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ABSTRACT

Konstantinos Perrakis

Comparison of MCMC Methods for the Estimation of the
Marginal Likelihood for Bayesian Model Evaluation

January 2008

Model selection is the final and perhaps the most significant stage of
statistical inference. In this thesis we examine this aspect of statistical
inference from a Bayesian perspective. Bayesian statistics are established on a
theory whose origins date back to the 18" century, yet they were not broadly
used for many years since in most of the cases researches had to confront
intractable, high dimensional integrals. However, the evolution in computer
technology and the advent of simulation methods made the implementation of
Bayesian ideas practically feasible. In particular, the recent Markov Chain
Monte Carlo methods proved to be powerful implementation tools for
researchers.

In this thesis, we examine how Markov Chain Monte Carlo methods
can advocate Bayesian analysis not only with respect to single model
investigation but also with respect to model comparison. Formal Bayesian
model comparison is based on the evaluation of the marginal likelihoods data
of the models under comparison. Through these conditional probabilities, one
can subsequently calculate quantities such as the Bayes Factors and the
Posterior Odds of competing models. Our aim is to present and evaluate
several simulation-based methods that intend to estimate the marginal

likelihood.
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INEPIAHYH

[Teppaxng Kovotavrtivog

2OYKpron pedoowv mpoocopoimonc Monte Carlo pe ypfon
Mopkofravov Arlvoidov yia Tnv Extipnon [eprboprov

MBavogaverov Yo Tnv Mrebvlraviy A&roroynon Moviélov

lavovdprog 2008

H emloyn poviéhov eivar 1o tedkd Kol {6mOC TO ONUAVTIKOTEPO GTASIO TNG
OTOTIOTIKNG GLUTEPAGHOTOAOYIOG. & avtnv Tnv gpyoacia eEetdlovpe Vv
eEMAOYY povtéAov amd v Mmnebvliavyy okomid. Ilapott or apyéc g
Mnebliavic Oeopiag avayovial otov 18° atdva, N oTatioTik) kotd Bayes dev
elye evpela 01ddoon Yo apkeTd XxpoOvia, KOOMOG OTIC TEPLOGOTEPES MEPIMTOCELG
Ol  €PELVNTEC MNTOV  OVAYKOGUEVOL VO OVTILETOTICOVV  dvceEmiAvTa
olokAnpopoto vyniAng taéng. Opwg M avadntuén TV VTOAOYIGTOV Kol 1
eppavion peboddwv mpoocopoimong Eékave v eeappoyny s Mmebliovng
Bewpiloc mpaktikd dvvatn. Ewdwkotepa, ot mpdopateg néBodol mpocopoldong
Monte Carlo pe v ypnon Mopkofraveov arvcidov (MCMC) cvvéfairav
ATOPOCIOTIKA 0TV dekmepaimon tng Mrebliavig avaivonc.

YtV mapovca dratpiPn e€etalovpe Tmwg ot pEBodsor MCMC pumopovv va
vrofonOnocovv v Mruebliavn avaivon Oyt pHoOvo OGOV a@opd oTnv
OlEPELVNON  UEUOVOUEVOV  HOVTEA®V, OAAE Kol OTNV oUYKPLoN HETAED
povtédlmv. H katd Bayes cOykpion poviéAov Boaciletal 6Tov VToAOYIGUO TOV
neplfoplov  mTOAVOPAVEIOV TOV TAPATNPOVUEVOV OEOOUEVOV TOV  VLTO
oOyKpion povtélwv. Méocw avtdv TV decueVPEVOV TIHAVOTHTOV UTopovV va
vmoloylotovv ot mapdyovteg Bayes (Bayes Factors) kot ot €k TV vo1épov
AOyor oyxetikodv miBavotntwv (Posterior Odds) peta&d tov cvykpvopevev
HOVTEA®V. ZTOY0C TNG Topovoac OwTpiPnig €ivar 1 mapovoiaon Kot 1
aglordynon ovykekpiuévov pebddmv TPOCOHOLDCNG MOV OTOCKOTOVV GTNV

ektiunon tov teptbopinv mbavopaveldv.
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Chapter 1: Introduction

1.1 Purpose of the thesis

Model selection is among the dominant issues in statistical analysis. This thesis
is concerned with this issue from a Bayesian viewpoint. The formal Bayesian
approach towards model selection is based on the calculation of marginal
likelihoods, through which we can evaluate the Bayes Factors, the posterior
probabilities and the posterior odds of competing models.

Unfortunately, direct calculation of marginal likelihoods is in most of the
cases cumbersome or even impossible, since it requires analytic solutions of high
dimensional integrals. As we will see Monte Carlo and subsequent Markov Chain
Monte Carlo methods offer the most trustworthy estimates of high dimensional
integrals. The main purpose of this thesis is to present and evaluate the available

simulation-based estimators of the marginal likelihood.
1.2 Structure of the thesis

Chapter 2 focuses on the main aspects of Bayesian theory. In the first sections
the reader is familiarized with the concepts of the prior and the posterior
distribution which form the basis of Bayesian theory. In the following sections
we present in brief the main inferential tools most commonly used in Bayesian
analysis.

The subject of chapter 3 is Markov Chain Monte Carlo. The concepts of
Monte Carlo integration and Markov chains are succinctly described; a thorough
theoretical investigation of these fields is not provided since it would exceed the
context of this thesis. Instead, attention is drawn to the basic Monte Carlo
Markov Chain algorithms; the Metropolis-Hastings algorithm, the Gibbs sampler
and the Metropolis within Gibbs algorithm. Theoretical aspects of the

aforementioned algorithms are examined and their use is described in detail. We



then implement these algorithms in two regression problems, the first is a normal
linear regression example and the second a logistic regression example.

In chapter 4 a review of the simulation-based marginal likelihood
estimation methods is given. Each method is described in brief and practical
implementation issues are discussed.

Implementation and evaluation of the methods is the main topic of chapter
5. The first data set presented in chapter 2 is re-examined by taking into account
four competing regression models. Metropolis-Hastings and Gibbs sampling
simulations are utilized in order to acquire posterior samples and posterior
summaries for each model. The competing models are then compared based on
the true marginal likelihood values. Finally, we present the results obtained from
each estimation method and compare the estimates with the true values of the
marginal likelihoods, the posterior probabilities and the Bayes Factors.

Conclusions are summarized in chapter 6. Each method is evaluated
according to the corresponding results and from the overall implementation
experience. Further discussion regarding alternative model selection approaches

is also provided.

All computations and plots presented in this thesis were carried out in the R

programming language, version 2.5.



Chapter 2: The Bayes Approach

2.1 Introduction

Bayesian theory is based on the original 1763 paper of Rev. Thomas Bayes, an
English minister and mathematician. In this paper, inference for the parameters
of a Binomial distribution is achieved by conditioning on the data which are also
Binomial. The area generated some interest by Gauss, Laplace and other
mathematicians of the time. In 1774 Laplace presented the general form of the
Bayes theorem.

Unfortunately, most of the early 20™ century statisticians ignored this
field of work. In 1939, a physicist named Harold Jeffreys reintroduced Laplace’s
work. Jeffreys, along with the econometrician Arthur Bowley, argued on behalf
of Bayesian ideas during this period. Bayesian methods achieved recognition
only after 1950, when many statistical researchers began to advocate this
methods as remedies for certain deficiencies of the classical or frequentistic
approach, such as the interpretation of the classical confidence interval in any
single data experiment or the violation of the Likelihood Principle (Carlin and
Louis, 1996, p.2-5).

The main difference between the classical approach and the Bayesian
approach is rather philosophical in nature. The classical approach assumes a
probability distribution (likelihood) for the data and considers the unknown
parameters as fixed. The frequentistic uncertainty originates from the repetition
of samples, so the evaluation procedures are based on repeated sampling,
imagining an infinite replication of the same inferential problem for fixed values
of the unknown parameters. The Bayesian approach considers the unknown
parameters as random variables, so it assumes a sampling distribution
(likelihood) along with a prior distribution for the parameters. The Bayesian
uncertainty comes from the parameters, so the evaluation procedure is based on
an infinite sampling experiment of parameters drawn from the distribution which

is conditional on the data that is, the parameters posterior distribution. In



general, a frequentist conditions on the parameters and then replicates over the
data, while a Bayesian conditions on the data and then replicates over the

parameters (Carlin and Louis, 1996, p.6).

2.2 The Bayes’ Theorem

The Bayesian approach specifies for observed data y:(yl,yz,...,yn) a sampling
distribution p(y|0), that is the likelihood of the data given the parameter vector
0=(6,.6,....0,). The parameter vector 0 is also considered as a random quantity

having a prior distribution p(0). This is the distribution of 0 before the data are
observed. The joint distribution of y and @ can be expressed as a product of these

two densities

p(y,0)=p(y|0)p(0).

From the basic properties of conditional probabilities we obtain the distribution
of @ given the data y

r(y.0) _ p(y[6)p(6)

0lv)=
POLy) p(y) ry)

b

where p(y) is the marginal likelihood of the data given by p(y)=2p(y|9)p(9)
0
if 0 is discrete or byp(y):jp(y|9)p(9)d9 if 0 is continuous. This formula is
0

known as the Bayes’ Theorem and p(0|y) denotes the posterior distribution of

0, that is the distribution of 0 after observing the data.

All Bayesian inference about @ is based on the posterior distribution
which contains information from both the experimental data and the prior beliefs
about 0. It should be noted that the prior and posterior distributions are always
relative to the observations considered at a given moment (Gamerman and Lopes,

2006, p.44); after observing y and obtaining the posterior, new observations



new

y*", related to O through an eventually different likelihood function, could
become available. Then, the posterior of y can be considered as the prior for y™"

and we can obtain the posterior of y™" by a new application of the Bayes’

theorem.

The marginal likelihood provides the expected distribution of y as
p(y)=E[p(y\9)] and the expectation is taken with respect to the prior

distribution of 0. It is also referred to as the integrated likelihood or as the prior
predictive distribution. Marginal likelihood probabilities are of great importance,
since they are required for the calculation of Bayes Factors (see section 2.7).
According to Kass and Raftery (1995), p(y) can be interpreted as the predictive
probability of the data; that is, the probability of seeing the data that were
actually observed, calculated before any data were available.

