which, will be examined further on.

4.2.2 Marginal Likelihood

Bayesian Model assessment with the use of Bayes Factor, posterior model probabilities and

odds can be implemented with the computation of the marginal likelihood

f(y|m) =

∫
f(y|θm,m)π(θm|m)dθm (4.5)

while m is a model under assessment, π(θm|m) is the the density of the parameter vector θm

for model m. From now on, in this section, for convenience we will omit the term m from the

presented equations, except where necessary.

It is a fact that for the computation of the marginal likelihood high dimensional integrals are

getting involved making most of the times the analytical approximation unachievable.

The predictive density can be an expectation of the likelihood with respect to the prior

f(y) = Ep[f(y|θ)] (4.6)

In Bayesian thinking, marginal likelihoods have a way to impose a natural penalty on more

complicated models. In comparison to the likelihood, which will continuously increase with

the addition of extra parameters, the marginal likelihood, while reaching a top, then starts

decreasing while the complexity of the models increase. Is therefore, immune to overfitting

issues.

The methods described in secton 4.3 utilize MCMC outputs from separate models in order to

acquire the estimates of their marginal likelihoods and as a result estimate Bayes Factors. Most

of the times we are not capable to derive this integration analytically, therefore we have to

estimate of the marginal likelihood making use of other approaches such as asymptotic based

methods (e.g. Laplace method) or with the use of simulation via MCMC. Only a brief mention

of these methods which use iterative MCMC schemes to estimate the marginal likelihood will

be attempted as they are not this MSc thesis main theme. More information can be found in

Kass & Raftery (1995) and Gamerman & Lopes (see 2006, chapter 7).
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4.3 Bayesian variable selection with direct methods

A direct estimate of the marginal likelihood, using Monte Carlo is given by f̂0(y) =
1

K

∑N
j=1 f(y|θ(j))

where θ(1), . . . , θ(N) is a prior distribution’s f(θ) sample. This approach is rather simple and

has a lot of drawbacks, including the fact that the estimator does not work well when dis-

agreement between the likelihood and the prior exists (McCulloch & Rossi 1991). Even if N is

large enough, this simple direct estimate will be influenced by a few sampled values, making

it rather unstable.

Laplace approximation (Tierney & Kadane 1986) is based on the Normal distribution and

results in f̂1(y) ≈ (2π)d/2|Σ̃|1/2p(y|θ̃)p(θ̃) where θ̃ is the posterior mode of the parameters of

model, Σ̃ equals to the minus of the second derivative matrix of the log(θ|y) evaluated at θ̃

One can avoid to compute analytically Σ̃ and θ̃ and estimate them with use of the output of

a MCMC algorithm using the point that maximizes p(y|θ)p(θ) as an estimate of θ̃ (posterior

mean) and the variance-covariance matrix of the generated values (Metropolized Laplace

Estimator (Lewis & Raftery 1997).

Another way is to use importance sampling, described in section 2.3, aiming to boost values

being sampled from regions where the integrand is large. These approaches are based on

generating sample from the importance density g(θ). The predictive density given by 4.5 can be

rewritten as f(y) = Eg[
f(y|θ)p(θ)

g(θ)
]. Therefore the importance sampler estimator (Newton

& Raftery 1994) can be given by f̂2(y) =
1

K

∑N
j=1

f(y|θ(j))p(θ(j))
g(θ(j))

where now θ(1), . . . , θ(N)

are sampled from g(θ).

When g(θ) is the posterior π(θ) the importance sampling estimator is called Harmonic mean

(HM) estimator. The HM estimator, even though is rather simple to use, a problem that

cannot be ignored is the fact that it is affected by small likelihood values (Lopes & West

2004).

The Newton - Raftery (NR) estimator is a way to combine both f̂1 and the HM estimator

in such a way that g(θ) = δp(θ) + (1− δ)π(θ). The NR estimator uses a mixture of the prior

and the posterior, with weight equal to δ where 0 < δ < 1.
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Bridge sampling estimator Meng & Wong (1996) claimed that for any bridge function α(θ)

with support deriving from both the posterior density π and the proposal density g, ratios of

normalizing constants can be estimated byf(y) =
Eg{α(θ))p(θ)p(y|θ)}

Eπ{α(θ)g(θ)}
It is interesting to

see that if α(θ) =
1

g(θ)
reduces to the simple M C estimator f̂0(y) and in the same way if

α(θ) = {p(θ)p(y|θ)g(θ)}−1 the Bridge sampler becomes just a variation of the H M estimator

. Details of the iterative scheme to estimate the predictive density can be found in Meng &

Wong (1996).

Another common method to calculate the marginal likelihood was introduced by Chib (1995)

called the Chib’s estimator . For the estimation of the marginal likelihood π̂(y|m) presented

as π̂(y), an estimate of the predictive density π̂(θ
′ |y) at θ

′
is required. When knowledge of

the full conditional distributions is available, Chib’s proposed a Gibbs iterative scheme to be

applied in order to calculate π(θ
′ |y). The posterior distribution can be written as

4.3.1 Conclusion - Further reading

Techniques of classical statistics were mentioned at the beginning, while model comparison

with analytical computation of the marginal likelihood or with the use of MCMC algorithms

(Chib & Jeliazkov 2001) were briefly discussed.

A lot of extensions of the above methods have been proposed e.g. Gelman & Meng (1998)

extended the bridge sampling estimator with a proposal named path sampling estimator. Other

approximating methods among others include the Jeliazkov estimator (Chib & Jeliazkov 2001).

Chib and Jeliazkov in 2001, estimated the marginal likelihood using a single run metropolis

algorithm using the same idea. The power posterior estimator (Friel & Pettit 2008). A detailed

review and comparison of some marginal likelihood estimators can be found in Gamerman

& Lopes (2006), in Perrakis (2008) one can find comparisons of some marginal likelihood

estimators with code for implementing them in R, Ntzoufras (see 2011, pg.392-397) briefly

presents them and provides many references for further reading and Congdon (2007) makes a

brief theoretical presentation of Laplace and BIC approximations.
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Bayesian Variable/Model Selection

Using MCMC

Statistical problems where

”the things you don’t know

is one of the thing you don’t know”

are abiquitous in statistical modelling.

Green P. 1995

The Bayesian approaches, for directly estimating the marginal likelihood, presented in section

4.3 are closely related to model-selection criteria : during our search for the best model we

choose the one maximizing the marginal likelihood. However, the estimation of the marginal

likelihoods, even when the covariates being considered for inclusion are of normal number, is

rather impossible. The total number of models under consideration is equal to 2p, when p

covariates are included in our analysis.

In order to find the most probable model, the evaluation of the most promising candidates,

is required. For that reason algorithms that search large parts of the model and parameter

space were introduced firstly by George & McCulloch (1993). George and McCulloch presented

the first Bayesian algorithm that searches the model space and a posteriori choose the most

probable models named ”Stochastic Search Variable Selection”. Other algorithms, considerate
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variable selection, the Kuo & Mallick sampler (Kuo & Mallick 1998), the Gibbs Variable

Selection of Dellaportas et al. (Dellaportas et al. 2002). Another set of algorithms extending

by generalizing the Gibbs-based algorithms, search the model space are the Carlin & Chib

method (Carlin & Chib 1995), Metropolized Carlin and Chib by Dellaportas et al. (2002) and

the reversible jump MCMC (Green 1995). Latest methods derived from those will be just

mentioned with appropriate references for further reading.

In this section such variable and model selection algorithms will be described. For the con-

ditional posterior distributions of the algorithms presented in the next section, in general we

follow Ntzoufras notation (see Ntzoufras 2011, pg 409-412, 436-438). These techniques seems

to be more appropriate when dealing with problems of high dimensions in comparison even to

Bayesian Model Averaging, a technique which is discussed, analyzed in the next section and

implemented again in chapter 7 using the BMA, BMS and BAS R packages created by Hoeting

et al. (1999), Zeugner & Feldkircher (2009) and Clyde et al. (2011) respectively.

5.1 Bayesian Model Averaging

Following Hoeting et al. (1999) who provide us with a tutorial for executing BMA, let assume

that ∆ is the quantity in which we are interested for. ∆ might be an effect size, then given the

data, the average posterior distribution under each of the considered models, can be expressed

as

π(∆|D) =
K∑
k=1

π(∆|Mk,∆)π(Mk|∆) (5.1)

while the posterior distribution for every model from

π(Mk|∆) =
π(D|Mk)π(Mk)∑K
l=1 π(D|Ml)π(Ml)

(5.2)

where,π(Mk) is the prior probability that Mk is the true model and the likelihood (π(D|Mk))

of each model is given by π(D|Mk) =
∫
π(D|θk,Mk)π(θk|Mk)dθk, θk is the vector containing

the parameters of a particular model, π(D|θk,Mk) the likelihood.

Hoeting et al. (1999) provide equations for the posterior mean and the posterior variance of ∆

and points out difficulties of Bayesian averaging over all models. One of the most important
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being the fact that equation’s 5.1 might contain a huge number of terms and therefore be

impossible the summation procedure to be implemented.

Bayesia Model Averaging - Pros / Cons

(+) The technique avoids the problem of having to defend the choice of model, while consid-

ering model uncertainty.

(+) Model averaging is more naturally correct than considering only one model for estimating

parameters.

(–) Is rather complicated for a simple presentation for large audiencies.

(–) Place much focus on the posterior effect probabilities (PEP).

(–) Higher estimates of variance than choosing only a single model.

(– / +) If no close form exists, approximations can be implemented e.g. for generalized linear

models where no close form of the marginal likelihood exists a Laplace approximation

can be applied.

5.2 Variable Selection Initial notions

It is common that an analysis in Bayesian terms begins by assigning to the unknown model

parameters prior distributions. As we have noticed, there are also cases where uncertainty lies

not only on the model covariates but on the whole model.

For variable selection methods, following George & McCulloch (1993, 1997), we assume a

γ ∈ {0, 1}m where γ contains inclusion indicators of a set of available covariates m. Considering

the above we can now write the linear predictor of a generalized linear model as

η =
m∑
j=0

γjXjβj (5.3)

where X is the design matrix and β the vector of the parameters of the full model, p the

covariate included in the linear predictor. X0 being the constant β0 and equal to the first
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column of X being filled with 1s. We then, following Ntzoufras (2011), create the partitions

of γ, (βγ , β/γ), separating the β into those variables that are included (γ = 1) and those that

are not included in the model (γ = 0). The above expanded regression formula is used for the

Kuo-Mallick sampler and for Gibbs Variable selection.

Except for that way of constructing the model by substituting the parameter vector θj by

βγ = γjβj , another way is to do not insert the γs in the above formula leading to the Stochastic

Search Variable selection. In that way the parameter vector only contains the covariate effects

and the indicator is involved in the model through a hierarchical structure of type f(γ, β) =

f(γ)f(β|γ), a structure that changes according to the sampler utilized. More details provided

in sections 5.4.1, 5.4.2 and 5.4.3.

For the approaches that keep the dimension of model subspace constant, the variable selection

algorithm can be seen as a decision problem of which βjs ,where j = 1, ..., p, p being the

number of covariates, are equal to zero (O’Hara & Sillanpää 2009).

5.3 Zellner’s g-prior and extensions

Before diving in model and variable selection techniques, we present the Zellner’s g-prior and

the more general scheme of Hyper g-priors introduced by Liang et al (Liang et al. 2008) as a

generalization of the first g-prior. In 1986 Zellner introduced the g-prior, a prior for the special

case of normal linear regression,

βγ |σ2, g ∼ Nqγ (0qγ , gσ
2(X

′
γXγ)−1) (5.4)

where Xγ = (xγ1 , xγ2 . . . , xγn) is the design matrix, σ2 usually considered unknown and

assigned a Jeffreys prior.

The hyperparameter g > 0 is very influential on how the prior changes the result. Very large

values of the hyperparameter lead paradoxically the process to prefer models which are less

complex, this behavior is known as the Lindley - Jeffrey’s Paradox (see section 4.2.1), while

very small values of g make the posterior model probabilities to spread more equally, without

considering differences in model size nor any other additional term. As a result the specification
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of this hyperparameter is of great importance and many approaches for automatic specification

were presented during the last years, e.g. (George & Foster 2000, Cui & George 2008).

The following can be considered as specific cases of g-priors, where g is the hyperparameter

for the linear case.

• Unit Information Prior : g = N , where N is the number of observations, corresponds to

the unit information prior (Kass & Wasserman 1995), an empirical version of which we

are going to use in our examples and comparisons.

• Benchmark Prior g = max(N,K2), where K is the number of covariates corresponds to

the benchmark prior proposed by Fernandez et al. (2001).

• Risk Inflation Criterion g = K2 corresponds to the risk inflation criterion introduced by

Foster & George (1994).

• g = log(N)3, asymptotically resembles the Information Criteria proposed by Hanna-

Quinn (see 4.1.2).

• Empirical Bayes procedures, containing Local Empirical Bayes and Global Empirical

Bayes, for details see in Liang et al. (2008)

• Mixture of g-priors by Liang et al. (2008), Ley & Steel (2012) considering that g is not

a constant and can be calibrated.

Liang et al. (2008) proposed the hyper g-prior, making g random, which retain a closed form

expression for f(y|γ) which is crucial for proper and efficient model inference (Sabanés Bové

& Held 2011).

Sabanés Bové & Held (2011) in their paper proposed an extension of the classical g-prior for

implementation in Generalized Linear Models, in which the hyperprior on g is handled in such

a way that any continuous proper hyperprior f(g) can be of use. As n → inf the prior on βγ

converges to the normal distribution and has the following form

βγ |g, γ ∼ Nqγ (0qγ , gcσ
2(X

′
γWXγ)−1) (5.5)
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where c is a constant taking various values according to the generalized cases, while W is the

weight matrix.

In the binomial regression, both parameters introduced in equation 5.5, are important. More

specifically under the logit link, c = 4, under the probit c = π/2 and under the cloglog link,

c = e− 1. For cases of not binomial regressions the most common value of c is 1.

Priors on the Model Space / Variable Indicators

The most common prior setting for the model space is the uniform prior, which in terms of

variable selection using indicators results to

γi ∼ Bernoulli(θ), where θ =
1

2

Other prior setting on model space include the suggestion of Ley & Steel (2009) for a binomial

beta hyperprior, θ ∼ Be(α, β), on the a priori probability of including a variable. Lastly, if

prior knowledge for a regressor exists then a fixed inclusion prior on the particular regressor

can be applied.

5.4 Indicator variable selection algorithms

5.4.1 Stochastic search variable selection (SSVS)

The Stochastic search variable selection (SSVS) was one of the first Gibbs-based family algo-

rithms proposed by George & McCulloch (1993, 1997). In this approach the linear predictor

has the form

η =
m∑
j=0

Xjβj (5.6)
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the indicators are not part of the linear predictor and the number of parameters under consid-

eration each time is constant.

George and McCulloch introduced the binary indicator γ that shows if the ith covariate will

be included in the model (γi = 1) or not (γi = 0),

Let M be the set of models under consideration, this set can be represented by a vector of

γ over all the possible sets of covariates and explain which of them are to be included in the

model and which are not. Each covariate is modeled, as a mixture of two normal distributions.

The ones with density concentrated around zero (but not equal to zero) and the others with

density spread out over large regions.

This can be achieved by placing a spikeslab prior (O’Hara & Sillanpää 2009) on each parameter

βj . George & McCulloch (1993) proposed a mixture of two normal distributions as priors on

βj as shown in equation 5.7. In that way the indicators γj are involved in the model as a latent

variables and have some convenient properties, noted further on.

βj |γj ∼ (1− γj)N(0, τ2j ) + γjN(0, g2j τ
2
j ) (5.7)

This prior does not set non important regressors exactly equal to zero but rather places them

in a region close to zero. By setting a very small value for τj > 0 we achieve in successfully

estimating the effect of the candidates βj , if γj = 0, close to zero. By the same time setting,

a rather large value for gj > 1, we achieve when γj = 1, βj to be non zero. So if γj = 0, βj is

not candidate for inclusion, while when γj = 1, βj is important and available as candidate for

a model covariate. Keep in mind that the model dimensions do not change while the βj are

evaluated. George & McCulloch (1993) give insight on how to choose g2j and τ2j .

The full conditional posterior distribution of the regressors, considering the mixture of Normal

densities in 5.7, can be written from

f(βj |y, γ, β/j) ∝ f(y|β, γ)f(βj |γj) (5.8)

to

γj = 1 : f(βj |y, γ, β/j) ∝ f(y|β, γ)f(βj |γj)

γj = 0 : f(βj |y, γ, β/j) ∝ f(y|β, γ)
(5.9)
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Due to the form of the model structure, independence among γ and y is assumed. Therefore,

the full conditional posterior distribution of the indicators γj is given by

γj |β, γ/j , y ∝ Bernoulli

(
Oj

1 +Oj

)

where

Oj =
f(γj = 1|y, γ/j , β)

f(γj = 0|y, γ/j , β)
=
f(β|γj = 1, γ/j)

f(β|γj = 0, γ/j)︸ ︷︷ ︸
Betas Prior

f(γj = 1|γ/j)
f(γj = 0|γ/j)︸ ︷︷ ︸

Prior Odds

(5.10)

5.4.2 Unconditional priors Gibbs sampler (KM)

The most straight forward approach for dealing with variable selection is to use the spikeslab

prior by setting slab θj |(γj = 1) equal to the parameters included and the spike, θj |(γj = 0),

equal to zero.

We can always factorize the joint distribution as

f(γ, β) = f(γ)f(β|γ) (5.11)

Kuo & Mallick (1998) sampler (KM) made the convenient assumption that the indicators are

a priori independent of the effects f(γ, β) = f(γ)f(β). The above assumption makes the

priors of β and γ indicators independent. By now partitioning β to (βγ , β/γ) then f(γ, β) =

f(γ)f(βγ |β/γ).

As a result of the independence the full conditional posterior distribution is

γj = 1 : f(βj |y, γ, β/j) ∝ f(y|β, γ)f(βj |β/j)

γj = 0 : f(βj |y, γ, β/j) ∝ f(βj |β/j)
(5.12)

One might notice that when the effect is estimated by zero, γj = 0, the proposed values only

depends on the conditional likelihood f(βj |β/j).

The full conditional posterior distribution of the indicators γj is given by

γj |β, γ/j , y ∝ Bernoulli

(
Oj

1 +Oj

)
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where

Oj =
f(γj = 1|y, γ/j , β)

f(γj = 0|y, γ/j , β)
=
f(y|γj = 1, γ/j , β)

f(y|γj = 0, γ/j , β)︸ ︷︷ ︸
Likelihood

f(γj = 1, γ/j)

f(γj = 0, γ/j)︸ ︷︷ ︸
Prior Odds

(5.13)

In the above equation we can easily notice that the prior on βs are not included in the calcu-

lation of the posterior probability, due to the assumption of independence and only depends

on the likelihood. KM is easy to be implemented but attention should be given because the

algorithm considers one prior f(β) over all models independent of the model structure. Such

a hypothesis is restrictive and even though the algorithm is pretty simple to apply, there is no

way for the researcher to improve its efficiency.

5.4.3 Gibbs Variable Selection (GVS)

Dellaportas et al. (2000) proposed the Gibbs Variable Selection, a similar to the Kuo-Mallick

sampler technique, which main difference summarizes in the fact that the parameters pro-

posal had no independency assumption and had also an hierarchical structure of f(γ, β) =

f(γ)f(β|γ). Considering that β can be separated into (βγ , β/γ), f(γ, β) = f(γ)f(β|γ) =

f(γ)f(βγ |γ)f(β/γ |βγ , γ).

the full conditional posterior distribution can be written as

γj = 1 : f(βj |y, γ, β/j) ∝ f(y|β, γ)f(βγ |γ)f(β/γ |βγ , γ)

γj = 0 : f(βj |y, γ, β/j) ∝ f(β/γ |βγ , γ)
(5.14)

and the full conditional posterior distribution of the indicators γj is given by

γj |β, γ/j , y ∝ Bernoulli

(
Oj

1 +Oj

)
where

Oj =
f(γj = 1|y, γ/j , β)

f(γj = 0|y, γ/j , β)
=
f(y|β, γj = 1, γ/j)

f(y|β, γj = 0, γ/j)︸ ︷︷ ︸
Likelihood

f(β|γj = 1, γ/j)

f(β|γj = 0, γ/j)︸ ︷︷ ︸
Betas Prior

f(γj = 1|γ/j)
f(γj = 0|γ/j)︸ ︷︷ ︸

Prior Odds

(5.15)
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We should notice that the pseudopriors of f(β/γ |βγ , γ), solo role is for improving the efficiency

of the algorithm. In order for optimal convergence to be achieved they have to be tuned,

most of the times just a pilot run of the full model is required to create the proposal for the

pseudoprior (Dellaportas et al. 2002).

Synopsis

The main differences between the above tools lies in how the prior and the linking densities,

function in each algorithm. In the variable selection step of GVS both likelihood and prior

appear, while in SSVS the likelihood is absent and in KM sampler the prior on β is omitted

as β and γ are independent by definition. Further theoretical comparisons of those variable

selection techniques and an explanatory table of their association can be found in Ntzoufras

(see 2011, pg 412 - Table 11.7), along with application of GVS using different priors on β.

5.5 Model space search algorithms

Let us assume once again, as we already did in section (4.3) describing the direct methods ,

that we have M competing models and that the dependent data are the product of a particular

model m ∈ M . We will extend the posterior model distribution from two competing model,

which was given in equation (4.1), to m competing models. Let f(m) be the prior distribution

for model m, then f(m|y) =
f(m)f(y|m)∑
f(m)f(y|m)

from which f(y|m) =
∫
f(y|m,βm)f(βm|m)dβm

where f(βm) is the conditional distribution of βm, βm are the model parameters for the model

under consideration βm ∈ Bm and Bm are set of all possible values for the models regressors.

It is a fact that most model settings require the model and the parameter space to be jointly

searched by the MCMCs. The joint sampling space is M x
∏
m∈M βm ⊂ M x

∏
m∈M R

Nm
.

The marginal posterior probabilities for models can be acquired by f(m|y), while the posterior

estimation of the regressors of each model f(βm|m, y) can be acquired just by conditioning on

the samples produced when the chain is in state m (Carlin 2001).

During the last years, many techniques were proposed that generate values from the poste-

rior distribution f(m,βm) and then estimate the posterior probability and the conditional

distribution of βm.
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The most straight forward and easy to implement way of generating values from the joint

posterior of (m,βm) is the Indepedence Sampler . A proposal of (m
′
, β
′
m) for a given state of

(m,βm) is generated from a proposal distribution and the proposal is accepted with acceptance

probability of MH α = min

(
1,
f(y|m′ , β′

m′
)f(β

′

m′
)f(m

′
)q(m, bm|m

′
, b
′

m′
)

f(y|m,βm)f(βm)f(m)q(m′ , b
′

m′
|m, bm)

)
. We should notice

that the Independence sampler works most efficiently if the q is somehow approximate to

the target distribution. In practise one should construct an approximate estimate of both

f(m|y) and f(βm|m, y) for every model m. When the number of possible models is large the

computations become cumbersome and a different way for estimating the posterior should be

considered.

In the method of Carlin and Chib (CC) (Carlin & Chib 1995), the likelihood of the

indicator model m is given by f(y|βm,m), while the prior for the same model by f(βm|m). We

then denote as m
′
all the models under consideration. The marginal likelihood for the indicator

model, which by assuming independence between βm of each model for convenience, is given by

f(y|m) =
∫
f(y|β,m)f(β|m)dβ =

∫
f(y|βm,m)f(βm|m)dβm. The Carlin and Chib’s method

then uses a Gibbs sampler over the full conditional distribution of the regressors.

All the required full conditional densities are defined and the algorithm (Gibbs sampler) will

produce samples from the right joint posterior model distribution (Han & Carlin 2000). In

comparison to the methods described in the previous section 5.4.3 and 5.4.2 where only one

prior at each step is required to be computed, Carlin and chib’s method main drawback is the

need to specificate all possible priors on the parameters under each model, f(βm′=m|m), in

order to compute the full conditional distributions, making the method computationally expen-

sive when M is pretty large (Han & Carlin 2000). Since then, the method has been extended

leading to the even more general composite model space framework of Godsill (2001)

Dellaportas, Forster and Ntzoufras 2002 proposed a Metropolis within Gibbs strategy, con-

taining a model selection step which is based on proposal for making a move from model m to

m
′
. That method is called ” Metropolized Carlin and Chib”. Therefore, by introducing

MCMC in the model selection step, therefore ”Metropolizing” the step, the above method re-

quires only to sample from the pseudo–prior for the model under consideration m
′
. In Han &

Carlin (2000) a comparative study indicates that the MCC performs two times faster than the

CC method under all examples considered, while Dellaportas et al. (2002) indicate that Model
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Composition MCMC (MC3) (Madigan et al. 1995) is a special case of MCC algorithm.

Bayes factor and posterior model probabilities can be estimated as presented in section 5.7

5.6 Latest Variable / Model selection algorithms

Hans et al. (2007) created an algorithm (Shotgun Stochastic Search (SSS)) to explore

more effectively the model space, especially for higher dimension problems. Their proposal

searches region of models with high posterior probability. To achieve that they run parallel

chains, making possible the simultaneous evaluation of more models. In particular, let assume

that the current state of the algorithm is in model γcurrent, where 1 ≤ current ≤ p, and p

the number of candidate models. In each iterative scene three possible proposals are made.

γ+current, when proposing to add a variable in the model, γocurrent when proposing to change

a variable of the model, while γ−current when proposing to exclude a variable from the model.

After evaluating each proposed move, only one is selected and the steps are repeated, γcurrent′ ∈

{γ+current, γocurrent, γ
−
current}. By that way the model space is explored in a faster way.

Another rather recent proposed algorithm is the one called Subspace Carlin and Chib

(SCC) algorithm (Petralias & Dellaportas 2012). Petralias and Dellaportas created a way

to combine the Metropolised Carlin and Chib with the SSS algorithm. SCC algorithm was

inspired by the SSS initial idea of creating neighborhoods and sampling simultaneously from

them.