Since, p(y) does not actually depend on O, we can acquire the

unnormalized posterior distribution from

pO|y) < p(y[0)p(0).

The above expression is often useful in Bayesian statistics, since it can

significantly simplify the calculation of the posterior distribution.
2.3 Prior distribution

Determination of the prior distribution has vital importance in Bayesian
statistics. Prior distributions are usually specified from information accumulated
from past studies or from the opinions of subject area experts. When there is
little or no available information about the parameters in question, then vague or

non-informative distributions are adopted (Carlin and Louis, 1996, p.27-37).



2.3.1 Elicited Priors

A rational approach in specifying p(0) is to initially distinguish the values of 0

which are deemed as ‘possible to occur’ and then to assign point masses which
sum up to one in a way that reflects the prior beliefs. When 0 is continuous
probability masses are assigned in intervals instead of points, resulting in a
histogram prior for 0. Of course, this approach can be time consuming especially
when 0 is multivariate. A simpler solution is to assume that the prior density

belongs to a parametric distributional family p(@|n), choosing m so that the

resulting distribution expresses prior beliefs as nearly as possible.

2.3.2 Conjugate Priors

When the prior is a known distribution of the form p(0]|n), then some choices of
p(0]n) are more convenient for the calculation of the posterior distribution than

others. More specifically, we may choose a member of the distributional family

which is conjugate to the likelihood p(y|0). This results to a posterior

distribution which belongs to the same distributional family with the prior.
Obviously, the use of conjugate priors simplifies considerably the computation
of the posterior.

An important result presented by Morris (1983) is that distributions
belonging to the exponential family always have a conjugate prior. In most of the
cases, the sampling distribution is drawn from the exponential family therefore
conjugate priors are broadly used. Additional information on the conjugate
property of distributions belonging to the exponential family can be found in
Consonni and Veronese (1992) and Gutierrez-Pena and Smith (1995).

When the use of a single conjugate prior is not adequate in terms of
expressing prior beliefs accurately enough, then a mixture of conjugate prior
distributions may be used in order to improve the accuracy. Mixtures of

conjugate priors are more flexible and still simplify calculations. As shown in



Dalal and Hall (1983) a mixture of conjugate priors leads to a mixture of

posteriors.
2.3.3 Non-informative Priors

In many cases there is no reliable prior information concerning 0 or objective
inference based solely on the data is desired. In these cases the prior density p(0)
should contain no information about 0 in the sense that no value of 6 should be
favored over another. Such priors are called vague or non-informative.

When the parameter space is discrete and finite, that is

0O = {01,02,...,49"} then the distribution

p(0)=L, i=1,2,..m,
n

is obviously non-informative since all values of € are equally probable.
When the parameter space is continuous and bounded, say 80O =[a,b],
with —wo<a<b<owo then a non-informative prior is given by the uniform

distribution

p(@)z%, a<f<b.

In the case of an unbounded parameter space like @ =(—o0,0) the appropriate
uniform prior has the form

p@)=c, ¢>0.
This distribution is improper, since J.p(ﬁ)d9=oo. Hence its use as a prior seems

inappropriate. But if the integral of the likelihood with respect to € is finite then
the resulting posterior distribution is proper, so inference is still feasible.
One drawback of the uniform distribution is that it is not invariant to

reparametrization. This means that p(€) may be non-informative for &, but p(y)
may be informative to y, where y=g(f). A solution to this is the use of the

Jeffreys’ non-informative prior which is invariant to transformations (Jeffreys,

1961). Jeffreys’ prior has the form



12

p®)=]10)",

where 7(0) is the expected Fisher information matrix, having ij — element

62
]ij (9) = _EX\@ {W@gf IOg p(X | 0)} .

Calculating /(@) can be cumbersome in high dimensional problems, so the

common approach is to obtain a Jeffreys’ prior for each parameter individually
and then form the joint prior from the product of the individual priors. In
addition, Jeffreys’ prior seems to face difficulties in multi-parameter problems
where only a subset or one or more parametric functions of the parameter vector
0 are of inferential interest and the remaining are nuisance parameters.
Information over the use of Jeffreys’ prior for Generalized Linear Models (GLM)
can be found in Ibrahim and Laud (1991).

Bernando (1979) introduced the so-called reference prior approach for
deriving non-informative priors in multiparameter cases by splitting the
parameter vector into parameters of interest and nuisance parameters.
Information over reference priors can be found in the paper of Berger and
Bernando (1992) who extended further the idea of Bernando (1979). Alternative
proposals in constructing reference priors were presented by Ghosh and
Mukerjee (1992); comparison of different constructing approaches for reference
priors can be found in the papers of Datta and Ghosh (1995, 1996). Additional
information regarding the use and selection of non-informative priors is provided

by Kass and Wasserman (1996).
2.4 Summarizing posterior information

After obtaining the posterior, it is meaningful to summarize the information
provided by it. For this, we rely mainly in certain location and dispersion
measures. In addition, credible sets or credible intervals of the parametric space

are often presented.



2.4.1 Location and dispersion measures

Location and dispersion measures provide an image of the possible central values
and of the variability of the posterior distribution, respectively.

The common choices for the location measures are the mean, the mode
and the median of the posterior distribution. These measures correspond
respectively to the expected value of 0, the most likely value of 0 and the value
of 0 which divides the parametric space in two equal probability parts
(Gamerman and Lopes, 2006, p.47). When the posterior is symmetric the mean
and median will be identical; for symmetric and unimodal posterior distributions
all three measures will coincide. In the case of an asymmetric posterior the
median is often preferred since it is intermediate to the mode and the mean
(Carlin and Louis, 1996, p.39). Most often, the mode will be numerically harder
to find, especially when 0 is multivariate. As a result, the posterior mode is
usually approximated through the use of maximization algorithms.

The main dispersion measures are the posterior variance, the standard
deviation, the precision, the interquartile range and the curvature at the posterior
mode. When 0 is multivariate the variance is given by the posterior covariance
matrix; in this case the standard deviation is the vector of square roots of the
diagonal elements of the covariance matrix. Posterior precision is given by the
inverse of the covariance matrix, while the curvature at the mode is given by the

matrix of the second derivatives of —log p(0|y) evaluated at the posterior mode

(Gamerman and Lopes, 2006, p.47).
2.4.2 Credible sets

The Bayesian analogue of a frequentist confidence interval is called a credible

set. According to Carlin and Louis (1996, p.42) a 100x(1—a)% credible set for

00 is a subset C < ® such that

1-a<PKCl|y)=[p®ly)do,



where integration is replaced by summation over discrete components of 0. In
contrast to the classical confidence interval interpretation this definition enables
direct probability statements about the likelihood of @ falling in C. The

interpretation of this credible set is

“The probability that 0 lies in C given the observed data is at least (1—a)”.

When the posterior is asymmetric or multimodal then it would be preferable to
obtain the Highest Posterior Density (HPD) credible set, which groups together
the “most likely” values of @ and hence is narrower than the equal tail credible
set. Yet, obtaining the HPD credible set is not straightforward, since it requires
solving iteratively a non-linear equation. Wright (1986) presented an iterative
method for univariate cases; Ghosh and Mukerjee (1995) and Hyndman (1996)

introduced iterative solutions for multivariate cases.
2.5 Predictive distribution

An important issue in statistical analysis is the ability to make inference about
future observations. In Bayesian statistics this comes naturally from the use of

the predictive distribution.

Suppose that y . is a future observation independent of y:(yl,yz,...,yn)

conditional on 0. Then the distribution of y , |y is given by

PG |) = [ (3,50 y)d0 =

PG |) = [ P30 10,)p(B] y)d0 <

PG |¥) = P(3,.,10)p(8] y)d0
since y,,, and y are conditionally independent.

The predictive distribution provides information for new observations
given the likelihood, the prior and the data observed. It is also referred to as the
posterior predictive distribution, in contrast to the marginal likelihood (the prior

predictive distribution), since it is the expected distribution of a future
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observation y,,, as p(y,,|y)=E[p(»,,10)] and the expectation is taken now

with respect to the posterior distribution of 0.

The predictive distribution forms the basis of the predictive inference
within the Bayesian paradigm. According to the predictive approach, inference
about parameters is not possible since they are not observed. In contrast, the
predictive distribution is defined in terms of observable values of the dependent
variable and seems to be the natural instrument for decisions concerning model
adequacy and model selection.

Several model selection methods and criteria have been generated by this
approach; see Geisser and Eddy (1979), Laud and Ibrahim (1994), Greenberg and
Parks (1997) and Gelfand and Ghosh (1998). These methods can be viewed as
alternative options to Bayes Factors which are the formal Bayesian approach

regarding the issue of model selection; see section 2.7.
2.6 Bayesian p-values

Bayesian p-values or posterior predictive p-values are based on posterior
predictive checks. Posterior predictive checks are used to evaluate the fit of a
model and are in fact generalizations of the classical tests in that they average

over the posterior distribution rather than fixing the unknown parameter at some
point 0 (Gelman et al., 1993). To evaluate the fit of a model we compare the
observed data y to the predictive or replicated data y drawn from the
predictive distribution. The discrepancy between observed and expected data is
measured through test quantities T(y,0) which can be functions of the unknown
parameters as well as the data. When the distribution of the test quantity is free
of 0, then T(y,0)=T7(y) is a pivotal quantity and the Bayesian p-value concurs
with the frequentist p-value (Gelman et al., 1993).

The Bayesian p-value is defined by Rubin (1984) as the probability that
the replicated data could be more extreme than the observed data, as measured by

the test quantity
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Bayes p-value = Pr(T(y'”,0) 2 T(y.0)|y),

where the probability is defined over the posterior distribution of 0 and the

predictive distribution of y'?, thus
Bayes pvalue = [ [1 o7, ) PO 10)P(O]y)d0dy™,

where I( | is the indicator function given by

T(y"*.,0)=T(y.0)

J L T(y™,0)2T(y,0)
(ro”0=T00) 0, T(y™,8)<T(y,0).

It should be noted that Bayesian p-values serve only as measures of discrepancy
between the assumed model and the observed data, providing information
concerning model adequacy, and they should not be compared across models
(Carlin and Louis, 1996, p.57).

Since Bayesian p-values are in fact measures of discrepancies, there are
no general rules when choosing a test quantity. According to Gelman et al.
(1993) the choice of test quantities should reflect our inferential interests; a test
quantity can be any function of the data alone or of the data along with the
unknown parameters which can possibly reveal discrepancies between observed
and replicated data. Moreover, we can evaluate more than one discrepancy
measures and judge the fit of a specific model from different perspectives.
Nevertheless, general goodness-of-fit discrepancy measures are useful for
routine checks of the overall fitness. Such a measure recommended by Gelman et

al. (1993) is the chi-square discrepancy quantity given by

<~ —E(,10)’
O =2 e

where the summation is over the sample observations.
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A model is considered suspect if the Bayesian p-value for a meaningful
test quantity is near to 0 or 1. According to Gelman et al. (1995, p.173) major
failures of a model, corresponding to tail area probabilities less than 0.01 or
more than 0.99, can be addressed by expanding the model in an appropriate way.
Lesser failures might also suggest model improvement or might be ignored if the
main inferences are not affected.

For more information over Bayesian p-values see Gelman et al. (1993)

with the associated comments and Meng (1994).
2.7 Posterior Odds and Bayes Factors

In the Bayesian framework hypothesis testing is strongly associated with model
selection. There is no constrain to the number of hypotheses that may be

simultaneously considered, so we usually switch notation from “hypotheses” H,
to “models” M,, i=1,2,...,k (Carlin and Louis, 1996, p.47). Model selection and

hypothesis testing are based on posterior probabilities, posterior odds and Bayes
factors. Bayesian methods provide flexibility in hypothesis testing; according to
Kass and Raftery (1995) we can evaluate evidence in favor of the null
hypothesis, compare non-nested models, draw inferences by taking into account
model uncertainty and determine which competing model provides better
predictive results.

Consider two competing models M, and M,, each with a corresponding
parameter vector 0, and 0,. These models specify the distribution of the data
p(yIM)(=p(y|0,,M,)), with i=0,1. In addition, each model M, has a prior
probability p(M,), with i=0,1 and p(M,)+ p(M,)=1. From Bayes theorem the

posterior probability of a model is given by

p(y| M) p(M,)
p(Y| M) p(M,)+ p(y| M,) p(M,)’

p(Mi |Y):

for i=0,1.
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The posterior odds PO,, of model M, versus model M, is given by

o - PM|Y) _ p(y|M,) p(M,)
" pM,ly) p(yIM,) p(M,)

. M) .
The quantity BF, :M is called Bayes factor of model M versus model M,
p(y|M,)
. M
while % corresponds to the prior odds of model M versus model M. Thus, we
pum,
have that

Posterior Odds = Bayes Factor x Prior Odds.

The distribution p(y|M,) is the marginal likelihood of the data, discussed in

section 2.2, conditional on the model. By taking into account the dependence

from the model, p(y|M,) is given by

p(y | M) = p(y|0,,M,)p(6, | M,)d0,.
ei

The above model comparison can be extended to more than two competing

models. Suppose we have K +1 competing models M ,M,M,,...,M, . Each model

M .M,,.,M, 1s compared in turn with M, , yielding Bayes factors

BF,,,BF,,,...,BF,. Then the posterior probability of the model M,, for i=0,....K,
is given by
a.BF,
p(M,|y)=—5"—""—.
zarBE’O
r=I1

The term a, =p(M,)/p(M,), with r=0,.,K, is the prior odds of the

corresponding model M, against model M, with BF,,=aqa,=1.
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When trying to make inference about a quantity of interest which is well
defined for every model we can deal with model uncertainty by using the
posterior model probabilities as weights (Kass and Raftery, 1995). According to
the authors this technique, known as model averaging, yields consistently and
substantially better predictions than the methods based on individual models; for
more information on model averaging see Hoeting et al. (1999) and Raftery et al.
(1997).

Interpretations of Bayes factors provided by Kass and Raftery (1995) are
given in Tables 2.1 and 2.2. According to the authors the categories presented in

Table 2.2 seem to furnish appropriate guidelines for most of the cases.

log,, BF;, BF, Evidence Against M
0to 0.5 1to3.2 Not worth than a bare mention
0.5to01 3.2t0 10 Substantial
lto2 10 to 100 Strong
Greater than 2 Greater than 100 Decisive

Table 2.1 Interpretations for Bayes factors and for the common logarithm of Bayes factors.

2In BF,, BF, Evidence Against M|
0to2 1to3 Not worth than a bare mention
2to 6 3to 20 Positive
6to 10 20 to 150 Strong
Greater than 10 Greater than 150 Very Strong

Table 2.2 Interpretations for Bayes factors and for twice the natural logarithm of Bayes factors.

2.8 Information Criteria

An alternative and often easier solution when comparing different models is

through the use of information criteria. The most popular criteria are the
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Bayesian version of Akaike’s Information Criterion (AIC) (Akaike, 1974), the
Bayes Information Criterion (BIC) (Schwarz, 1978) also known as the Schwarz
Criterion and the most recent Deviance Information Criterion (DIC)
(Spiegelhalter et al., 2002). All of these information criteria are based on the

evaluation of the deviance. The deviance of model m 1is defined as

D(em) = _210gp(y | ﬂm) *
Akaike’s information criterion (AIC, Akaike, 1974) is defined as

AIC(m)=D(0,)+2d,

where D(ém) is the minimum value of the deviance of model m and d, is the

number of estimated parameters.
The Bayesian information criterion (BIC, Schwarz, 1978) is estimated by
BIC, = D(0,,)+d, log(n),
where n is the number of observations. The BIC is also used as a rough
approximation to the logarithm of the Bayes factor; see Kass and Raftery (1995).
Both AIC and BIC penalize for the number of parameters and in general tend to

choose the less complex models. According to Brooks (2002) Bayesian variations

of AIC and BIC based on posterior summaries of the deviance are given by

AIC(m); =D(®,)+2d,, BIC(m), =D(®,)+d, log(n)

and
AIC(m)

= D(®,)+2d,, BIC(m). . =D(0,)+d, log(n).

D(0) D(0)

The term D(8,) is the posterior expectation of the deviance which actually

summarizes the fit of model m, while the term D(ﬁm) is the deviance of model m
evaluated at the posterior mean.
Recently, Spiegelhalter et al. (2002) introduced the Deviance information

criterion (DIC) which is calculated as

DIC(m)=D(®,)~ p,,
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where p, represents the “effective” number of parameters. The above expression

of DIC is equivalent to

DIC(m)=2D(8,)—D(9,.).

This criterion is useful in locating the best model within a group of models; it

does not indicate whether a model is correct or not (Lopes, 2002).
2.9 Conclusion

In this chapter we tried to summarize the main aspects of Bayesian theory. As we
have seen, Bayesian theory is rather autonomous in nature since it is strictly
based on basic properties of conditional probabilities. As such it is relatively
easy to understand. In fact, it requires only comprehension of three basic
distributions; the prior distribution, the likelihood and the posterior distribution.
All subsequent aspects of Bayesian theory are products of the relationships
between these distributions.

We also presented brief descriptions of common inferential tools used in
Bayesian data analysis. In particular, we discussed the use of location and
dispersion measures along with the use of credible sets in order to summarize
posterior information. The purpose of Bayesian p-values based on posterior
predictive checks was examined and finally we showed how Bayes factors,
posterior odds and information criteria can be utilized in terms of model
selection.

In the following chapter we focus on the basic Markov Chain Monte Carlo
algorithms. We then implement the algorithms in a linear regression example and

a logistic regression example.
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Chapter 3: Markov Chain Monte Carlo

3.1 Introduction

Bayesian inference is strictly based on the posterior distribution. Having at hand
the posterior distribution, we can easily calculate any summary of interest or
even graphically present the posterior for inferential purposes. As we have seen,
the computation of the posterior distribution comes down to the evaluation of
complex, often high dimensional, integrals. In many circumstances this
integration cannot be derived analytically. In addition, posterior summarization
often involves computing moments or percentiles, which leads to the evaluation
of more integrals. Due to the above problems, Bayesian statistics were not
broadly used for many years.

First attempts to use the Bayesian approach relied mainly on conjugate
prior distributions. The use of a conjugate to the likelihood prior distribution is
an easy and acceptable solution for some cases. In particular, priors from the
beta or the gamma distributions have proven to be quite flexible in expressing
prior beliefs, since they can produce various forms of densities. The use of
Generalized Linear Models (GLM) was also available due to the fact that
distributions which belong to the exponential family always have a conjugate
prior (Morris, 1983). So, many common problems could be solved with the use
of appropriate conjugate distributions.

As large sample theory became more popular, it was also implemented in
Bayesian statistics. Asymptotic methods were used in order to obtain analytic
approximations of the posterior distribution. The simplest method is to use a
normal approximation to the posterior. This approximation is essentially a
Bayesian version of the central limit theorem. A more complicated asymptotic
method is the Laplace approximation which provides more accurate posterior
approximations.

The recent development of simulation methods and the evolution of

computer technology provided statisticians with new computational orientated
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methods. Concerning Bayesians, it was no longer necessary to use a conjugate
prior in order to calculate the posterior distribution. Moreover, asymptotic
approximations were not the only alternative now; the ability to generate random
draws from the posterior gave the researches the option to calculate directly any
summary of interest, even get an estimate of the full joint posterior density. This

approach is generally known as Monte Carlo integration or simply Monte Carlo.
3.2 Asymptotic methods

Large sample or asymptotic theory indicates that if the posterior distribution is
unimodal and roughly symmetric, then the posterior distribution can be
approximated by a normal distribution around its mode as sample size increases.

That is, for n —> x©

po1 ) ~N(8.[(5)]"].

where 0 is the posterior mode of @ and J(G) is the observed information matrix

given by

2

J(0)--2

Y log p(0] ).