5.7 Posterior model/variable selection inference

Ntzoufras (2011) presents alternative ways for model comparison according to what family of

algorithms one chooses to use. We present the most simple, while for details and alternatives

the reader is prompted to the aforementioned citation. For those using an indicator γ, it is

most common to estimate the maximum a posteriori model (MAP) by estimating

f(γj = 1) =
1

T −B

T∑
t=B+1

I(γ
(t)
j = 1) (5.16)
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or the posterior model probabilities

f(m|y) =
1

T −B

T∑
t=B+1

I(m(t) = m) (5.17)

where I() is the indicator function, having value equal to 1 when γ
(t)
j = 1, for 5.16 or when

m(t) = m, for 5.16, and 0 otherwise. m is a model indicator transforming the indicators to a

unique decimal number through m(γ) = 1 +
∑p

j=1 γ
2j−1

j when the constant is included in all

models compared.

The posterior Bayes factor is considered an appropriate way of comparing two models, based

on the posterior predictive densities of the data being observed. The posterior Bayes factor

comparing two models M1,M2 equals to

PBD =
f(y|m1)

f(y|m2)
=

∫
f(y|βm1 ,m1)f(βm1 |m1)dβm1∫
f(y|βm2 ,m2)f(βm2 |m2)dβm2

(5.18)

which can be estimated easily from the MCMC output by the posterior mean of the likelihood

over all sampled parameter values obtained.

f(y|m) =
1

T

T∑
t=1

f(y|β(t)m ,m) (5.19)

5.8 GVS, SSVS and KM implementation in BUGS

The three techniques for variable selection using γ indicator for GLMs introduced in section

5.4 are : SSVS by George & McCulloch (1993), KM by Kuo & Mallick (1998) and GVS by

Dellaportas et al. (2000), while further extensions for GLM can be found, for log-linear by

Ntzoufras et al. (2000) and for multivariate regression by Brown et al. (1998). The main

aspect of the aforementioned techniques is that the most probable covariates can be pointed

out with the use of their posterior probability. The ”optimal” subset of covariates is the one

which appears most frequently during the MCMC implementation. This ”optimal” subset

can be identified through the analysis of the marginal posterior distribution of γ, f(y|γ)f(γ),

containing information both from our data and the prior of γ.

68



Chapter 5 Bayesian Variable/Model Selection Using MCMC

The results will the be compared to then Bayesian Model Averaging package (BMA) which

assumes a Laplace (BIC) approximation for Generalized Linear Models for parameter priors

and a uniform distribution over the model priors. BMA as we will point out in chapter

chapter:rBasVarSel has a very restrictive toolkit in comparison to BMS package and BAS

packages also performing Bayesian model averaging in R, though being the only one currently

able to perform Bayesian model averaging on Generalized Linear Models.

The difference as already briefly noticed lies on where and how γ is used in the model. SSVS

place γ in the prior of the regression coefficients, in KM they become a part of the regres-

sion formula, while GVS bridge SSVS and KM. We will present those three algorithms and

their difference by implementation in WinBUGS for an extended logistic regression model of

EHIS 2009 and for simulated data from a binomial regression generated using an inverse logit

function.

As we will not take into account interactions of the covariates included in the models of the

rest of this thesis, when the ”Full Model” is mentioned, we will be referring to the model with

all main effects.

In the next section we will implement model and variable comparisons on both simulated data

and our EHIS 2009 example, using three of the aforementioned algorithms (GVS, SVSS, KM)

and comparing the posterior inclusion probabilities to those derived from BMA, keeping the

prior on β constant to compare the efficiency and speed of each procedure. Lastly, we will

argue on whether or not one model is more probable than the others by reporting the Bayes

Factors comparing the probabilities of each model to the most probable.

5.8.1 Simulated data

Following among others Ntzoufras (2002, 1999, 2011) and Dellaportas et al. (2002), the code in

Appendix’s section (9.4.1) for implementing the Kuo - Mullick Sampler, the Stochastic Search

variable selection and the Gibbs variable selection to our data was modified appropriately, to fit

logistic regression models. The differences noted in theory can also be noticed in the presented

code. Attention should be given on the way the priors for each method changes, while the
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general set of variable selection remains the same, always under the convenient hypothesis of

independence between the covariates.

The analysis was first performed on simulated data to check the consistency of the algorithms

and the modified codes and then in the next section on our EHIS 2009 data. The simulated data

were drawn according to Xi ∼ N(0, 1), where i = 1, . . . , 15 of total size of 400. The model was

formed from X1 & X2 using a normal distribution on the linear predictor Yi = log

(
πi

1− πi

)
.

The covariates were standardized and by that achieving minimaziation the influence of the

constant. and the prior precision of each parameter was acquired by a pilot run of the full

model’s algorithm, βj ∼ N(0, nS2
βj

). While taking into account the number of the sample, we

mimic an UIP Empirical Bayes independent prior distribution accounting for one data point.

The indicators γ will be distributed by γ ∼ bin(0.5) for all covariates except for the constant

which is included in all models under consideration.

Some comments on BMA package which will be further reviewed and compared in chapter 7.

BMA for variable less than 30 variables enumerates the model space with the use of a Laplace

approximation on the likelihoods of each model. It also uses a technique called Occam’s window

(Madigan & Raftery 1994) that acts like a way for the summation of the denominator to be

reduced, be excluding models that are not so probable and adjusting the PIP according to the

new reduced model space. It reports a variety of quantities among which are the posterior

probability of the effect not being equal to zero, which is computed after summation of the

number of the models in which the effect is present and the posterior model probabilities of

the reduced model space.

The following tables (5.1, 5.2) summarize the variable / model selection results of the different

sampling schemes implemented.

We shall notice that all MCMC methods conclude to Model {x1, x2} as the one with the

highest posterior model probability (PMP). The maximum a posterior model (MAP) is, in

each application, around 7 times more likely than the 2nd in rank. Predictors {x1, x2} are

present in all five most probable models, leading to more clear evidence that are important for

the logistic model under consideration. The fact that no great differences are noticed among

the reported PIPs may be due to the fact that the number of the dataset is large (n=400), as
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in bibliography is noticed that SSVS, having the likelihood not taking part in the computation

of the PIPs usually reports different results.

BMA fully enumerated the model space and chose using the Occam’s window a small amount

of models. When deciding to create a bigger window setting the Odds Ration equal to 500000,

considering all models which BF(MAP) against all other models is equal or smaller than 500000.

Considering this approach a total number of 482 models were included, resulting to similar

results to the WinBugs methods.

Like BMA’s Occam’s window, the researcher can reduce the model space and compute the

model selection probabilities, for the MCMC methods implemented in WinBUGS, of the most

probable regressors, over the chosen reduced model space.

WinBugs∗ R∗∗

SSVS KM GVS BMA#

Model Posterior Model Probabilities

X1+X2 39,65 41,95 41,45 39,65

X1+X2+X9 5,43 6,19 6,15 6,03

X1+X2+X8 4,96 5,45 5,81 6,21

X1+X2+X5 3,78 4,53 4,51 4,52

X1+X2+X10 4,13 5,33 5,23 5,02

Table 5.1: Model selection results of simulated data for SSVS, KM, GVS and BMA.#

Occam’s Window OR=500000, ∗ UIP Empirical Bayes independent prior,

∗∗Laplace Approximation. Iterations=15000, Burnin Period = 5000

5.8.2 EHIS 2009 data

Having the three algorithmic variable selection schemes in terms of simulated data presented

in the previous section, we will now apply them to the EHIS 2009 data which were presented

in Chapter 2, identifying relation between ”Self Reported Health Status” and the ”Level of

Education” and revisited by the introduction of other possible covariates in section (5.8).
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SSVS KM GVS BMA#

# PIP MCerror PIP MCerror PIP MCerror PIP P.Mean

X1 99,2 <0,0001 100,0 <0,0001 100,0 <0,0001 100,0 0,0908

X2 98,8 0,001208 100,0 <0,0001 100,0 <0,0001 100,0 0,0838

X3 6,7 0,001951 4,1 0,002452 4,1 0,001569 4,8 -0,0001

X4 7,0 0,002124 4,5 0,002787 4,7 0,001635 5,1 0,0003

X5 8,8 0,002593 10,0 0,004153 9,7 0,003093 10,0 -0,0013

X6 6,8 0,002194 6,2 0,003038 5,8 0,002188 6,2 -0,0002

X7 7,3 0,002201 6,6 0,003567 6,1 0,001957 6,3 0,0003

X8 10,9 0,003099 12,8 0,0052 13,3 0,003721 13,9 0,0057

X9 11,9 0,003151 12,6 0,005363 13,6 0,003631 13,9 -0,0014

X10 9,5 0,002579 11,2 0,004649 10,7 0,00336 11,0 -0,0009

X11 7,5 0,002234 6,4 0,003464 6,7 0,002251 6,8 0,0003

X12 9,5 0,002507 9,4 0,00419 9,7 0,002517 9,8 0,0016

Table 5.2: SSVS - KM - GVS - BMA variable selection indicators for binomial simulated

data. #Occam’s Window OR=500000. Iterations=15000, Burnin Period =

5000

We will again use the same algorithmic scheme as the one described in the section of the

simulated data. The prior precision of the parameters will be acquired from a pilot run of

the full model, then divided by the length of our dataset to mimic an UIP Empirical Bayes

independent prior distribution accounting for one data point, while the prior mean will be

equal to zero. The indicators γ will be distributed by γ ∼ bin(0.5) for all covariates except for

the constant which is included in all models under consideration.

The results provided, clearly state that ”Age”, ”Education” and ”Long - Illness” should be

included in the model. They are all included in the MAPs models, while retain a PIP equal

to one, independently of the method applied. Furthermore, ”Sex” is indicated by the majority

of the methods as of medium importance predictor. SSVS reports a lower PIP for both ”Sex”

and ”Urban”, which was anticipated due to major difference in calculating the PIPs compared

to GVS and KM approach. BMA reports results once again close to the other methods, except

for SSVS that seems to prefers a more parsimonious model.
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Posterior Model Probabilities

WinBugs∗ R∗∗

Model SSVS KM GVS BMA#

Age+Educat+Longill 81,54 45,98 49,84 47,23

Age+Sex+Educat+Longill 11,08 35,82 35,55 34,31

Age+Urban+Educat+Longill 6,54 11,34 9,42 11,57

Age+Sex+Urban+Educat+Longill 0,84 6,86 5,18 6,89

Table 5.3: SSVS - KM - GVS - BMA model selection results of EHIS 2009 dataset. Age

= Age(in Years), Sex = Sex(Male/Female), Education=Please refer to table

9.4, Long-illness = Long Illness(Yes/No), Urban=Urban(Yes/No). #Occam’s

Window OR=500000, ∗ Empirical Bayes independent prior, ∗∗Laplace Ap-

proximation. Iterations=15000, Burnin Period = 5000.

SSVS KM GVS BMA#

Predictors PIP MCerror PIP MCerror PIP MCerror PIP

Age 100 <0.0001 100 <0.0001 100 <0.0001 100

Educat 100 <0.0001 100 <0.0001 100 <0.0001 100

Longill 100 <0.0001 100 <0.0001 100 <0.0001 100

Sex 11,92 0,004 42,68 0.0188 40,74 0.0106 41,20

Urban 7,38 0,003 18,2 0.01268 14,61 0.00497 18,50

Table 5.4: SSVS - KM - GVS - BMA variable selection indicators, Standard Deviations

and MC errors for EHIS 2009 Data. #Occam’s Window OR=500000. Itera-

tions=15000, Burnin Period = 5000
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5.9 Closing remarks

This chapter tried briefly to touch many aspects of how model comparison is dealt with from

the Bayesian perspective. The Bayesian point of view, on model choice, seems more natural.

As at the end we are not given the ”optimal” solution picked by an algorithm but the chances

that our data are produced by the models under consideration. As a result the way to compare

models is more straightforward. Moreover, Bayesian Model Averaging provides a more natural

and accurate estimation of the effects, while incorporating model uncertainty and is claimed

to be better than most of the classical methods for model parameters estimation.

For example, SSVS to be implemented the close form of the full conditionals should be available,

otherwise the most common way to deal with cases were no close form is available is through

adaptive MCMCs. In problems though, when the parameter do not have the same role from

iteration to iteration the recent history cannot and should not be used.

We should notice a package named ”R2WinBUGS” (Sturtz et al. 2005) that automates the

sampling procedure through R working environment, without the researcher having to work

in WinBUGS/OpenBUGS. In that way, the researcher should only create a small file ”.bug”

containing the Gibbs sampling statements for BUGS and then by programming just in R can

call that function, saving all quantities in R for easier further handling.

More information about Model Choice and comparison can be found in a plethora of resources

(e.g.Congdon (2007), chapter 2)

The transdimendial algorithm ”reversible jump” introduced by Green (1995), used also when

both the number of the parameters under consideration and the parameters themselves are

unknown will be presented in chapter 6 for linear regression model and compared to GVS

method under the same prior considerations.
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Reversible Jump MCMC

6.1 Introductory notions

Reversible jump MCMC (rjMCMC) can be claimed that was initially based on Birth and Death

processes. The general idea is to create in continuous time a Markov chain, e.g. a Markov jump

process, which has the ability to move between models, by births (increasing of dimension),

deaths (decreasing of dimension), and other moves in general. Details can be found in Ripley

(1977) and Stephens (2000) among others.

The method introduced by Green (1995), is another variable selection strategy that help us

sample over the model space, avoiding the full product space search of CC method, while

introducing a less straight forward algorithm.

The reversible jump has the ability to jump between models with different number of param-

eters, while at the same time achieve to maintain the properties of a MCMC chain needed

for convergence – Aperiodicity,irreducibility and positive recurrence – (see section 2.2). The

iterative schemes for updating the model parameters given that we are in a particular model is

just a standard MCMC algorithm procedure. While the phase where a proposal to move from

model m to a new model m
′

is the new part of the rjMCMC and will be discussed in detail

below.
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Let assume that we currently are in a state of {m,βm}, βm the m model parameter vector, for

each reverisible jump step of the algorithm a new {m′ , (βm)
′} is proposed and the dimensions

from model m→ m
′

now differ dim(βm)→ dim((βm)
′
). For the reversible jump algorithm to

retain the properties for convergence, both the condition of reversibility (a condition that by

definition is satisfied in a simple MCMC) and that of dimension matching (Green 1995) should

be satisfied. For achieving a m → m
′

move where the dimesions of the two models differ, a

random parameter vector um is introduced, so as {βm, um} = {β′
m′
, u
′

m′
} to hold.

If the transformation {βm, um} to {β′
m′
, u
′

m′
} is a diffeomorphism, in other words, the trans-

formation and its inverse are differentiable (Green 2003), a valid choice for α is αm→m′ =

min

(
1,
f(β

′

m′
)q
′
(u
′

m′
)

f(βm)q(um)

∣∣∣∣d(β
′

m′
, u
′

m′
)

d(βm, um)

∣∣∣∣)
Therefore, one way of representing the reversible jump algorithm is through the following

steps

• Let assume that the present state of the Markov chain is (m,βm), where βm is of dimen-

sion Nm.

• Similarly to MCC propose a new model m
′

with probability equal to j(m,m
′
).

• Then, generate u from a proposal distribution q(um|βm,m,m
′
).

• Specify the ”dimension – matching” function by setting (β
′

m′
, u
′
) = gm→m′ (βm, u), where

gm,m′ is a deterministic invertible 1-1 function.

• Accept the proposed mode from model m to model m
′

with acceptance probability equal

to

• With probability 1−
∑

m:k j(m→ m
′
) no move is attempted.

αm→m′ = min

(
1, A

[
(βm,m)→ (βm′ ,m

′
)

])
= min

(
1,
f(y|m′ , β′

m′
)f(β

′

m′
)f(m

′
)j(m

′ → m)q(u
′
m|m,m

′
, bm)

f(y|m,βm)f(βm)f(m)j(m→ m′)q(um|m′ ,m, bm′ )
X

∣∣∣∣dgm→m′ (βm, um)

d(βm, um)

∣∣∣∣
)

(6.1)
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where βm = gm→m′ (βm, um) for a random parameter vector um ∼ qm(u), while q(m → m
′

is the transition probability from model m to m
′
. The second part of the above acceptance

probability contains a Jacobian matrix, which in fact is the basic difference between a simple

metropolis hastings algorithm and the reversible jump.

The move in rjMCMC can be either a standard MH step or a Gibb step. Bayes factor and

posterior model probabilities can be estimated as presented in section 5.7.

The reversible jump algorithm is not limited to countable set of models M , although is fre-

quently presented in such way (Sisson 2005). The researcher can perform implementation of

the sampler without previous knowledge on the size of the model space at all. An example of a

problem’s setting with unknown number of models is Bayesian nonparametrics, e.g. Fractional

polynomial regression (Royston & Altman 1994).

When the full (normalized) conditional probabilities of each model m are known in closed form,

f(βm|x), which is the case as far as regression is concerned. If the random parameter vector

um ∼ q(u) = f(β
′

m′
|x) is a direct draw from the posterior distribution and the proposal state

β
′

m′
= um the second part of the acceptance rate of equation 6.1 simplifies to

A

[
(βm,m)→ (βm′ ,m

′
)

]
=
f(m

′
)j(m

′ → m)lm′ (x)

f(m)j(m→ m′)lm(x)
(6.2)

which is now independent of the current and the proposed states of the parameter, resulting to

a fixed dimensional sampler over the space of models (Clyde 1999). This simplified simulation

as described above it is possible to be implemented in WinBUGS using the ”jump Interface”

presented by Lunn et al. (2006, 2009) as an add-on to the initial WinBUGS suite.

The rjMCMC was widely used in the literature from the time it was introduced. It is a fact that

one in every five citations of Green’s algorithm can be classified as genetic-related research,

the vast majority of implications lies on the generic problem of model selection. Sisson (2005)

summarizes some programs created for implementation of transdimensional samplers providing

enough detail for the reader.

To conclude this section, we should notice that even though the algorithm has dominated

between the available methodologies from Bayesian model selection, there are situations where
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an different algorithm will provide a simpler implementation. Ntzoufras (2002) claims that

when the total number of models under consideration is small, the adoption of a product-space

approach may be more useful.

6.1.1 Comparison notes Reversible Jump Vs. Carlin and Chib

All the methods that use transdimensional sampling for comparing models, at least until today,

should retain the dimensionality of all compared models matched. One of the key differences

between Carlin and Chib method and the reversible jump was the fact that in reversible jump

the dimension of the transdimensional model becomes equal to the dimension of the highest-

dimensional of the models under consideration, while in Carlin and Chib the dimension of the

transdimensional model is the product space of all compared models. When the two methods

were firstly introduced the reversible jump made use of the Metropolis Hastings algorithm,

while Carlin and Chib used the Gibbs sampler.

However, further research bridged the first key difference, as the whole product space of Carlin

and Chib can be lowered by considering that some parameters contained the same kind of

information and be considered as part of the same information, making the number of pseu-

roparameters used smaller. In that way, when some parameters are shared between models, the

product space method does not always apply a purely product space, diminishing the bound-

aries between the two methods (Lodewyckx et al. 2011). Dellaportas et al. (2002) managed

to insert the more general metropolis hastings sampling to the Carlin and Chib method while

Lunn et al. (2009) proposed a way that reversible jump can be implemented with the use of

Gibbs sampling as well.

6.1.2 Population-Based Reversible-Jump MCMC

When dealing with multimodals distributions, is quite impossible to explore adequately the

space in and between the distribution’s mode. To overcome such situations Jasra et al. (2007)

proposed the Population based Reversible Jump, having the ability to sample from more than

one chains in simultaneously. Details can be found, together with a suggestion of a practical
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way of moving between the distribution modes, initiating different chains, in Fouskakis et al.

(2009).

6.2 DAG for probabilistic models

Noticing a simple way to treat DAGs, which were discussed in section 1.5 to show dependencies

distributions in the same way as probabilities. Expressing conditional independence graphically

one can easily understand them and later implement computational tricks (e.g. vectorization

- parallel computing).

Let us assume that we have the following simple model

k ∼ Bernouli(π)

B2 ∼ Uniform(k, k + 2)

B1 ∼ Uniform(k, k + 3)

Ψ ∼ Normal(B1 +B2, 1)

(6.3)

In our example distributions of B1 & B2 only depends on k, while the distribution of Ψ only

depends on the values of B1 & B2. Then, the above model can be formalized using a DAG,

expressing the way of causality as in figure 6.1.

Having the basic idea on how a probabilistic model is depicted as a Directed acyclic graph, we

will in the next section illustrate the way the jump interface works and how is represented as

a DAG.

The basic hierarchical model for Bayesian model selection derived from the joint distribution

of {βm, γ} is presented in figure 6.2, where γ represents p(γ), θ represents p(βm, γ), referring

to Jump’s Interface for WinBUGS. More information is provided in the next section.
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Figure 6.1: Directed Acyclic Graph of model presented in equation 6.3

Figure 6.2: Basic hierarchical model for Jump’s Interface reversible jump as a DAG.

(Lunn et al. 2006)
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6.3 Jump Interface rjMCMC

WinBUGS from 2006 has been extended and now can handle variable selection among models

with the use of Reversible Jump MCMC. In this section we will first describe the new add-on of

WinBUGS, then illustrate it using the simulated data from a linear regression model, following

Clyde et al. (2011) simulated linear regressors, the results obtained will be presented and then

compared in the next chapter with the Bayesian model averaging programs of R and code for

SSVS, KM and GVS for variable selection of linear models.

With the use of reversible jump we are no longer restricted in the number of models to be

evaluated. The algorithm uses the observed data and search over different models, as it con-

siders the model as an extra discrete parameter. The posterior distribution is now consisted

of both the parameter and the model space, and the reversible jump has the ability to search

both spaces simultaneously.

We will now explain how the Jump extension of WinBUGS (Lunn et al. 2006) can be of use

on variable selection of several types of regression and more particular the logistic regression.

In the code presented in the Appedix 9.4.2, one can notice the presence of an index k and an

indicator variable id. k is the number of βs that are currently in the model when a certain

draw is performed. The parameter β0 is alway part of the model. The indicator id is of certain

interest and it is used to produce the variable selection plot and the probabilities of inclusion

of each variable, it indicates in which model is the sampler located during a MCMC draw.

In our example of simulated data the indicator showing that the parameters β1 & and β15

are in the model will be equal to id=100000000000001. The researcher has the ability to

directly change only the prior distribution of k and not the joint distribution of {θ, k}, which

can be indirectly been configured when changing the prior on k. The initial choice of the

Jump extension for f(k) is k ∼ Binomial(0.5, N), where N is the total number of parameters

under consideration. This leads to p(θ, k) = p(θ|k)p(k) =
1

2Q
, which yield equal probability of

selection for all models under consideration.

Another way to model the prior on k is to assume that the parameter p is not equal to 0.5 but

is generated by a beta distribution with parameter p ∼ Beta(α, β). A structure that tends to

”shrunk” the probabilities towards zero as indicated by Fridley (2009).
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We should notice that the priors specified for the parameters are able to greatly influence the

posterior model probabilities. If not prior sensitivity analysis is performed, one should be really

careful when specifying them, so as to represent as closely as possible any a priori information.

In our example considering the previous issue and also for comparison to the aforementioned in

Chapter 5 search algorithms (SSVS,KM,GVS) and the next chapter’s (BMA, BMS, BAS) on

the same simulated data from linear regression model, we will retain a constant prior precision

equal to the mean precision of the standardized variables acquired form a pilot run of the full

model divided by the length of the dataset, in one way creating a Unit Information Prior,

stating that we have information for just one point. The prior even though takes a very small

part of the data into consideration is considered empirical. The prior mean of the parameters

is by default assumed to be equal to 0.

Tests on jump interface have been conducted by Lunn et al. (2009, 2006) and Gimenez et al.

(2009)

6.3.1 Clyde’s Simulated Data Scheme

Following (Clyde et al. 2011) let us consider the following regression parameters for data

generation. β being the effects of the generated data. So we assume that β0=2, β=(-0.48,8.72,-

1.76,-1.87,0,0,0,0,0*,0,0,0,0,0,0) * The 9th covariate is assumed to be correlated with the 2nd

with ρ2,9 = 0.99, in difference with Clyde’s approach we do not include x9 in the linear

predictor, while the dispersion parameter is assumed to be equal to φ=1.

We will provide a presentation of the Jump Interface on the simulated data. Two (2) chains

were initiated and the posterior quantities were plotted to check if the chain mix sufficiently

(figure 6.3), in a way indicating that convergence has been reached, while each separate pa-

rameter used by the jump interface add-on was graphically reported to be mixing sufficiently

(chain crossing).

The black regions of figure 6.3 corresponds to the coincidence between variables and models

between the two chains initiated. We can notice that for the predictors that are most highly

probable the chains mixed sufficiently well, while for the less probable ones the mixing was not

of the same magnitude.
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Figure 6.3: Jump Interface model mixing representation, for the two chains initiated for

the linear simulated regression predictors using Jump Interface in WinBUGS.