This approximation results from a Taylor expansion of logp(0|y) at 0=0
(Gamerman and Lopes, 2006, p.83). Usually a maximization algorithm like the
Newton-Raphson or the Expectation-Maximization (EM) algorithm is being used
in order to locate the posterior mode. Then we can adopt the normal
approximation or even a Student’s t approximation, if sample size is not
adequately large (Gelman et al., 1995, p. 275). Of course, the question how large
should a sample be in order to use the normal approximation is not
straightforward to answer. Nevertheless, the approximation is quite accurate if 0
is a low dimensional vector. This means that the method works better for

conditional and marginal distributions rather than for full joint distributions. If

the dimension of @ is high then © can be partitioned into (9,,0,,...,0,)
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subvectors and we can approximate all or some of the lower dimension

conditional densities p(0,|0_,,y), where 0_,=(6,,0,,.,0,,.0,,..0,) for

-
i=1,2,..k. On the other hand, a marginal distribution of one component of 0, is
actually an average over all other components stretching this distribution closer
to normality (Gelman et al., 1995, p.97).

Another, more complex, approach is the Laplace approximation. This
method produces in general better point estimates if the posterior density is
significantly far from the normal one. The Laplace approximation is subjected to
the same limitations with the normal approximation, regarding the issues of
sample size and dimensionality; for details on the Laplace approximation see
Tierney and Kadane (1986), Gamerman and Lopes (2006, p. 88-92) and Carlin
and Louis (1996, p.146).

3.3 Monte Carlo Integration

The basic idea of Monte Carlo (MC) integration is attractively simple; suppose y
is a random variable, from which we can generate random draws, that is y ~ p(y).
Then for every quantity of interest 75E[g(y)]=.fg(y)p(y)dy which cannot be

iid
calculated analytically, we can draw y,,7,,....,vy ~p(¥) (N is now a simulated

sample) and calculate

y= g).

M=

L
N

The estimate 7 is a strongly consistent estimate of y in that
y—>y as N > o,
this means that 7 converges to y with probability 1 as N — 0. In addition from

the Central Limit Theorem we have that

INLZL 5 N(@O,1) as N > .
O
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Strong consistency follows directly from the Strong Law of Large Numbers. One
can immediately see that MC estimates improve their precision at rate O(N*m)
as the simulated sample size is increased. Unlike asymptotic results, the value of

N is under the control of the researcher and can be increased by drawing more

values from p(-). For more information see Gamerman and Lopes (2006, p.96).

Another contrast with asymptotic methods is that we can evaluate the

accuracy of y for any fixed value of N. Since y is itself a sample mean of

2
independent observations, we have that Var(ﬁ):%, where o? =Var[g(y)]. But

Var[g(y)] can be estimated by the sample variance of the g(y,) values, where

i=12,...,N. Thus, a standard error estimate for y is given by

S~e(?)f\/N(N 1)2 g)-7T,

i=l1
(Carlin and Louis, 1996, p.150). This quantity is called Monte Carlo error. By
this term we refer to the standard error of the estimated due to the fact that we
use a simulated sample. Monitoring the Monte Carlo error is essential; this
quantity should be low in order to evaluate the parameter of interest with
increased precision.

There are various Monte Carlo methods, such as the Inverse CDF method,
Importance Sampling, Rejection Sampling and Weighted Bootstrap. The first
method requires knowledge of the density or cumulative density functions, the
latter three are based on the existence of an approximating density. An overview
of these methods will not be presented here, since the main purpose of this
chapter is to present the Markov Chain Monte Carlo (MCMC) methods. More
information about these methods can be found in Carlin and Louis (1996, p.153-
158) and Gamerman and Lopes (2006, p.25-34).

The main characteristic of these simulation methods is that all of them are
non-iterative. Therefore, we generate a sample of size N one time and then stop.
Another attribute is that they do not perform well for high dimensional problems.

In such cases it is difficult to identify an approximating density. Even if an
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approximating density is found it rarely leads to satisfactory results. Sometimes,
these methods are used in combination with some asymptotic approximation in

order to acquire initial values for the MCMC simulation.
3.4 Markov Chain Monte Carlo Algorithms

MCMC methods have recently become very popular in Bayesian statistics. They
owe their popularity to their ability to accurately approximate high dimensional
integrals through simulation. The basic idea of MCMC simulation is to formulate
a Markov chain from a specific starting point. This chain converges to a

stationary distribution due to the properties of Markov chains.

3.4.1 Markov chains

A Markov chain is a stochastic process {91,92,...,6’} with two important

properties:

1. The distribution of 0 in period 7+, given the 0 for all preceding periods
depends only on the 0 in the latest time period ¢. That is,

f(0t+l | Ot,etfl’“"el) — f(et+l | Ot)
Alternatively one could say that given the present state of a Markov chain, past

and future states are independent.

2. If a Markov chain is irreducible, aperiodic and positive recurrent, then as ¢

tends to infinity (# — o) the distribution of 0" tends to a stationary distribution.

The stationary distribution is often called the equilibrium distribution of the
Markov chain. Irreducible and aperiodic, mean that there is positive probability
moving from any state to any other state and that there are no absorbing states

from which the chain cannot escape (Carlin and Louis, 1996, p.75). Positive
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recurrent, means that the probability of returning to the state from which we
started equals to 1 and that the expected time of return is finite (Gamerman and
Lopes, 2006, p.118). Further details for the properties of Markov chains and
examples can be found in Gamerman and Lopes (2006, p,113-136 ) and Gilks et
al. (1996, p.59-71).

Within the Bayesian framework, we wish to generate observations

{91,92,...,6’} of the Markov chain, as a dependent sample from the posterior

distribution p(ﬂ | y). In order to achieve that, the equilibrium distribution of the

simulated Markov chain must actually concur to the posterior distribution. Once

this is accomplished, we must discard an initial part of the simulated

observations from 0'to 0° and keep {9"’”,0“‘”,...,@}. The discarded part is the so

called “burn-in” period, that is, the period the Markov chain has not yet
converged to its equilibrium distribution. Finally, it is essential to use some kind
of a diagnostic tool, in order to check whether or not our Markov chain has
reached its equilibrium distribution.

The two basic MCMC methods are the Metropolis-Hastings algorithm and
the Gibbs Sampler. There is also the Metropolis within Gibbs algorithm which is

in fact a combination of the two previous algorithms mentioned.
3.4.2 The Metropolis and Metropolis-Hastings Algorithms

The basic Metropolis algorithm was introduced by Metropolis et al. (1953), later
Hastings (1970) presented a generalized version of that algorithm, the
Metropolis-Hastings algorithm.

The Metropolis-Hastings (M-H) algorithm is based on the existence of a

proposal distribution (also called ‘candidate’ or ‘jumping’ distribution)
q,(07',0") which is actually part of a certain transition kernel (the Metropolis

algorithm 1is restricted in symmetric proposal distributions). According to
Markov chain theory, iterations from the transition kernel converge to the

equilibrium distribution when the number of iterations is large; for information
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on the transition kernel see Chib and Greenberg (1995), Brooks (1998) and Gilks
et al. (1996, p.7).

Our aim is to sample from p(0|y), the target distribution which we may
know only up to a constant multiple. Given any states 0°,0", ¢,(0",0°) is actually

the probability of transition from state 0" to state @“. If the proposal distribution

satisfies the relation p(0°|y)q,(0°,0%)= p(0°|y)q,(0°,0") for all states 0 and 0”,
then iterations from ¢q, for #—o0 converge to the target distribution p(9|y).

This sufficient condition is called the reversibility condition, and can be
intuitively explained as ‘the unconditional probability of moving from 6° to 0°

when 0" is generated by p(-|y) equals the unconditional probability of moving

from 0° to 8" when 0“ is generated by p(-|y)’ (Chib and Greenberg, 1995).
This condition is not always satisfied; therefore the Metropolis-Hastings
algorithm introduces a probability of transition or move a,, as part of the
transition kernel. For example, if the unconditional probability of moving from
0" to 0° is greater than the unconditional probability of moving from 0° to 0’

that is p(0°|y)q,(0°,0°) > p(0“|y)q,(0°,0"), then this means that transitions from

0’ to 0° are made too often while transitions from 0° to ©° are made rarely

(Chib and Greenberg, 1995). Therefore, the transition probability a,, (0*,0")

from 0° to @° is set equal to 1 in order to have more transitions from 0° to 0,
and the transition probability a,, (0°,0°) from 0" to 0° must then balance the

two sides of the reversibility condition. That is,

p(8"y)q,(8°,8")a,,, (8°,6") = p(8” |y)q,(6°,0")a,,, (6°,0") =
p(0”[y)q,(8",0")a,, (6°,0") = p(8" |y)q,(6",0") <
(0= 2O 192070
P07 y)q,(0°,0%)
Thus, balance is obtained between the two sides of the reversibility condition.
For more details see Chib and Greenberg (1995), Brooks (1998), Besag (2001)
and Gilks et al. (1996).
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In a more general notation, for any states x,y the transition probability

from state x to state y is given by

p(3)q(y,x) 1} |

G (5:9) = mh{ P()q(x.y)

This implies that knowledge of the normalizing constant of the target distribution

is not needed, since it cancels out in the ratio

p(»)gq(y,x) _
p(x)q(x,y)

In the case of the Metropolis algorithm we have that g(x,y)=¢q(y,x), since the

proposal distribution is symmetric, therefore the transition probability reduces to

a,,(x,y)=min {M,l}.
p(x)

A relatively simple proof that the Metropolis algorithm sequence
{91,92,...,6’} converges to the target distribution is provided by Gelman et al.
(1995, p.325). First, it is shown that the simulated sequence is a Markov chain
that converges to a unique stationary distribution. The proof of this is trivial,
since the selection of the proposal ¢,(0'|0"") ensures the properties of
irreducibility, aperiodicity and positive recurrency, properties that hold for most

random walks. Then, it is shown that the stationary distribution equals the target

distribution.

Consider two states 0°,0" generated from p(0'”' |y)with p(0" |y)> p(0°|y), then

the unconditional probability of a transition from 6“ to 8 is

PO =0°0"=0"y)=p(0°|y)q,(0°,0")a,, (0°,0")
= p(0” | y)q,(6°,0"),

because the probability of move a,,(8°,0”)=1, since

(0’ |y) 51
p(0°1y)

The unconditional probability of a transition from 0" to 0“ is

p(0°|y)= p(0°|y)=
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p(0"' =0",0'=0"|y)=p(0" |y)q,(0",0")a, (0,0

— (0" eb’ea p(0°|y)
pO0°y)g,( )—p(9b|y)

= p(0°|y)q,(0°,0).
This two probabilities are equal since ¢, is symmetric (g, (0",0)=¢,(0°,0")).
This means that the joint distribution of 0’ and "' is symmetric and therefore 0’

and 0" have the same marginal distributions. So, j p(07,0)d0" = p(0' |y)

o
is also the stationary distribution of the Markov chain. The same proof can be
also utilized for the Metropolis-Hastings algorithm by simply replacing the
probability of transition.

To simulate a Metropolis sample of size N we use the following steps:
1. Set initial values 0°.

2. For t=12,..,.N:
a. Generate 0" from the proposal density ¢,(0"",0).

pO®’ly) 1].

b. Calculate q,, =min( >
pO~y)

, 0" , with probability a,,
c. Set 0 =
0", with probability 1-a,,.

Likewise, to simulate a Metropolis-Hastings sample of size N we use the

following steps:
1. Set initial values 0°.
2. For t=12,...,.N:
a. Generate 0" from the proposal density ¢,(0"",0).

PO [¥)q,(07.07) j
PO y)g, (07,07

b. Calculate q,, :min(

|0, with probability a,,
c. Set 0 =
0", with probability 1-a,,,.
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Step (c) of each algorithm requires the generation of a uniform random number u

from U(0,1). If u<a(0",0") we set 0' =0", else we set 8’ =0"".

Regarding the issue of proposal distribution selection, according to Gelman et al.

(1995, p.326) a good jumping density possesses the following properties:

e It is easy to sample fromgq,(0""',0) for any 0.
e The probability of transition a(ﬁ’*l,9*>, can be easily calculated.

e FEach move or jump goes a reasonable distance in the parameter space.

e The jumps are not rejected too frequently.

The most commonly used choice is the random walk chain, in which the
candidate @ is drawn according to the process 0, =0 +z, . In this case the
candidate value equals the present value plus noise. A usual choice for a random
walk chain is a multivariate normal distribution, " ~ N(8,X) or a multivariate ¢
distribution, @ ~7,(0',X). These densities have the advantage of being
symmetric, so utilizing them simplifies calculations. The use of a random walk
chain requires only the determination of the covariance matrix X.

Another candidate-generating family of distributions, arises from a

simpler process, that is 0, =z,,,. In this case the candidate value is independent
of the current value and z*(z 9*) has a multivariate density, which can again, be

a multivariate normal or ¢ distribution, 0" ~ N(u,X) or 0" ~¢,(n,X) respectively.

This is called an independence chain and requires both location and scale
parameters to be determined. For a more detailed description and other
approaches on proposal densities see Chib and Greenberg (1995) and Gamerman
and Lopes (2006, p.198-205).

The issue of determining the scale of the proposal distribution is one that
has not yet been fully explored. This issue is of vital importance, regarding the

speed of convergence. If the scale is set very large then a lot of candidate values
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will be far away from the high density region of the posterior parameter space,
and thus the acceptance ratio will be very low. On the other hand, given that the
starting values are not extreme in regard to posterior parameter space, a very
small scale will result in a higher acceptance ratio but still we will have to face
the problem of undersampled low density regions, since the chain will need more
time to reach those regions (Chib and Greenberg, 1995; Carlin and Louis, 1996).
One approach suggested, is to run an initial chain, obtain a crude estimate
¥ and use this estimate as the scale of the proposal distribution (Carlin and

Louis, 1996). Gelman et al. (1995, p.334) proposed for problems with normal

target and normal random walk proposal densities, (2.42/d)i to be the most

efficient scale, with d being the number of dimensions and £ some estimate of
Y. This rule results to acceptance ratios around 0.45 and 0.25, respectively for
one-dimensional and multi-dimensional problems which are up to six
dimensions. In absence of general rules, the selection of scale is in most of the
cases a calibrating process; we increase or decrease the scale in order to achieve
an acceptance ratio usually within the rate of 0.3-0.5 for univariate distributions

(Gilks et al., 1996).
3.4.3 The Gibbs Sampler

The Gibbs sampler algorithm was introduced by Geman and Geman (1984). This
algorithm is actually a special case of the Metropolis-Hastings algorithm but it is
often presented separately due to its popularity and easy-to-use nature.

In Gibbs sampling each component of the vector 0 is drawn separately.
Therefore, when 0 is of dimensionality d, we have d steps in every iteration. The

components of 0 are actually generated from their full conditional distribution,

this means that component ¢, 1is sampled from p(&”ﬁijﬂ,y), with

0, =(6.6,...6..0.,

S J JHr

.,9;:]1,6’;‘1). This cycling process ends when all d

components have been drawn. One can see that Gibbs sampler is a special case of

a Metropolis-Hastings algorithm for a single component with proposal

29



distribution ¢, (0",0)), the full conditional distribution (9’|0( ]),y)

According to Gelman et al. (1995, p.328) we have

o 016 .y), if 6_,=6"
qj’t(e ljaj) ( J) ) (=Jj ‘ (=)
0 , otherwise.

The above relation means that the j; component of 0 is updated when all

components of vectors 0,0, except j, match. In this case the probability of

transition becomes
p@® [y)p(0,".0.y)
p® [y)p(6,107,.y) p(6,1y) p® |y)p(6,".6(.y)
AGivps = PR = P 1 = 1
p@ 7 1y)p(6107y)  p@O|y)p(6.07.y) pOy)p(0.6,,.y)

p(eéilj) |y)

_p® [y)p®'y) _
CpO y)p® |y)

Thus, in Gibbs sampling the acceptance ratio equals 1 which means that the

proposed move is always accepted.

To simulate a Gibbs sample of size N, for =(6,,6,,...,6,), we use the

following steps:

1. Determine d -1 initial values 0° = ((90 ,495).
2. For t=1,2,....N:
Generate &' from p(@l |t92“1,...,¢9f,y),
Generate 6; from p(6,16,.6,",...0;".y),

Generate ¢, from p(6’3 |91’,02’,6’[1,...,0;'1,y),

Generate 6, from p(ﬁd |01’,02’,193’,19;,...,0;_1,y).

The ordering of the generating components has no affect on the

convergence of the algorithm. For additional information concerning the Gibbs
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sampler see Casella and George (1992), Brooks (1998), Gelfand (2000), Besag
(2001), and Gilks et al. (1996).

3.4.4 The Metropolis within Gibbs Algorithm

As we have seen, the Gibbs sampler algorithm requires that all full conditionals
are of known form and easy to generate from, in order to be applicable. In many
cases though, we do not know the exact form of all or some full conditionals.

Suppose we know all full conditionals of p(0|y) except the one for
component &,. The idea of the Metropolis within Gibbs algorithm, (some authors

refer to it as Univariate Metropolis or Metropolis Steps), is to run a Gibbs
sampler for the known full conditionals and use a Metropolis step, within the

former, in order to update component &,. The target density of 6, can be easily
approximated, since it is analogous to the posterior,p(&i |9(_1.),y) oc p(ﬂ | y), when
all components except 6. are held constant to their given value. This means that

in the i-th step of each Gibbs iteration, we run a Metropolis chain of size 7 from

which we keep the last value 6" and then proceed with the outer Gibbs loop for
component 6,,,.

Thus, to simulate a Metropolis within Gibbs sample of size N, for
0=(6.06,,....6,), we use the following steps:
1. Determine d —1 initial values 0° = (920,...,49;).
2. Fort=12,.,N:

Generate 6 from p(é’1 |<92H,...,05,*1,y),

Generate 6; from p(6,]6,,6,"....0,".y),

Generate 6, from p(HH |91’,492’,...,Qﬂz,a’*l,...ﬁ[l,y),

Use an inner Metropolis-Hastings loop in order to acquire 6.
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For /=1,2,..,T:

a. Generate ¢ from the proposal density ¢,(6",6).

p(ez* | e(—i) ’ Y)qt (91* 4 91'171)
p(eiFl | 9(—i) 4 Y)% (61'171 ’ 91*) ’

b. Calculate a,,, :min(

. 0’ , with probability a,,,
c.Set § =4
0", with probability 1-a,,,.

When [=T set 6/ =6 and continue with the outer Gibbs loop as follows.

Generate ¢, from p(6’i_l |91’,0;,...,Q’,Q’;,...,H;l,y),

Generate 6, from p(@d |Q’,Hé,@;,@j,...,@;_l,y).

The convergence of this algorithm is not perfectly clear, since it is not a
mixture or cycle of two separate algorithms. The Metropolis within Gibbs is
rather, a deterministic combination of algorithms, which by themselves alone
would not converge. Still, if the proposals used for each component are
irreducible and aperiodic then each component will tend to its equilibrium
distribution and convergence will occur (Carlin and Louis, 1996, p.182).

Another issue of concern is the selection of 7" for the inner Metropolis
loop. A very large T would of course lead to a confident selection of &, but it

would be useless, in terms of overall convergence, especially in the early stages

of the outer Gibbs loop. A very small 7, like 1, would delay overall convergence,
since it will be unlikely that 8" will originate from the correct full conditional

distribution (Carlin and Louis, 1996, p.182). In practice though, the selection
T =1 is often adopted.
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3.4.5 Convergence Diagnostics

There is a variety of MCMC convergence diagnostics, which can be used in order
to determine whether or not the equilibrium distribution of the Markov chain has
been reached. These diagnostic tools have different characteristics. They can be
quantitative and produce a single numeric summary, or qualitative like graphs
and time series plots. Some require a single chain to be produced, while others a
small number of parallel chains. Most of these methods base their approach on
bias considerations, but there are also methods which check the variance or
precision of the estimates. Extensive information on diagnostic tools can be
found in Brooks and Roberts (1998), Mengersen et al. (1998), Cowles and Carlin
(1996) and Brooks et al. (1997).

In this thesis we rely mainly on the diagnostic tool introduced by Gelman
and Rubin (1992); see also Brooks and Gelman (1998). This approach addresses
the issue of variance and requires a small number of parallel chains who must be
initially overdispersed with respect to the target density. It can be used in either
Metropolis-Hastings or Gibbs sampler simulations.