The Jump Interface had similar characteristics to the previous chapter as far as the prior on

parameters and on models are concerned, the only differences being that by default Jump

Interface assumes a multivariate normal prior with prior mean equal zero and prior variance

equal to a constant variance of all the parameters. This variance we chose to be acquired

be a pilot run of the full model. The program did well identifying the predictors that were

designed to be important but also the ones { x2 , x9 } that were assumed having a correlation of

magnitude ρ = 0.99. Covariates { x1 , x2 , x3 , x4 , x9 } were included in the MAP model, while

being part of the majority of the most probable models, indicating that the Jump Interface

does well in both identifying the PIPs of the predictors while not performing so conveniently

as far as correlation is concerned, under our initial assumptions for parameter / model priors,

being itself kind of restrictive by default. For an analytical report and a comparison to GVS,

refer to tables (6.1 & 6.2). Both techniques conclude to similar results,

Predictor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

rjMCMC 0.85 0.97 1.00 1.00 0.10 0.10 0.16 0.07 0.91 0.13 0.15 0.08 0.15 0.18 0.08

GVS 0.93 0.97 1.00 1.00 0.11 0.08 0.09 0.07 0.88 0.08 0.08 0.12 0.11 0.17 0.09

Table 6.1: Posterior inclusion probabilities of the linear simulated dataset predictors

using the Jump Interface and GVS in WinBUGS . Iterations=15000, Burnin

Period = 5000
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Reversible Jump GVS

Model PMP Model PMP

X1+X2+X3+X4+X9 0.210 X1+X2+X3+X4+X9 0.275

X1+X2+X3+X4+X9+X14 0.053 X1+X2+X3+X4 0.039

X1+X2+X3+X4+X9+X13 0.040 X1+X2+X3+X4+X12 0.036

X1+X2+X3+X4+X9+X11 0.039 X1+X2+X3+X4+X5+X9 0.034

X1+X2+X3+X4+X7+X9 0.036 X1+X2+X3+X4+X9+X10 0.025

X1+X2+X3+X4+X9+X10 0.028 X1+X2+X3+X4+X7+X9 0.024

X1+X2+X3+X4+X5+X9 0.026 X1+X2+X3+X4+X7+X8+X11 0.023

X1+X2+X3+X4+X9+X15 0.024 X1+X2+X3+X4+X8+X9 0.023

X2+X3+X4+X9 0.024 X2+X3+X4+X9 0.023

Table 6.2: Posterior model probabilities and corresponding Bayes Factors for the mod-

els with high probability versus the most probable model for the simulated

data using Jump Interface and GVS in WinBUGS. Iterations=15000, Burnin

Period = 5000

6.4 Conclusion

But why choosing rjMCMC over the others algorithms? Sisson (2005) claims that over all

the approaches to trans-dimensional modeling proposed in recent years, the ”reversible jump”

method, appears to be the most effective. Is surely is the one that had received the most pop-

ularity in recent years. As we have already described, reversible jump has the ability to make

jumps both on the parameter space and the model space, is closely related to other algorithms

like MCC and MC3 and it tends to perform better than the variable selection techniques of

constant model space (SSVS, KM, GVS) when higher dimensions are considered.

In the last chapter of this thesis, we will briefly mention same characteristics of the 3 available

packages in R for Bayesian Model Averaging and we will present a comparison of all the

programs described until then, on Clyde’s linear regression simulated data. We will also report

which of the programs have trouble identifying the effect magnitude and possible correlation.

84



Chapter 7

Bayesian Variable Selection in R

7.1 Raftery’s et al. ”Bayesian Model Averaging”

For the purposes of this thesis just an implementation for comparison reasons will be attempted

and described in section 7.4. The package created in R, can be used to apply model averaging

both in linear models and generalized linear models, making use of a Laplace approximation

on the model likelihoods and then use a leap and bound algorithm to select the most probable

regressors. Therefore finding the most probable subsets without the need of examination of all

possible subsets. It also applies the Occam’s Window, a technique for reducing the summation

in the denominator be lowering the mode state space.

It also contains a function to perform variable selection with simultaneous recognition of out-

liers by the use of MC3 introduced by Madigan et al. (1995), MC3 being a special case of the

reversible jump MCMC described in chapter 6.

BMA is rather restrictive as for the priors that can be placed on parameters and on the

models. We get only one choice to perform a type of BIC approximation on the parameter

priors, resulting to a prior close to the Unit Information Prior, and is also not flexible regarding

model priors, leaving us with the choice of equal a priori chances for each model. No possible

options for application of Zellner’s g-prior is available, which is considered one of the main

drawbacks of this package in comparison to the other two.
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It also provide the user with a graph containing each effect posterior distribution.

7.2 Feldkircher’s and Zeugner’s ”Bayesian Model

Averaging Library”

In comparison to the newest package BMS created by Amini & Parmeter (2011), performing

Bayesian model averaging only in Linear Models but with a wide alternative ways of stating

the parameters and model priors. BMS has a extented toolkit in comparison to BMA. It

has the ability to apply a variety of different types of Zellner’s g-prior on covariates : (1)

Unit Information Prior, (2) Risk Inflation Criterion, (3) An asymptotic use of Hanna - Quinn

Criterion, (4) BRIC, which converges to UIP or RIC according to the dataset, (5) Local

Empirical Bayes and the (6) Hyper g-prior. Furthermore, has the ability to choose between

several model prior options : (1) Uniform prior, (2) Binomial prior, (3)Beta-binomial prior and

also allows to place custom prior on models.

When the number of the models under consideration is of high dimensions and make the

algorithm unable to perform asymptotic computations, model sampling with the use of MCMC

methods is applied. For over than 15 covariates the full enumeration of the model space is

replaced with the application of the MC3 sampler.

For graphical reporting, it returns a graph containing the model size distribution (both prior

and posterior) and the posterior model probabilities comparing their exact computation to an

initiated MCMC.

7.3 Clyde’s Bayesian ”Model Averaging using Bayesian

Adaptive Sampling”

Clyde et al. (2011) in their paper introduced a different way of sampling the model space before

applying model averaging. They created an innovative way to update the initial sampling

probabilities of each regressor using the marginal sampling probabilities. By introducing binary
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trees, attempts to sample models with higher posterior probabilities from the model space. An

improved way for sampling without replacement is introduced with the use of binary trees.

They claim that BAS succeeds in comparison to Simple random sampling without replacement

(SRSWOR) to leave only 20% of the mass unsampled while on the same number of iterations

SRSWOR leaves a huge 95% of mass unsampled. Which is easy to be understood, due to

the completely random choice of models through the model space. Comparison with other

methods is also presented. It should be pointed out that BAS uses the Median probability

model in comparison to the Highest probability model as it is reported to be more preferable

Barbieri & Berger (2004).

When the predictors placed in BAS overcome the number of 30, the package does not perform

enumeration of the whole model space, but introduce algorithms for model searching instead:

(1) ”BAS”, described just above or (2) an adaptive MCMC algorithm. The computation of

the initial sampling probabilities can be of equal difficulty or computationally intensive as the

enumeration of the model space. For that reason Clyde et al. (2011), proposed 3 alternative

ways for computing the initial sampling probabilities, which will be then used be the BAS

algorithm. It considers (1) uniform probabilities, (2) a p-value calibration or (3) a MCMC

calibration.

BAS also contains an extended toolkit, with many choices on parameter and mode priors. The

following choices is are available for parameter priors : (1) Akaike Information Criterion, (2)

Bayesian Information Criterion, (3) the g-prior, (4) Zellner’s Siow prior, (5) the hyper g-prior,

(6) the hyper g-prior with a Laplace approximation on the prior of g, (7) Local empirical Bayes

and (8) Global Empirical Bayes. While for the model priors it allows us to choose between :

(1) Uniform, (2) Binomial and (3) Beta-binomial distributions.

Lastly, it provides plots for checking how the model fitted the data and an parameter inclusion

probability plot.
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7.4 General Comparisons

In this final section of this Thesis, we present the results of the aforementioned and analyzed

in different degrees programs and raw codes both in R and in WinBUGS.

Firstly, we present a summary of their main characteristics in table (7.1), referring to the prior

setup that was kept approximate similar for comparison efficiency.

The Bayesian Model Averaging packages return an estimate of the effect of each predictor

which is reported alongside with the real value of the generated linear regression parameters

and a classical estimate derived from the application of the ”glm()” command on our simulated

data in table (7.2). The posterior quantities each packages / code slightly differs, while all of

them report Posterior Inclusion Probabilities (PIPs) which are presented and compared in this

thesis final table (7.3).

Category WinBUGS R

Program / Code SSVS KM GVS Jump BMA BMS BAS

Type HM HM HM HM BMA BMA BMA

Search Alg. Gibbs Gibbs Gibbs RJGibbs LP/MC3 BD / RJ BAS/AMCMC

Model/γ Priors Ber(
1

2
) Ber(

1

2
) Ber(

1

2
) Bin(

1

2
) Bin(

1

2
) (3) Bin(

1

2
) (4) Bin(

1

2
)

Param. Priors EUIP EUIP EUIP EUIP* BIC≈UIP (6) UIP (9) UIP

Summaries PIPs - Posterior Means - Posterior Standard Deviations (PMPs)

Plots PIP linechart / density plot or PMP plot

Table 7.1: Characteristics of the packages and code to be used. BD= Birth -

Death, RJ=Reversible Jump,HM=Hierarhical Mixture Model, LP= Leaps

and Bounds Algorithm, UIP=Unit Information Prior, EUIP=UIP Empirical

Bayes Independent Prior, BIC=Bayesian Information Criterion, AMCMC=

Adaptive MCMC, EUIP*= considering constant prior variance between co-

variates. The number in parenthesis refer to the number of the programs

alternative choices available.

After controlling the prior distributions in such way, so as to be able to compare the different

techniques, placing an Empirical Bayes parameter prior in Winbugs and using a Unit informa-
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Sim. C. Estimate BMA BMS BAS

Predictor Value Full Model PIP P.Mean PIP P.Mean PIP P.Mean

X1* -0.480 -0.7004 87.80 -0.6832 71.70 -0.5499 74.13 -0.5696

X2* 8.720 45.6643 77.10 12.8945 67.07 11.0107 68.92 11.0661

X3* -1.760 -1.6365 100.00 -1.6349 100 -1.6241 100 -1.6245

X4* -1.870 -1.8847 100.00 -1.8426 100 -1.8275 100 -1.8239

X5 0.000 -0.1727 3.50 -0.0038 7.73 -0.0069 9.55 -0.0091

X6 0.000 -0.0983 0.80 -0.0007 13.90 -0.0081 9.32 -0.0062

X7 0.000 0.2519 13.30 0.0390 18.63 0.0571 16.81 0.0511

X8 0.000 0.0061 0.00 0.0000 5.87 0.0033 9.32 0.0047

X9” 0.000 -37.3293 41.00 -4.3347 48.17 -2.5176 46.01 -2.5729

X10 0.000 0.1379 4.90 0.0090 14.63 0.0294 11.95 0.0242

X11 0.000 -0.3247 12.60 -0.0383 14.37 -0.0435 15.65 -0.0467

X12 0.000 -0.0632 0.00 0.0000 11.10 0.0023 9.20 0.0022

X13 0.000 0.2200 5.10 0.0104 8.00 0.0165 11.73 0.0242

X14 0.000 -0.1674 11.20 -0.0327 14.40 -0.0429 14.68 -0.0430

X15 0.000 0.0583 0.00 0.0000 10.80 -0.0018 9.16 -0.0014

Table 7.2: BMA - BMS - BAS Posterior Inclusion Probabilities for linear simulated

data, Param. Prior = Empirical or UIP (g-prior, with g=n), Model Prior

= Uniform, considering full enumeration of the model space. PIP=Posterior

inclusion Probabilities, P.Mean=Posterior Mean. *Predictors chosen from

Stepwise method with AIC step. ” x9 is correlated with x2 ρ = 0.99.

tion prior in R packages, while in all case and a Binomial / Bernoulli model prior with p = 0.5,

stating our prior ignorance on which is the best model, we should comment on the findings.

The first four programs, mentioned in table 7.1, performs Gibbs steps to estimate the quan-

tities, while the last three implemented in R enumerate or approximate the space for a small

number of covariates, which number, if surpassed a different MCMC scheme is initiated.

We noticed that all MCMC based techniques supported the model with parameters {x1, x2,

x3, x4, x9 }, while all enumeration programs supported the model with parameter {x1, x2, x3,

x4}. Excluding from their highest probability model predictor 9 which was created to be high

correlated with predictor 2. Even with the default initial parameter and model priors of BAS
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& BMS model {x1, x2, x3, x4, x9 }, was not supported as the highest probability model.

After applying a classical stepwise procedure using AIC criterion from the ”Rcmdr” package

in R to test the steps, one would conclude in a model with the following parameters : {x1,

x2, x3, x4} having effects of really close magnitude to the initials. All three BMA methods

succeed in giving 100% inclusion probability for regressors {x3,x4}, while giving a very high

inclusion probability for the 1st regressor. They also supported with a probability around 80%

the 2nd regressor, while giving a possibility of less than 50% that the 9th regressor has to be

part of the model. BMA package seems to be more supportive for the inclusion of x2 and the

exclusion of x9, in comparison to the other packages.

Moreover, considering table 7.3, in which posterior summaries derived from the MCMC tech-

niques implemented in WinBUGS on the linear simulated dataset are presented, one can notice

that all four algorithms with success give a posterior inclusion probability of 1 to parameters

{x3, x4}. We should also notice that GVS and rjMCMC give a higher PIP to the 1st regressors

compared to the packages that perform full enumeration in R. Finally in table 7.3 one can

find the synopsis of the PIPs of all programs summarized in this thesis. It is clear that the

MCMC algorithms fail to understand the ongoing correlation between regressor x2 and x9. All

reporting high PIPs, except for KM which had a posterior change in its assumption, so as to

be able to even report a PIP. KM under our initial assumptions failed to report a PIP and

we changed the prior precision for the two correlated regressors so as to much their piloted

precision, while for the other regressors we assumed a precision equal to the mean precision of

all, while excluding {x2, x9} which had reported a very high precision in the pilot run. That

is why KM seems to be working better even compared to the full enumeration programs.