For each estimand & of interest, the draws from the J parallel chains are

labeled Qj, with i=1,2,...,N and j=12,...,J . Then, we calculate the between and

within chain variation, B and W respectively. They are,

B—lj(_ —5)2 where 6 L ENQ 5_125

“72l0-0) PITNE STl
14, R~ 2

szz s, where s; = 12 (‘9,,_ /)

An estimate of the marginal posterior variance Var(¢9|y) can be given by a

weighted average of B and W, which is @(0|y):%W+%B. This estimate

is unbiased under stationarity but overestimates the variance under the
assumption that the starting distribution is overdispersed. Furthermore, the
within chain variance is an underestimate of the marginal posterior variance,

because each chain alone will not have time to visit the entire posterior space
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and thus will have lower variability. Yet, for N > o the expectation of W

approaches Var(@|y) and therefore, convergence can be monitored by the scale

reduction measure

\/* Var 49|y

which declines to 1 for N —» o« (Gelman et al., 1995, p.332).

Convergence can be also be checked by monitoring the Monte Carlo error
of the estimates, since small values of it indicate that we have calculated the
quantity of interest with precision. Calculating the MC error as described in
section 3.3 - from the MCMC sample variance - would probably be
anticonservative; the sampling chain will likely feature positive autocorrelation
leading to an underestimate of the simulated sample’s standard deviation (Carlin
and Louis, 1996, p.194).

The computationally easiest way of estimating MC error is through the

batch mean method. For any quantity /4(0) of interest we simply partition the
MCMC sample 0,,0,,...,0, into K batches B,,B,,...,B; of size N,. Thus, we have

that N = KN, . For each batch we estimate the corresponding sample mean from

- 1 KTy
h®), =— > h®"),
TB t=(k-1)Tz+1

where k=1,2,...,K . Then, an estimate for the MC error of h/(ﬁ\) is given by

sAe(/Xe\))=\/ T Lol

k=1

N N K
where Ah(0) is given by h(ﬂ):%Zh(e)@ . Note that K must be large enough to

k=1
ensure proper estimation of the variance (the usual choice is 30< K <50) and N,

must also be large enough in order to ensure that the batch means are roughly
independent. According to Carlin and Louis (1996, p.195) the latter can be

determined by checking whether the lag 1 autocorrelation of the B, is less than

0.05. If this is not the case, N, must be increased.
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In the remaining of this chapter we will make use of the aforementioned
algorithms with two examples. In the first example we implement the
Metropolis-Hastings and Gibbs Sampler algorithms on a normal linear regression
problem and in the second one we use the Metropolis and Metropolis within

Gibbs algorithms on a logistic regression example.

3.5 A linear regression example with normal data

The data presented here are wind velocity observations measured in miles per
hour and electricity observations measured in volts (Montgomery et al., 2001,
p.182). Our concern is the effect of wind velocity on the production of electricity
from a water mill. Although wind velocity is by itself positively correlated with
electricity production capacity, we will use the logarithm of wind velocity which
has an even higher coefficient of correlation equal to 0.978.

The model used is the simple linear regression model y=a+bx+¢&, with y
the dependent variable, that is electricity production capacity (DC output), and x
the explanatory variable, the logarithm of wind velocity. The Maximum

Likelihood (ML) estimates of a, b and the standard deviation estimates are

a=-0.83 (0.111)
h=1.417 (0.06)
o =0.137

The values in brackets correspond to the coefficients standard deviations. The 25
observations of wind velocity and DC output are given in Table 3.1. From the
histogram of DC output observations presented in Figure 3.1 we notice that the
distribution of the dependent variable seems to be skewed to the right, yet we
cannot be absolutely sure due to the relatively small sample size. The plot right
to the histogram indicates the strong positive correlation between the logarithm

of wind velocity and DC output.
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DC Wind Logarithm of DC Wind Logarithm of

output Velocity Wind Obs. output Velocity Wind

Obs. (volts) (mph) Velocity (volts) (mph) Velocity
1. 1.582 5.00 1.609 13. 1.562 4.60 1.526
2. 1.822 6.00 1.792 14. 1.737 5.80 1.758
3. 1.057 3.40 1.224 15. 2.088 7.40 2.001
4. 0.500 2.70 0.993 16. 1.137 3.60 1.281
5. 2.236 10.00 2.303 17. 2.179 7.85 2.061
6. 2.386 9.70 2.272 18. 2.112 8.80 2.175
7. 2.294 9.55 2.257 19. 1.800 7.00 1.946
8. 0.558 3.05 1.115 20. 1.501 5.45 1.696
9. 2.166 8.15 2.098 21. 2.303 9.10 2.208
10. 1.866 6.20 1.825 22. 2.310 10.20 2.322
11. 0.653 2.90 1.065 23. 1.194 4.10 1.411
12. 1.930 6.35 1.848 24. 1.144 3.95 1.374
25. 0.123 2.45 0.896

Table 3.1 DC Output observations measured in volts and wind velocity observations in physical
scale measured in miles per hour and in logarithmic scale.

oé’&
0 — | o [¢]
4 dp o]
? © 7 5— ] oo o0
(] S —
g < o o0 o°
o O 7
L &) o
AN — g — o ©
o — o
| | | | | | T 1T T T T 1
00 05 10 15 20 25 1.0 14 18 2.2
DC Output (volts) Logarithm of wind velocity

Figure 3.1 Histogram of the 25 DC output observations (left) and scatter plot of the DC output
and the wind velocity observations transformed into logarithmic scale (right).

3.5.1 M-H algorithm implementation

As described before, our model assumption is y=a+bx+&, with &~ N(0,57%).

The selected priors for parameters a and b are
a|o’ ~N(0,kc?), b|o* ~N(0,kc?),

with k considered as a multiplying constant.
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We select a gamma prior for the inverse of o that is,
o ~G(ay,b,),

where g, is the shape parameter and b, is the rate parameter. The distribution of

o is given by

p(c™) =%(0_2 )ao_l exp(—boo’z) for 0> >0.

This means that the prior for o’ is an inverse gamma distribution with shape
parameter @, and scale parameter b, that is, o’ ~1G(a,,b,). So, the prior

distribution of &’ is given by

)

b —ay-1 -b
p(c?)= F(an)(az) exp(o_—;j for o> >0.

We further assume that parameters a and b are conditionally independent given

o’. The prior distribution p(a,b,c°) is actually conjugate to the likelihood.

Therefore, this a case for which the posterior distribution can be calculated
analytically. Our aim though, is to demonstrate the use of the Metropolis-
Hastings algorithm regardless of prior selection.

The use of a hyper prior for parameters a and » means that we presume
dependence between these parameters and the variance parameter. The prior
design aims to reflect our ignorance concerning the three parameters. The
selection of k is set large equal to 1000 and we use a gamma distribution with
both location and rate parameters equal to 107 . This means that o is a random
variable with mean equal to 1 and variance equal to 1000 and it also results to
the fact that * ~IG(107,107), which is an inverse gamma random variable with
infinite mean.

The joint posterior distribution of a, b, o°, under the assumption of
conditional independence for parameters a and b, is

pla,b,c” |y) o< p(a,b,a*)p(y|a,b,c”)
< p(a,b|a*)p(a*)p(y | a,b,c”)
< p(ala®)p(b|a*)p(a®)p(y | a,b,0”)
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After some algebra on the logarithm of this density we conclude to

1
20°

log p(a,b,c” |y) = —(2a, +n+4)10g0'—b—°2— [ny +a*(n+k™)-
o i=1

_za(i)’i +bixi]—2biyixi +b’ (ix,z +k_1D+Constant.
i-1 i-1 o1 o

The next step is to select the proposal distributions for the three parameters in
question. For parameters @ and b we choose a bivariate normal random walk

a' a™ ol po,o,
proposal, that is ¥ ~N, ,X |, with X=| ° 7| Sampling from

b po,o, O,
this distribution is simple, since g(a',b')=¢q(b'|a')g(a"). Therefore, we initially
generate
a'~N(a", o)

and then we generate b’ from the distribution which is conditional on a', that is

_ o _
b'|a" ~ N[bt ] +po_—b(a’ —-a' 1),0,3(1—/)2)].

The bivariate normal distribution is symmetric and therefore, not needed for the
calculation of the transition probability. The selection of the proposal
distribution for o is more complicated, since standard deviation is strictly
positive. Therefore, we cannot use a normal proposal distribution on o as above,

but we can use such a proposal on logo, which takes values on the real line
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unrestricted. So, we generate logo’ from a normal random walk proposal
logo’ ~N(log G’_l,aj,) and then sample o' through the exponential
transformation on logo'. An important remark one should have in mind, is that

although the proposal for logo is again symmetric and therefore not needed in

the calculation of the transition probability, the latter does not stand for the

Jacobian of the exponential transformation which is l Thus, the probability of
o

move is given by

* * * 1
p(a’.b’.o |y)(a—lj
p(at—l b O_z"l |y)( 1 j
b 9 G*

aMH -

and on logarithmic scale
loga,,, = logp(a*,b*,az* |y)+log o —logp(a’*l,b’*l,crztf1 |y)—log o',

An equivalent sampling technique would be to sample o directly from a log-

normal random walk proposal that is 0’~L0g—N(aH,a§) with proposal
density given by

1 (logo' —c'™")’
(o) = exp| —
Gioz- () o' \/EO'J p( 20°

o

Jfor o >0.