GVS, KM and rjMCMC succeed in reporting a higher PIP for the first regressor. Covariates

{x3,x4} are supported equally from all different implementations. Moreover, the BMA pro-

grams seems to be succeeding to understand the correlation between {x2, x9} placing a very

low PIP on the ninth covariate. The zeros reported on BMA, maybe due to the aftermatch

of the Occam’s Window, excluding any model in which X13 and X19 where included and as a

matter of fact placing zero PIP for those two covariates.

Running time of each procedure can be found in the Appendix’s table 9.2
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WinBugs R

Predictors Pr(>|t|)∗∗ SSVS KM GVS rjMCMC BMA BMS BAS

X1* 0,0183 64,91 93,85 93,78 85,35 87,80 71,70 74,13

X2* 0,0722 63,59 92,15 80,95 97,05 77,10 67,07 68,92

X3* <0.0001 100.00 100,00 100,00 100,00 100,00 100,00 100,00

X4* <0.0001 99,92 100,00 100,00 100,00 100,00 100,00 100,00

X5 0,5558 12,06 9,32 9,24 9,99 3,50 7,73 9,55

X6 0,7248 10,66 7,20 6,72 9,81 0,80 13,90 9,32

X7 0,3365 11,55 8,32 8,39 15,53 13,30 18,63 16,81

X8 0,9783 11,45 8,42 8,24 7,29 0,00 5,87 9,32

X9” 0,1442 51,3 42,32 72,58 91,01 41,00 48,17 46,01

X10 0,5932 11,49 8,17 7,87 12,80 4,90 14,63 11,95

X11 0,2228 12,01 7,82 7,94 15,40 12,60 14,37 15,65

X12 0,7935 13,84 11,64 11,71 7,46 0,00 11,10 9,20

X13 0,4220 11,95 9,51 9,71 15,01 5,10 8,00 11,73

X14 0,5520 13,95 15,68 15,85 18,27 11,20 14,40 14,68

X15 0,8076 12,73 9,56 9,52 8,29 0,00 10,80 9,16

Table 7.3: Posterior Inclusion Probabilities of the linear simulated dataset regressors

under the set of summarized programs in R / WinBUGS. C. p-value corre-

sponds to the p-value returned from the classical regression of the full model.

*Predictors chosen from Stepwise method with AIC step in R, ** Classical

p-value, ” X9 is correlated with x2 ρ = 0.99. BMA -BMS - BAS consider full

enumeration of the model space. Iterations = 20000, Burnin Period=20000.

For more information see table 7.1
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Conclusion - Further Research

In this thesis we attempted an introduction to basic notions required for implementing Bayesian

variable selection, presented a summary of the available methods for variable selection in

both Classical and Bayesian statistics while analyzing more extensively the Bayesian variable

selection methods. Programs and codes in both R and WinBugs were used, created or altered

to make comparisons between existing ways of implementing Bayesian variable selection.

Most of the theoretical disadvantages of each method were noticed in the results, while R seems

to contain the most compact and easy way to implement Bayesian variable selection for linear

models using one of the three available packages. As far as Bayesian variable selection for

Generalized linear models is concerned, only the BMA package can implement it in R, while

by using code in WinBugs even though the running times of the procedures may increase, the

way to program the needed code is much easier.

All of the compared methods had problems while dealing with correlated variables which is

one topic that more research should be attempted. Moreover, the use of different parameter

priors which have different properties while performing Bayesian variable selection is a rather

hot topic in the scientific community. Different algorithmic scenes are introduced often, for

example the EMVS algorithm that was introduced by Rockova and George in 2013 while this

thesis was written.

Generalizations and close forms of the integrals used for Bayesian variable selection will surely

make those techniques more appealing for usage by a broader audience.
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Appendix

9.1 Appendix A

9.1.1 Notations

P (Aw) : The probability that Aw the wooden door is selected.

P (Ap|W ) : The probability that Ap the plastic door is selected given that

the wooden is already opened.

f(y|θ) : or l(θ) the likelihood as a function of parameter θ.

π(θ) : Prior distribution of parameter θ.

f(y, θ) : Joint distribution of y and parameter θ can be written as

π(θ, y)f(y).

π(θ|y) : Posterior distribution of parameter θ given the data.

f(y|x) : Posterior predictive distribution of Y given observed x.

f(y) : Marginal distribution that can be obtained by integrating out

parameter θ from the joint distribution.

π(θ|x) ∝ π(x)f(x|θ) : Symbol of proportionality, the left part is proportional to the

right up to constant.
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Y ∼ Binomial(p) : Y is distributed as of a binomial distribution with probability

equal to p

Iij(θ) : Information matrix with columns equal i and rows equal j.

J(θ) : Jeffrey’s prior on θ.

Pr(C|y) : Probability of C.

pa(E) = {B,C} : Node E is a parent of B and C.

ch(E) = {F,G} : Node E is a children of F and G.

α(θ
′ |y) : Acceptance probability of proposed θ

′
.

µ̂ : Estimation of mean.

<p : Whole set of real numbers.

E(Y ) : Expectation of Y.

V (Y ) : Variance of Y.

logit(p) : p is modeled using the logit link in generalized linear models.

Cov(θt, θt+1) : Correlation between simulated θs of distance equal to 1.

Y ∼ N(β, τ) : Y is distributed as Normal with mean equal to β and precision

equal to τ .∏N
i=1 : The product of the part included each time.

exp(X) : e=2.74 raised to a value X that can be a number or a result

of a distribution.

logL(θ, y) : The loglikelihood of θ.

PO12 : Posterior Odds of Model 1 compared to model 2.

p(Mi|y) : The posterior distribution of model Mi given the data.

p(y|Mi) : The likelihood given a particular model.

94



Chapter 9 Appendix

f̂i(y) : Direct estimators of the marginal likelihood f(y).

η : The linear predictor of a particular modeling scheme.

Oj : The Odds of a particular model.

γj : Indicator variable, used for indicating whether a variable

should be excluded from our model or not.

αm→m′ : Transition probability of reversible jump and any other algo-

rithm that changes the model in every step of the algorithm.
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9.2 Appendix B

9.2.1 Abbreviations

Statistical Abbreviations

AIC : Akaike Information Criteria

AICc : Generalized Akaike Information Criteria

AIS : Adaptive Importance Sampling

AR : AutoRegressive

BF : Bayes Factor

BIC : Bayesian Information Criteria

BOA : Bayesian optimization algorithm

BUGS : Bayes using Gibbs sampling

CC : Carlin and Chib Method

CDF : Cumulative distribution function

CLT : Central Limit Theory

CODA : Convergence Diagnosis and Output Analysis

DAG : Directed Acyclic Graph

ESS : Effective Sample Size

GLM : Generalized Linear Models

GVS : Gibbs Variable Selection

HM : Harmonic Mean estimator

HPD : Highest Posterior Density

IC : Information Criteria

IID : Independent Identically distributed

IndMH : Independent Metropolis Hastings
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KM : Kuo and Mallick sampler

MAP : Maximum a posteriori Probability Model

MC : Monte Carlo

MCC : Metropolized Carlin and Chib

MCE : Monte Carlo Error

MCMC : Markov Chain Monte Carlo

M-H : Metropolis-Hastings

MLE : Maximum Likelihood Estimation

MSE : Mean Square Errors

MWG : Metropolis within Gibb

NR : Newton and Raphson estimator

PBD : Posterior Bayes Density

PDF : Probability distribution functions

PIP : Posterior Inclusion Probabilities

PMP : Posterior Model Probabilities

PoprjMCMC : Population based reversible jump Markov Chain Monte Carlo

rjMCMC : reversible jump Markov Chain Monte Carlo

RWM : Random walk Metropolis

SAS : Statistical Analysis System

SCC : Subspace Carlin and Chib

SD : Standard Deviation

SIR : Sequential Importance Resampling

SLICE : Slice sampler

SLLN : Strong Law of Large Numbers

SSS : Shotgun Stochastic Search

SSVS : Stochastic Search Variable Selection

TIC : Information Criteria
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Other Abbreviations

ENIAC : Electronic Numerical Integrator and Computer

MANIAC : Mathematical Analyzer, Numerator, Integrator, and Computer

EHIS : European Health Interview Survey

EU : European Union

GNU : Graphical N User

ISCED : International Standard Classification of Education

SRHS : Self-reported Health Status
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9.3 Appendix C

9.3.1 R Packages

9.3.1.1 MCMCpack package

MCMCpack (Martin et al. 2011) is a R statistical package that perform Bayesian Inference

with the use of posterior simulation for a variety of statistical problems. The majority of the

simulations’ code is compiled in C++ using the Scythe Statistical Library (Pemstein et al.

2007). The result of each function is a mcmc coda object, providing in that way summarize

them easily using the ”coda” package.

Website : http://mcmcpack.wustl.edu/

9.3.1.2 MCMCmnl

Markov Chain Monte Carlo for Multinomial Logistic Regression

Description

This function generates a sample from the posterior distribution of a multinomial logistic

regression model using either a random walk Metropolis algorithm or a slice sampler. The

user supplies data and priors, and a sample from the posterior distribution is returned as an

mcmc object, which can be subsequently analyzed with functions provided in the coda package.

Details of the function MCMCmnl used from package MCMCpack as presented by Martin et al.

(2011) in the package’s instruction manual.

Initial Values of MCMCmnl function

MCMCmnl(formula, baseline=NULL, data=NULL, burnin = 1000, mcmc = 10000,

thin = 1, mcmc.method = c("IndMH", "RWM", "slice"), tune = 1, tdf=6,

verbose = 0, beta.start = NA, b0 = 0, B0 = 0, ...)
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Arguments

formula : Model formula. Individual specific covariates can be entered into the formula

normally.

baseline : The baseline category of the response variable. In our case the response variable

had two categories, so this parameter was not used.

data : The data frame used for the analysis. Each row of the data frame corresponds to an

individual who answered a question

burnin : The number of burn-in iterations for the sampler.

mcmc : The number of iterations to run the sampler past burn-in.

thin : The thinning interval used in the simulation. The number of mcmc iterations must be

divisible by this value.

mcmc.method : Can be set to either ”IndMH” (default), ”RWM”, or ”slice” to perform

independent Metropolis-Hastings sampling, random walk Metropolis sampling or slice sampling

respectively.

tune : Metropolis tuning parameter. Can be either a positive scalar or a k-vector, where k is

the length of. The acceptance rate should be tune around 0.2 to 0.4 before making inference

from the posterior sample.

...

beta.start : The starting value for the vector. This can either be a scalar or a column vector

with dimension equal to the number of betas. If this takes a scalar value, then that value will

serve as the starting value for all of the betas. The default value of NA uses the MLE of β as

the starting value.

b0 : The prior mean of β.

B0 : The prior precision of β. Default value of 0 is equivalent to an improper uniform prior

for beta.

This function returns a mcmc.object that then can be analyzed using the coda package which

is described in brief in the next section.
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9.3.2 CODA package

Details of the functions used from package CODA as presented by Plummer et al. (2006) in

the package’s instruction manual.

9.3.2.1 CODA diagnostics

geweke.diag

geweke.diag(x, frac1, frac2)

x : An object of type mcmc.

frac1 : fraction to use from beginning of chain, default value A =
1

10
.

frac2 : fraction to use from end of chain, default value B =
1

2
.

heidel.diag

heidel.diag(x, eps , pvalue )

x : An object of type mcmc.

eps1 : Target value for ratio of halfwidth to sample mean, default value eps =
1

10
.

pvalue : significance level for the test, default value α = 0.05.

raftery.diag

raftery.diag(x, , r , s , converge.eps )
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x : An object of type mcmc.

q : the quantile to be estimated, default value q = 0.025

r : margin of error of the estimate desired, default value r = 0.005

s : the chance to get an estimate in (q − r, q + r), default value s = 0.95

convergence.eps : Desired precision for the time of convergence to be estimated, default

value Precision = 0.001

effective.size

effectiveSize(x)

x : An object of type mcmc.

autocorr.diag

autocorr.diag(x)

x : An object of type mcmc.

9.3.2.2 CODA plots

traceplot

traceplot(x, smooth=F, ...)

x : An object of type mcmc.

smooth : Draw smooth line through the plot

... : For further graphical parameters one should refer to (par and plot)
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densplot

densplot(x, ...)

x : An object of type mcmc.

... : For further graphical parameters one should refer to (par and plot)

autocorr.plot

autocorr.plot(x, lag.max, ...)

x : An object of type mcmc.

lag.max :

... : For further graphical parameters one should refer to (par and plot)

geweke.plot

geweke.plot(x, frac1 = 0.1, frac2 = 0.5, nbins = 20,

pvalue = 0.05, auto.layout = TRUE, ask, ...)

x : An object of type mcmc.

nbins : Number of segments.

pvalue : p-values to plot H0 confidence limits.

frac1 : fraction to use from beginning of chain, default value A =
1

10
.

frac2 : fraction to use from end of chain, default value B =
1

2
.

... : For further graphical parameters one should refer to (par and plot)

9.3.2.3 summary.mcmc

summary(object, quantiles = c(0.025, 0.25, 0.5, 0.75, 0.975))

x : An object of type mcmc.

quantilies : an evaluated vector of quantiles for every mcmc chain.
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9.3.2.4 plot.diagnostics

(User created function) The function was created for simultaneous plotting of graphs required

for graphical diagnoses of convergence.

Depends : R(≥2.15.3), coda

plot.diagnostics(x=NULL, burnin=1000, iter=10000, thin=1,

step.dens=20, step.acf=250, ind=c("tra","erg","den","acf"))

x : An object of type mcmc.

burnin : The number of burn-in iterations of the mcmc chain.

iter : The number of iterations of the mcmc chain.

thin : The thinning interval of the mcmc chain.

step.dens : The step of the density plot.

step.acf : The lag of the autocorrelation plot (can be adjusted to find the best thinning in-

terval value).

ind : An indicator that can take each one of the next values and all of them together

(”tra”,”erg”,”den”,”acf”), corresponding to traceplots, ergodic.mean plots, density plots and

autocorrelation plots, respectively.

A function creating a summary of plot diagnostics for objects in coda mcmc format. The

function requires the burnin period to be known. Can plot only part of the available graphs.

Three of the graphs plotted for each of the parameters are from the CODA package described

above. Among the diagnostics plot, a density plot is created for the researcher to check more

efficiently the posterior information through graphs.

See code in attached folder (R Code//plot.diagnostics)

9.3.3 xtable package

Details of the functions used from package CODA as presented by Dahl (n.d.b) in the package’s

instruction manual.
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xtable(x, caption = NULL, label = NULL, align = NULL, digits = NULL,

display = NULL, ...)

x : An R object of class found among methods, it usually works for every matrix / data frame

objects.

label : Number of segments.

align : A character vector equal to the number of columns of the matrix specified. Choices can

be between ”l”, ”r”, and ”c” corresponding to left, right, and center alignment, respectively.

digit : A vector of length equal to one, or to the number of columns of the matrix specified.

It determines the number of digits to be displayed.

frac2 : fraction to use from end of chain, default value B =
1

2
.

The result can be then be transfered without further intervention to LATEXto be printed.

9.3.3.1 xtableMCMCsummaries

See code in attached folder (R Code//xtableMCMCsummaries)

9.3.3.2 xtableMCMCdiagnostics

See code in attached folder (R Code//xtableMCMCdiagnostics)

9.3.4 Other R functions

9.3.4.1 ContourPlots

(User created function) A function that creates the contour plot for the joint distribution of

two variables e.g β0 vs. β1.

contourplot(x, )
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x : A matrix of dim with two columns accounting for the first and the second variable plotted.

xlim :A vector of size two, responding to the limits of x-axis to be plotted.

ylim :A vector of size two, responding to the limits of y-axis to be plotted.

sepx :A scalar that corresponds to the detail of the plotted x-axis of the contour plot.

sepy :A scalar that corresponds to the detail of the plotted y-axis of the contour plot.

conf.int : The confidence intervals to be plotted, default value is (0, 0.5, 0.75, 0.9, 0.95,

0.99).

9.3.4.2 writeDatafileR

Details of the function as presented by (Dahl n.d.a) in his revised script.

writeDatafileR(x, towhere, fill )

x : Either a data frame or else a list consisting of scalars, vectors, arrays or data frames. The

values should all be numeric for the function to not return an error.

towhere : Directory and file to receive the output, default value is ”toWinBUGS.txt”

fill : If numeric, it represents the number of columns for output, while if FALSE the output

will be produced on one line. Default value, fill=80.

See code along with comments in the attached folder (R Code//writeDatafileR)

9.3.4.3 erg.mean

(User created function) See code along with comments in the attached folder (R Code//erg.mean)
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9.3.4.4 Extra tables/graphs

S. Scheme User System Elapsed

IndMH (1) 14.86 0.02 16.37

IndMH (2) 14.68 0.00 14.98

IndMH (3) 14.53 0.02 14.79

RWM (1) 14.65 0.00 15.02

RWM (2) 14.81 0.05 15.24

RWM (3) 15.11 0.08 15.47

Slice (1) 230.81 0.31 236.82

Slice (2) 272.00 0.31 296.27

Slice (3) 249.36 0.24 251.65

Table 9.1: Running (System, user, elapsed) times of MCMCmnl of MCMCpack under

all sampling schemes for 8000 iterations in seconds

Program (Changes) time

SSVS 43

KM 55

GVS 298

rjMCMC 337

BMA 0.17

BMS 0.14

BAS 0.71

Table 9.2: Running (System, user, elapsed) times for WinBUGS (SSVS - KM - GVS -

rjMCMC) and R (BMA - BMS - BAS) linear regression variable selection for

Clyde’s simulated dataset in seconds. R programs performed full enumera-

tion, WinBUGS programs were measured for 20000 iterations.

Information Criteria

Akaike (AIC) : cn(k) = (3.1.1) + 2p 1974

Takeuchi : cn(k) = (3.1.1) + 2[t̂f{J(θ̂)[I(θ̂k)]−1}]] 1976

Schwarz (BIC) : cn(k) = (3.1.1) + plog(n) 1978

Hanna-quinn : cn(k) = (3.1.1) + c
log(log(n))

n
, c ≥ 2 1979

AICc : cn(k) = (3.1.1) + plog(n) +
2p(p + 1)

n− p− 1
1989

Table 9.3: Information on five frequently used Information Criteria placed according to

date of development. (3.1.1) part corresponds to −2logL(θ̂|y)
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9.3.5 Convergence Tests

Here you should find a section for the application of different diagnostic tests on MCMC

convergence and autocorrelation. The techniques are briefly explained most of the times using

a graphical image and applied in chapter’s 3 example, using CODA (see 9.3.2.1).

9.3.5.1 Geweke Diagnostic

Geweke diagnostic compares two different time intervals of the created chain where the sampled

parameter is located. So, when the mean values of the parameter in two different time intervals

are close, one can assume that those two samples come from the same distribution. It is most

frequent one to compare the last part of the chain which is supposed to have reach convergence,

over one narrower interval coming usually from the beginning of the chain.

In coda’s implementation of the Geweke diagnostic the windows sizes are A =
n

10
and B =

n

2
for window A and B (see figure 9.1), which hold the 10% of the first part of the chain and

the last half. These sizes are also suggested by Geweke et al. (1991). First, the statistic is

applied to the whole chain, if the Z-statistic is outside the 95% confidence interval, we continue

to apply the diagnostic after discarding 10%, 20%, 30% and 40%. If during the last test the

Z-statistic is still not inside the 95% confidence interval, the chain is reported as ”failed to

reach convergence”. One of the disadvantages of Geweke’s method is that it is sensitive to the

specification of the windows.

In table 9.5 it seems that Geweke’s diagnostic is not showing an unusual scheme. The values

of the test are within the ranges of the N(0,1). Except for those betas, there is no evidence

provided by this test that the chains have not converge. Caution, one should also take into

account that Geweke’s diagnostic performs many sequential hypothesis testing, it should be

used with attention due to possible increasing of type II error probability. Both Geweke’s and

Heidelberger’s diagnostic require sequential testing, so for the tests to be realistic, a correction

should be applied.

In figure 9.2 one of the corresponding plots is provided making even clearer what we already

have mentioned. The 3rd sampling scheme of RWM algorithms seems to need some time to
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Figure 9.1: Geweke-Brooks plot for the 3rd sampling scheme of the RWM algorithm,

showing how the Geweke diagnostic chooses and testes window A with win-

dow B and then widening window A→ A
′

to repeat the test.

Set β0 β1

IndMH (1) 1.1578 -0.7828

IndMH (2) 1.2210 -0.9582

IndMH (3) 0.4823 -0.1781

RWM (1) 1.0750 -0.8734

RWM (2) 1.3445 -0.3525

RWM (3) 1.3396 -0.3476

Slice (1) -1.8227 1.9277

Slice (2) 1.4853 -1.3074

Slice (3) 1.2305 -1.4272

Table 9.5: Comparative table of Geweke Diagnostic for three algorithms used given a

particular sampling scheme, see table 3.3, for windows sizes of A =
n

5
,B =

n

2

reach convergence and then stabilizes within the limits of Geweke’s Z-score.
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Figure 9.2: Geweke-Brooks plot for the 3rd sampling scheme of the RWM algorithm,

showing what happens to Geweke’s Z-score when repeatedly bigger number

of iterations are being discarded from the beginning of the chain, the plot

never discards more than half of the chain.

9.3.5.2 Heidelberger-Welch Diagnostic

The diagnostic of Heidelberger & Welch (1983) is actually based on the assumption that a

weakly stationary process is considered when the chain has already converge. Such a stationary

process has the property that, if Xi is defined as the ith iteration in the sequence, the mean

function E[Xi] is constant in time and Cov(θi, θi+s) does not depend on i but only on how

large s is. This is a logical assumption since our sequence is generated by a Markov chain and

therefore should satisfies full stationarity.

In coda’s implementation of Heidelberger diagnostic, if the null hypothesis of stationarity is

rejected, the test is repeated with 10%, 20% . . . until stationarity is reached or at least 50% of

the chain is discarded. If stationarity has not been reached and half of the chain is discarded

the outcome results in a message of type ”the chain failed to reach stationarity”, indicating

that a longer run may be needed. The Cramer-von-Mises (Anderson 1962) statistic is used to

test the H0 that the sampled values come from a distribution that have reached stationarity.

As we notice in tables 9.6 and 9.7, the majority of the sampling schemes were not rejected

by this test. The algorithm that did not perform well in comparison to the others is the
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Set Stationarity Start Cramer-von Halfwidth Mean Halfwidth

test iteration -Mises statistic test

IndMH (1) Pass 1.0 0.1587 Pass 0.9408 0.0047

IndMH (2) Pass 1.0 0.1587 Pass 0.9408 0.0047

IndMH (3) Pass 1501.0 0.0581 Pass 0.9502 0.0067

RWM (1) Pass 1.0 0.8458 Pass 0.9405 0.0078

RWM (2) Pass 1.0 0.3007 Pass 0.9424 0.0075

RWM (3) Pass 1.0 0.5073 Pass 0.9468 0.0083

Slice (1) Pass 1.0 0.8644 Pass 0.9471 0.0088

Slice (2) Pass 1.0 0.7888 Pass 0.9387 0.0089

Slice (3) Pass 1.0 0.8610 Pass 0.9431 0.0090

Table 9.6: Comparative table of Heidelberger Diagnostic (β(0))for the three algorithms

used given a particular sampling scheme (see table 3.3)

Set Stationarity Start Cramer-von Halfwidth Mean Halfwidth

test iteration -Mises statistic test

IndMH (1) Pass 1.0 0.0942 Pass -0.9175 0.0018

IndMH (2) Pass 1.0 0.0942 Pass -0.9175 0.0018

IndMH (3) Fail – 0.0369 Fail – –

RWM (1) Pass 1.0 0.9013 Pass -0.9180 0.0030

RWM (2) Pass 1.0 0.2157 Pass -0.9183 0.0030

RWM (3) Pass 1.0 0.4423 Pass -0.9194 0.0030

Slice (1) Pass 1.0 0.8719 Pass -0.9198 0.0034

Slice (2) Pass 1.0 0.8726 Pass -0.9165 0.0034

Slice (3) Pass 1.0 0.9046 Pass -0.9178 0.0030

Table 9.7: Comparative table of Heidelberger Diagnostic (β(1))for the three algorithms

used given a particular sampling scheme (see table 3.3)

IndMH from which the two sampling schemes were on the verge of rejection and the third was

rejected by Heidelberger diagnostic. This indicates that by following Heidelberger test, even

after discarding 50% of the chain, convergence has not been reached for IndMH(3), and more

iterations should be considered for the distribution to reach stationarity.

9.3.5.3 Raftery-Lewis Diagnostic

Suppose that we monitor the parameter x and we are interested in estimating the value of u

such that P (θ(x) ≤ u) = q for some quantile value q. We then choose which precision a and

probability p we want to have on û. In that way, we want û to belong in a interval [u−a, u+a]

for a probability p. Raftery & Lewis (1992b) presented a way to test convergence of the chain,

a method that actually calculates the total length of the run and the estimated burn-in period

of the chain, to estimate the aforementioned probability with accuracy a and probability p.
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In coda’s implementation of Raftery-Lewis diagnostic, the burn-in period, the length of the run

and the dependence factor is provided. Values of the dependence factor larger than 5 indicate

high autocorrelation which may appear ,among other reasons because of poor choice of starting

values, high posterior correlations or the fact that the MCMC algorithm sticks in particular

parts of the space. The output presents the number of iterations for convergence to be reached

(N), the minimum number is kept constant and equal to 3476, the dependence factor indicating

the distance of each independent iteration (I) and the needed number of burn-in period (M).

Set M N N(Minimum) I=(M+N)/Nmin (DF)

indMH (1) 18 20562 3746 5.5

indMH (2) 18 20562 3746 5.5

indMH (3) 30 27560 3746 7.4

rwMH (1) 17 18012 3746 4.8

rwMH (2) 18 19428 3746 5.2

rwMH (3) 17 18012 3746 4.8

Slice (1) 12 11842 3746 3.2

Slice (2) 15 20049 3746 5.3

Slice (3) 16 18916 3746 5.0

Table 9.8: Comparative table of Raftery - Lewis Diagnostic (β(0)) for the three algo-

rithms used given a particular sampling scheme (see table 3.3)

Set M N N(Minimum) I=(M+N)/Nmin (DF)

indMH (1) 35 42210 3746 11.3

indMH (2) 35 42210 3746 11.3

indMH (3) 40 44500 3746 11.9

rwMH (1) 16 17023 3746 4.5

rwMH (2) 14 15560 3746 4.2

rwMH (3) 17 18115 3746 4.8

Slice (1) 11 11484 3746 3.1

Slice (2) 10 11784 3746 3.1

Slice (3) 14 14510 3746 3.9

Table 9.9: Comparative table of Raftery - Lewis Diagnostic (β(1)) for the three algo-

rithms used given a particular sampling scheme (see table 3.3)

High autocorrelation can be seen in table 9.8 of parameter β0, on all different sampling schemes.