Yet, then we would be forced to compute probability densities from the log-

normal distribution since in this case the probability of move is given by

p (a*’b*, O_Z* ’ y)nggiN (O_t—l)
t-1 w
2 ‘ y) QLog—N (O- )

p(at—ljbt—l’o_

aMH
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An alternative approach would be a gamma random walk proposal distribution

G(a,, b, ) with shape parameter a

prop* P prop o and rate parameter b

prop *

Knowing that

this distribution has mean equal to a /b , we set the shape parameter as
prop prop

_ -1
4,0 =b,,,0 . Thus, we sample o from a gamma random walk proposal

t t—1 . -1 .
o ~G(c"b,,,,b,,,) which has mean o' and density

b O Sy
Doamma (') = W(U )" " exp(-b,,,,0")

The probability of move is now given by
p(a".0".6% 1Y) dguma(@™)
p(af“,b"‘,cfzt_1 Iy)anmma (o)

Ay =

and calculated on logarithmic scale

loga,,, =log p(a’,b",0™ |¥)+102 45, (0" ™) - logp(cf“,if‘l,azt_1 | y)—

- log anmma (O-* )

The role of the rate parameter b, 1is as significant as that of the parameter o’ of the

normal proposal for logo . The bigger the selection of 5, ,

the more symmetric and
less variable will the proposal get, tending to a normal distribution in R*. A small

selection of b,

,» on the other hand, will result to a proposal density which will be

skewed to the left with bigger spread.
Our first approach will be to run an initial small chain of size 1000 in order to

acquire a first impression of the posterior parameter space. We choose starting values
which are not far distant from the MLE estimates a'” =—0.5, 5 =1 and ¢ =0.1 and

keep the second half of the M-H chain for inferential purposes. The proposal scale for

parameters a and b, which at this stage are kept uncorrelated, is set equal to 1

(8(1 =0 =1) and the scale parameter of the gamma proposal distribution of
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parameter o is set equal to 25 (b, ~=25). If the acceptance ratio is lower than

prop
20% by the time the chain reaches the half of its course, then we decrease the

spread of the proposals in order to increase acceptance ratio. In this case, scale

parameters are divided or multiplied with 10 giving Ga=0,=0.1and b 250,

prop
respectively.

The resulting acceptance ratio is low equal to 9.6 %. Mean and standard
deviation estimates from this first simulation are shown in Table 3.1. This initial

run also reveals a strong negative correlation, near -0.95, for parameters a and b.

Parameter a b c
Mean -0.776 | 1.385 | 0.146
St. Deviation | 0.109 | 0.060 | 0.021

Table 3.2 Mean and standard deviation estimates for parameters a, b and o acquired from a
Metropolis-Hastings sample of size 500.
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Figure 3.2 Time series plots (up) of the 1000 iterations for parameters a, b and o (sigma),
autocorrelation plots (middle) and histograms (down) resulting from the last 500 iterations.

Time series plots of the three parameters are shown in Figure 3.2. We can notice
that the acceptance ratio is affected positively from the decrease in the proposals

spread, since about half the distance, at iteration 500, the chain fluctuates more
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than before. The rest of the plots in Figure 3.2, unlike time series plots, refer to
the second half of the Metropolis-Hastings sample; that is the part we keep for
inferential purposes. The ACF plots are a graphical representation of the
parameters autocorrelation function. The histograms provide us a rough image of
the posterior space.

Based on this information we can initialize a multi chain Metropolis-
Hastings simulation from starting points that are over-dispersed in regard to
posterior space. We now use five parallel chains of 9000 iterations each. The
first 1000 iterations of each chain are discarded for the “burn-in” period. The

initial values used are the following:

Chain 1 : (a/,5/,07)=(~1.2,12,0.5)

Chain 2 : (a3,5;,07 ) =(~1,1.4,0.12)

Chain 3 : (a3,5},07)=(-0.9,1.6,0.14)

Chain 4 : (a},b},07)=(-0.7,1.8,0.16)

Chain 5 : (ag,5{,07)=(-0.5,2,0.18)
We use a multivariate normal random walk proposal for parameters a, b and
logo, presuming zero correlations between the latter and the former two
parameters (p,, = p,, =0). The scale parameters of the proposal distribution
are set equal to the standard deviation estimates acquired from the initial M-H

run, 8[, =0.109, 8;, =0.06, g'g =0.021 and the correlation coefficient Pab is set

equal to -0.99, thus we presume a very strong negative correlation between a
and b.

Convergence of the five parallel chains can be monitored through the first
series of plots presented in Figure 3.3. We notice that the ergodic mean of each
chain converges to a value which is common for all chains, as the number of
iterations becomes large. Also, the histograms of the 40000 draws from the
posterior distribution, in Figure 3.3, provide us a clear image of the parameters

posterior space.
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Point estimates, posterior quantiles and the R root reduction measure for

each parameter are summarized in Tables 3.3 and 3.4, presented below. We notice

that the calculation of the R root measure is close to unity for all parameters,

which implies successful convergence of the algorithm.
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Figure 3.3 Ergodic mean plots (up) for five parallel M-H chains each of size 9000 and histograms
(down) of parameters a, b, and o (sigma) acquired by an M-H sample of 40000 draws.

Parameter a b c
Mean -0.831 | 1.416 | 0.133
St. Deviation | 0.109 | 0.061 | 0.019

Table 3.3 Mean and standard deviation estimates for parameters a, b and o.

Posterior Quantiles
Parameter
0% 25% | Median | 75% | 100% | R root
a -1.311 | -0.902 | -0.831 -0.759 | -0.393 | 1.001
b 1.153 | 1.376 1.416 1.457 | 1.701 1.000
c 0.086 | 0.119 0.131 0.144 | 0.217 1.002

Table 3.4 Posterior quantiles and the calculated R root reduction measure for each parameter.

The five parallel chains achieve acceptance ratios of 62.4%, 62.3%, 61.5%,
60.9% and 62.5% respectively.
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3.5.2 Gibbs Sampler implementation

The normal setting used previously is one of the special cases for which the

Gibbs sampler algorithm can be utilized, since all of the full conditionals are of
known form. The prior design is the same as before with a~ N(0,kc’),
b~ N(0,kc?), o’ ~1G(a,,b,) and prior parameters k, a,, b, set equal to 1000,
10° and 107 respectively. The full conditional distributions for parameters

a, b and o are

2

p(a|b,a2,y)~N wa(;—b;),wao-—j , with w =
n

k+n

p(bla,a’,y)~N|w,

n

Z(yl.—a—bxi)z

p(o_z la,b,y) ~ IG a0+g,bo+ =

We will use 5 parallel chains of 5000 iterations and discard the first 1000 values.
To demonstrate the efficiency of Gibbs sampling, we use some initial values

which are located in extreme regions of posterior space.

Chain 1 : (a/,5/,07)=(~4,5,0)

Chain 2 : (a3,5],07 ) =(~2,-3,0.5)
Chain 3 : (a3,5},07)=(2,0,1)
Chain 4 : (a},b},07)=(3,1,1.5)
Chain 5 : (af,b{,07)=(4,3,2)

~

Descriptive statistics, posterior quantiles and the R root reduction measure are
shown in Tables 3.5 and 3.6. As we can see the resulting estimates for parameters a and

b are quite similar to those acquired by the M-H algorithm. This is not the case for
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estimates of o . As we can see the estimates of the mean and of posterior quantiles are

larger than the M-H estimates.

Parameter a b c
Mean -0.833 | 1.418 | 0.142
St. Deviation | 0.114 | 0.064 | 0.022

Table 3.5 Mean and standard deviation estimates acquired by a Gibbs sample of size 20000.

Posterior Quantiles
Parameter
0% 25% | Median | 75% | 100% | R root
a -1.316 | -0.906 | -0.833 | -0.759 | -0.366 | 1.001
b 1.141 | 1.377 1.418 1.459 | 1.691 1.001
c 0.087 | 0.127 0.139 0.155 | 0.274 | 0.999

Table 3.6 Posterior quantiles and the calculated R root reduction measure for parameters a, b
and o.

Ergodic mean plots and histograms of the 20000 draws from the Gibbs sample

are presented below, in Figure 3.4.
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Figure 3.4 Ergodic mean plots (up) for five parallel Gibbs chains each of size 5000 and
histograms (down) for parameters a, b and o (sigma) resulting from a Gibbs sample of size
20000.

45



Scatter plots of parameters a and b, resulting from both MCMC methods, are

presented in Figure 3.5.

M-H algorithm Gibbs Sampler

-1.2 -1.0 -0.8 -0.6 -0.4 -1.2 -1.0 -0.8 -0.6 -0.4
Alpha Alpha
40000 simulated draws 20000 simulated draws

Figure 3.5 Scatter plots of parameters a and b resulting from 40000 M-H draws (left) and from
20000 Gibbs draws (right).

3.5.3 Informal model checking through plots of predicted values

One first approach on checking discrepancy between the fitted model and the
observed data according to Gelman et al. (1995, p.167), is to simulate draws
from the predictive distribution and then compare them with the observed data.
Systematic differences between observed and replicated data imply potential
failures of the model.

In our example, simulating from the predictive distribution is easy; for

every set of (a’,b’,oJ), with /=1,...,20000, acquired from the Gibbs sampler we
simulate y™ " =(y;ef’(”,y;"f’(”,...,y;g"(”) from N(a(” +b"x, 0'2(”). We then select in

random manner 20 replications (y*). The histograms of these replicated datasets

are presented in Figure 3.6. We notice that most of them are skewed to the right.
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In addition, six out of twenty histograms seem quite similar to that of the
observed data. Thus, draws from the predictive distribution indicate no evidence
of systematic differences between what is observed and what is predicted

through our model.
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Figure 3.6 Histograms of 20 replicated datasets. Most of the histograms are skewed to the right
similar to the histogram of observed data.

A more formal way of examining model discrepancy and lack of fit is
through the use of test quantities; see section 2.6. We will see how test quantities

can be utilized in the subsequent logistic regression example.

3.6 A logistic regression example with binomial data

The data in this second example are presented by Cox and Snell (1989). They
concern number of deaths, during the period 1950-1959 caused from leuchaimia
and other types of cancer, for the survivors of Hiroshima who where between 25

and 64 years old at year 1950. The death occurrences are presented according to
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the dose of radiation which is originally given in unequal intervals. The data are

shown below in Table 3.7.

Dose of Intevals 0 1-9 | 10-49 | 50-99 | 100-200 | 200+
Radiation
Points 0 4.5 | 29.5 74.5 149.5 249.5
(rads)
Leuchamia | /3 5 5 3 4 18
Number Other
of Deaths 3781200 | 151 47 31 33
Cancer
Total 391|205 | 156 50 35 51

Table 3.7 Numbers of deaths caused from leuchaimia and other types of cancer according to the
dose of radiation. The dose of radiation is measured in rads and given in unequal intervals in the
original dataset (I"' row). For the logistic regression we actually use points that lie near the
center of the intervals (2" row).