The dependence factor was around 5 and most of the times surpassing this upper limit. For both

parameters β0 and β1 the slice sampler seems to be have the best performance. Accordingly

to Raftery-Lewis diagnostic the chain produced under IndMH for parameter β1 under any

sampling scheme achieve an dependence factor of value around 11, the worst performance

among all. Lastly, in general the 1st and the 2nd sampling scheme in given each algorithm
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seem to be performing better. By using the Raftery – Lewis diagnostic we can now consider a

thinning interval for every chain. This thinning interval could be equal to the dependence factor

provided by the test. Lastly, it should be noted that Raftery-Lewis tends to underestimate the

total burn-in period.

Having applied three diagnostic, until now, after having discarded the first 3000 iterations,

only the 3rd sampling scheme of the IndMH seems to not have reached stationarity.

9.3.5.4 The Effective Sample Size Diagnostic

Let suppose that we run our chain long enough, to obtain a particular set of samples (x).

It is more than certain that one can ask himself. ”After obtaining a set of samples (x),

how much information do we really know about a parameter?”. If correlation exists between

successive samples from (x), then we can easily consider that our sample has not revealed

as much information as one might expect if the samples were independent. This quantity of

information is often estimated from the MCMC outputs and are most often seen in literature

as the Effective Sample Size (ESS) (Kass et al. 1998). Therefore, ESS is a quantity that tries

to estimate how many really independent sample are obtain from a set of samples (x). The

ESS is a quantity that estimates the number of independent samples obtained from x.

The effective sample size is defined as T
1− p
1 + p

, where T is the size of the MCMC sample and

p the correlation between the IID sample. We consider 1st degree correlations, assuming an

AR(1) process. In our example T=5000.

Set β0 β1

IndMH (1) 2166.1 2157.4

IndMH (2) 2166.1 2157.4

IndMH (3) 1176.2 1279.7

RWM (1) 695.9 687.0

RWM (2) 792.0 708.9

RWM (3) 636.7 724.8

Slice (1) 531.5 505.4

Slice (2) 522.2 516.7

Slice (3) 510.7 658.0

Table 9.10: Comparative table of Effective Size Diagnostic for the three algorithms used

given a particular sampling scheme (see table 3.3)
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The IndMH seems to produced more independent samples from the other two techniques

used, while the Slice sampler produces the most autocorrelated. For the same number of set of

samples (N=5000), the IndMH produces n={1176-2166}, the RWM produces n={792-636} and

the Slice sampler n={510-658}. When having wrong prior information the IndMH performs

even poorer in comparison to sampling schemes (1) and (2).

9.3.5.5 Autocorrelation Diagnostic

Set Lag 0 Lag 1 Lag 5 Lag 10 Lag 50

IndMH (1) 1.0000 0.3772 [0.0030 -0.0202 -0.0391]

IndMH (2) 1.0000 0.3772 [0.0030 -0.0202 -0.0391]

IndMH (3) 1.0000 0.4978 [0.0907 0.0090 0.0042]

RWM (1) 1.0000 0.7556 0.2629 [0.0808 -0.0033]

RWM (2) 1.0000 0.7669 0.2781 [0.0689 -0.0117]

RWM (3) 1.0000 0.7691 0.2493 [0.0675 -0.0040]

Slice (1) 1.0000 0.8166 0.3281 0.1159 [-0.0344]

Slice (2) 1.0000 0.8108 0.3648 0.1481 [-0.0389]

Slice (3) 1.0000 0.8146 0.3312 [0.0465 0.0296]

Table 9.11: Comparative table of Autocorrelation Diagnostic (β(0)) for the three algo-

rithms used given a particular sampling scheme (see table 3.3)

Set Lag 0 Lag 1 Lag 5 Lag 10 Lag 50

IndMH (1) 1.0000 0.4025 [0.0130 -0.0262 -0.0351]

IndMH (2) 1.0000 0.4025 [0.0130 -0.0262 -0.0351]

IndMH (3) 1.0000 0.4998 [0.0814 0.0186 -0.0007]

RWM (1) 1.0000 0.7583 0.2591 [0.0776 -0.0005]

RWM (2) 1.0000 0.7649 0.2433 [0.0405 0.0026]

RWM (3) 1.0000 0.7664 0.2343 [0.0620 -0.0107]

Slice (1) 1.0000 0.8164 0.3365 0.1138 -0.0352]

Slice (2) 1.0000 0.8127 0.3538 0.1553 -0.0477]

Slice (3) 1.0000 0.8166 0.3362 [0.0475 0.0231]

Table 9.12: Comparative table of Autocorrelation Diagnostic (β(1)) for the three algo-

rithms used given a particular sampling scheme (see table 3.3) , the brackets

show the interval in which the autocorrelation has decreased in non signifi-

cant values.

The autocorrelation is diminished in the IndMH scheme around lag 5, while for the rwM around

lag 10, while for the Slice sampler one needs the biggest lag among those approach to create a

sample with no autocorrelation. These results are in accordance to the results of the ESS as

both count the autocorrelation of successive samples of x.
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9.3.5.6 Diagnostics synopsis

We will briefly summarize the advantages and disadvantages of the above diagnostics and

comment on their usage.

Geweke diagnostic seems not to reveal more information than a simple trace plot for the burn-

in period, this is explainable as it is a simple transformation of the values plotted on a trace

plot to a comparison to the mean location. However, it quantifies the optical examination of

the traceplot into a z-score comparing means of two different parts of the chain, therefore being

easy to be interpreted. How the appropriate window is chosen requires a minimal examination

of the plot. (in our case A =
1

5
was chosen.)

The Heidelberger-Welch diagnostic is a rather more complete way investigating properties

of the chain’s trace than the Geweke diagnostic. We compare the means and the variation

between two different part of the chain, providing a more comprehensive, but more difficult to

be interpreted diagnostic than the previous.

While evaluating the diagnostic of Raftery and Lewis we noticed that the estimations for

the burn-in given were often too small compared to the burn-ins suggested by examining the

traceplots of the whole chain. Another fact to take into consideration when applying diagnostics

upon chains is the following. Do one need to see how precise are his estimates on the true B,

B being the burn-in iterations, or which B gives the most precise estimate of the parameter

he is interested for.

9.4 Variable Selection Functions

9.4.1 SSVS, KM & GVS

The algorithm presented below is a readjusted version, for the EHIS2009 data, of the Logis-

tic Regression Model Selection in WinBUGS, written by J. Ntzoufras for BUGS software in

1997.
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#################################################################

# Description of the variables used in OpenBUGS SSVS, KM, GVS code.

N = 4850, # number of binomial responses

Q= 62, # Number of models under consideration for 5 covariates 2ˆ5

include, # conditional prior probability for g

pmodel, # model indicator vector

model, # code of model

beta, # model coefficients

gamma; # term indicator vector

beta.prior.mean, # proposal mean used in pseudoprior

beta.prior.sd, # proposal stand.deviation used in pseudoprior

beta.prior.mean, # prior mean for b depending on g

tau, # model coefficients precision

#################################################################

# Calculation of the likelihood and model configuration,

# in the case of SSVS the gammas are not included in the likelihood.

for (i in 1:n){

HS01[i]˜dbern(p[i])

logit(p[i])<-gamma0*beta0+

gamma[1]*beta[1]*age[i]+

gamma[2]*beta[2]*sex[i]+

gamma[3]*beta[3]*educat[i]+

gamma[4]*beta[4]*longill[i]+

gamma[5]*beta[5]*urban[i]}

# Prior for b model coefficients

# Mixture normal depending on current status of gamma.

for (i in 1:Q) {

# GIBBS VARIABLE SELECTION proposal

# Proposals parameters equal to
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# the posterior mean and variance of the full model’s pilot run.

# ----------------------------------------------------------------

# if(gamma[i]=1) then precision[i] = 1/SDˆ2*n

# elseif(gamma[i]=0) then precision[i]=1/SDˆ2

%# if(gamma[i]=1) mb[i]=0

%# elseif(gamma[i]=0) then mb[i]=Mean from Pilot

# mb[i]=0

beta0 ˜ dnorm( mb0, taub0)

mb0 <- 0

taub0 <- (gamma0/(pow(prop.sd.beta0 ,2)*n)

+ (1-gamma0)/pow(prop.sd.beta0 ,2))

for (j in 1:5){

beta[j] ˜ dnorm( mb[j], taub[j])

mb[j] <- 0

taub[j] <- (gamma[j]/ (pow(prop.sd.beta[j] ,2)*n)

+ (1-gamma[j])/ pow(prop.sd.beta[j] ,2))

}

# STOCHASTIC SEARCH VARIABLE SELECTION proposal

# Automatic proposal using g=1000 as in SSVS

# ----------------------------------------------------------------

# if(gamma[i]=1) then precision[i] = 1/SDˆ2*n

# elseif(gamma[i]=0) then precision[i]=1/SDˆ2

# mb[i]=0

#

beta0 ˜ dnorm( mb0, taub0)

mb0 <- 0

taub0 <- (gamma0/(pow(prop.sd.beta0 ,2)*n)

+ (1-gamma0) / pow(prop.sd.beta0 ,2))

for (j in 1:5){

beta[j] ˜ dnorm( mb[j], taub[j])

mb[j] <- 0
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taub[j] <- (gamma[j]/(pow(prop.sd.beta[j] ,2)*n)

+ (1-gamma[j]) / pow(prop.sd.beta[j] ,2))

}

# KUO \& MALLICK SAMPLER proposal

# P(beta,gamma)=p(beta)*p(gamma),

# assuming independence between the variable indicators and the parameters.

# precision[i]=1/SDˆ2*n and mb[i]=0

#

tau00<-1/(pow(prop.sd.beta0 ,2)*n)

beta0 ˜ dnorm( 0, tau00)

for (j in 1:5){

tau01[j]<-1/(pow(prop.sd.beta[j] ,2)*n)

beta[j] ˜ dnorm( 0, tau01[j])

}

# ----------------------------------------------------------------

# Defining prior information for gamma[i].

# Allow models to have the same initiative probability of inclusion.

#

gamma0 ˜ dbern(1)

for (j in 1:Q){ gamma[j]˜dbern(0.5) }

# Or place a prior on p[1:5]˜beta(1,1)

# gamma0<- dbern(1)

# for (j in 1:Q){ gamma[j]˜dbern(p) }

# for (j in 1:Q){ p[j]˜dbeta(1,1) }

}

# Construction of model Indicator

for (j in 1:5){ mindex[j] <- pow(2,j)}

model <- inprod( gamma[], mindex[] )

# gamma0 is omitted as it is always included in the model.
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#

# Posterior Model probabilities for all

# possible Model combinations Nmodel = Sigma 2ˆmi

for( m in 1:Nmodel){pmodel[m]<-equals(m,model)}

9.4.2 reversible jump via OpenBUGS jump add-on

The OpenBUGS code for performing reversible jump in linear simulated data is presented in

this section. For the code applied in digital BUGS file, please refer to the attached folder

(OpenBUGS code//Jump).

# Description of the variables used in OpenBUGS jump extension code.

n=4850 # the number of responses.

Q=5 # number of covariates.

Y # response variable of the model.

psi # a deterministic function of fixed dimension

that contains each time an unknown number of covariates.

k # number of betas currently in the model.

X # the vector of x-values.

id # variable indicating a particular model.

pred # prediction with the use of specific set of linear predictors.

tau # prior precision

X.pred #

effect #

model {

for (i in 1:n) {

y[i]˜ dnorm(psi[i],tau)

X[i, 1] <- x1[i]

X[i, 2] <- x2[i]

...
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X[i, 15] <- x15[i]

}

tau˜dgamma(0.01,0.01)

#

psi[1:n] <- jump.lin.pred(X[1:n, 1:Q], k, beta.prec)

id[1] <- jump.model.id(psi[1:n])

beta.prec <- 1 / (SDˆ2*n)

k ˜ dbin(0.5, Q)

# Or place a prior on p[]˜beta(1,1)

# k ˜ dbin(p, Q)

# p˜dbeta(1,1)

#

pred[1:(Q + 1)] <- jump.lin.pred.pred(psi[1:n], X.pred[1:(Q + 1), 1:Q])

#

for (i in 1:Q) {

X.pred[i, i] <- 1

for (j in 1:(i - 1)) {X.pred[i, j] <- 0}

for (j in (i + 1):Q) {X.pred[i, j] <- 0}

X.pred[(Q + 1), i] <- 0

effect[i] <- pred[i] - pred[Q + 1]

}}

9.4.3 BMA - BMS - BAS

Sample code for those three to be included in the digital version of this thesis.
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