A common model used for such types of problems is the logit model. For y being
the dependent variable, that is number of deaths caused from leuchaimia, and x

the explanatory variable, dose of radiation, then
logit(p,) =a+bx,, with y, | p, ~ Bin(n,, p,) for i=1,...,6.

The probability of dying from leuchamia is p,, while n, is the total number of
deaths caused by cancer, the subscript i=1,...,6 represents the corresponding
dose of radiation. The term logit(pl.) is the logarithm of the odds of the unknown
binomial probabilities p, that is,

loi _ P _

ogit(p,)=log| ——— | for i=1,...,6.

1-p,

In this dataset the explanatory variable is given in unequal intervals, therefore

we will actually use the points that lie near the center of each interval shown in

Table 3.7. The ML estimates of a and b are

a=-3.564 (0.212) and b=0.011 (0.001),

with the values in brackets corresponding to the coefficients standard deviations.
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3.6.1 Metropolis algorithm implementation

For the model logit(p,)=a+bx,, i=1..,6 we use the independent priors

a~ N(0,k) and b~ N(0,k). The multiplying constant k is set again equal to 1000

in order to reflect prior ignorance. The joint posterior distribution is,

p(a,bly) o p(a,b)p(y|a,b)= p(a)p(b)p(y | a,b)

2 2 6
o exp _a +b Hp[yi (l_pi)ni—yi
2k o
2 2 6
o exp _a’+b le.y’(l—pl)"_y
2k
a2 + b2 6 ea+bx Y ea+bx Y
o eXp — 1-
p{ 2k ];[ 1+ a+bx, 1+ a+bx,
aZ +b2 6 ea+bx,- Vi ( 1 j”’ -y
oCc exX —
p{ 2% ]1:‘1[ 1+ ea+bxl. 1+ ea+bxi
2 2 6 ! n;
oC eXp {_ ? 2-;:) }H(eﬁbx’ )y’ ('1 1a+bA j
i=1 + e

On logarithmic scale the expression simplifies to

2 2 6 6 6
log p(a,b|y)=- a 2-;(b +a2yl. +bei ’ —Zni 10g(1+exp{a +bxl.})+C0nstant.
i=1 i=1 i=1

Presuming that we have no prior knowledge of the parameters posterior space,

we will generate three parallel chains of size 20000, from the following starting
points:

Chain 1 : (a/,5)=(-3,-1)

Chain 2 : (a3,5;)=(0,0)

Chain 3 : (a3,5})=(3,1).

We use a bivariate normal random walk proposal, that is
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t t—1 O_Z o O
TN x|, with 2=| T PO
b' b po.0, O,

Determining the scale of the proposal density will be more difficult, in absence
of an initial run. In our previous example scale parameters o- and o, were set

equal to 1 and later on they were decreased in order to increase acceptance ratio.
In addition, the initial values set for parameters a and b, where not extreme. As
we have seen, this resulted to a relatively low acceptance ratio equal to 9.6%,
therefore such a strategy will be probably inefficient if our main purpose is
inferential.

We initially set o’ =0, =25 and p=0; the scale selection seems large

enough in order to explore the posterior space with adequacy, while correlation
is set equal to zero in the absence of any prior knowledge. When each chain
reaches the first fourth of its course, that is at iteration 5000, we use the past
5000 draws to obtain estimates of o,, o, and p. Then, the proposal distribution

for each separate chain becomes

i /\2 ~ ~ ~
. o .. PO a(i) O b(i)
(@) . a (i) (@)
YLz |, with X, = l

t-1 (i) -
b (@)

a
and i=1,2,3.

N,

~ ~

2
P iy O ai) O bi) O

Estimates o-, o, and ,B are updated twice again, at iterations 10000 and 15000,

from the corresponding 5000 previous draws.

The probability of transition is affected only from the unnormalized
posterior distribution since a normal random walk proposal is used. Thus, it is
given by

p(a.b"y)
p(ap " y)

Ay

Calculated on logarithmic scale the probability of move is given by

loga,, :logp(a*,b* | y)—logp(a“,bH |y).
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We keep the second half of each chain for inferential purposes. The resulting

acceptance ratios are 23.5%, 28.6% and 25.6% respectively. Descriptive

statistics, posterior quantiles and the R root measure for parameters a and b are
presented in Tables 3.8 and 3.9, ergodic means plots and histograms are

presented in Figure 3.7.

Parameter a b
Mean -3.586 | 0.012
St. Deviation | 0.215 | 0.001

Table 3.8 Mean and standard deviation estimates for parameters a and b acquired by a
Metropolis sample of size 30000.

Parameter Posterior Quantiles
0% 25% | Median | 75% | 100% | R root
a -4.491 | -3.731 | -3.581 | -3.437 | -2.846 | 1.0002
b 0.006 | 0.011 0.012 0.013 | 0.017 | 1.0000

Table 3.9 Posterior quantiles and the calculated R root reduction measure for each parameter of
interest.

Ergodic Means Plot of a Ergodic Means Plot of b
n —
] 9.
0
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Time Time
Histogram of a Histogram of b
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Frequency
0 2000 6000

-4.5 -4.0 -3.5 -3.0 0.006 0.010 0.014 0.018

a b

Figure 3.7 Ergodic mean plots (up) for parameters a and b from three parallel Metropolis chains
of 20000 iterations each. Histograms (down) for parameters a, b resulting from a Metropolis
sample of 30000 draws.
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Point estimates of the means and standard deviations are almost identical

to the ML estimates while the correlation estimate equals -0.668. Overall

convergence, according to the calculation of the R roots and the examination of
the ergodic mean plots presented in Figure 3.7, seems satisfactory.
An acceptance ratio of approximately 80% can be achieved by setting

o,=0.1, 0,=0.0005 and p=-0.66 along with initial values located within the

posterior space.
3.6.2 Metropolis within Gibbs implementation

Now we will demonstrate the Metropolis within Gibbs algorithm for the same
logistic regression example. The term Univariate Metropolis is in this case a
more proper description of the algorithm in use, since none of the two full
conditionals are of known form. So, we will actually use two separate Metropolis
algorithms for parameters a and b. As we have seen, the joint posterior

distribution is

2

a +
pla,bly) < eXp{—

- a+bx; \Vi 1 "
}H(‘f ) (m} :

i=1

b2
2k

Thus, the full conditionals of parameters a and b are

2] 6
plalb.y)es eXp{_;_k}HeXP{ayi}(l +exp{a+bx}) ",

i=1
b | -
p(bla,y) < exp{—ﬁ} exp{byl.xi}(l+exp{a+bxl.}) ‘

i=1

and on logarithmic scale
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2
a

6 6
log p(a|b,y) = ot ay y->n, log(l +exp{a +bxi})+ Constant,
i=1 i=1

2 6

6
log p(b|a,y) = —§—k+bz VX =y, log(l +expla +bxl.})+ Constant.

i=1 i=1

We now use univariate proposal densities a' ~ N(a',c.) and b' ~N(b'"',0;),
with o’ =0, =25. The updating scheme presented above is now utilized for each

parameter separately. The probabilities of transition on logarithmic scale are

loga,, :logp(a* |b’"1,y)—log./,rp(a"1 |b’"1,y)
loga,, = logp(b* | a*,y)—logp(bH |a*,y).

Three parallel chains of size 20000 with the same initial values produce
acceptance ratios of 41.3%, 42%, 42.4% for parameter a and 32.1%, 38.7%,
33.6% for parameter b. Results are summarized in Tables 3.10, 3.11 and Figure

3.8.

Parameter a b
Mean -3.581 | 0.012
St. Deviation | 0.210 | 0.001

Table 3.10 Mean and standard deviation estimates resulting from a Metropolis within Gibbs
simulation of size 30000.

Posterior Quantiles
Parameter
0% 25% | Median | 75% | 100% | R root
a -4.550 | -3.722 | -3.575 | -3.434 | -2.924 | 0.9999
b 0.005 | 0.011 0.012 0.013 | 0.018 | 1.0000

Table 3.11 Posterior quantiles and the calculated R root reduction measure for parameters a and
b.
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Figure 3.8 Ergodic mean plots (up) for parameters a, b from three parallel Metropolis within
Gibbs chains of 20000 iterations each. Histograms (down) for parameters a, b resulting from a
simulated sample of size 30000.

Acceptance ratios of approximately 80% for parameter a and 85% for parameter
b can be achieved, by setting initial values located within the posterior space and

initial scale parameters o, =0.1, o, =0.0005 .

Estimates of means, standard deviations and quantiles obtained from the

two algorithms are similar. This does not hold for the correlation estimates; from
the Metropolis algorithm we obtain ;)M =—0.668, while from Metropolis within
Gibbs we obtain /A)MG =-0.606. In order to check the efficiency of these estimates
we run a single chain of 50000 iterations using both methods and conclude to
,AOM :,BMG =-0.67, a value not far from the initial estimate of the Metropolis

algorithm. This non negligible difference between the two estimates can be

noticed in the scatter plots of Figure 3.9.
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Figure 3.9 Scatter plots for parameters a, b resulting from 30000 Metropolis draws (left) and
30000 Metropolis within Gibbs draws (right).

3.6.3 Checking model discrepancies through test quantities

We will now use the Metropolis sample in order to evaluate the chi square and
the deviance test quantities.
As discussed in section 2.6 the chi-square discrepancy measure suggested

by Gelman et al. (1993) is given by

_y 0= EW ] 0)°
T(y.0)= Z,: Var(y,10)

Under the model hypothesis the parameter vector is @ =p, with

exp{a+bx}

- l+exp{a+bx}

So, the chi-square test quantity has the form

| Vi —mp;
T( ’0) — [ S T s
Y ; nipi(l_p[)

since E(yi |9) =np; and Var(yi |0) = nz’pi(l_pi) .
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Another test quantity which is frequently used for overall goodness-of-fit
checks is the deviance quantity. As already mentioned in section 2.8 the deviance
of any model is generally obtained from D(0)=-2log p(y|0). Thus, in general
the deviance quantity is given by

T(y,0) =—2log p(y[0).
In binomial logistic regression the deviance from the maximal model can be

calculated analytically (Dobson, 1990, p.112), so we actually evaluate the

deviance quantity from

T(y’e)=Z{yf1°g(%}(ni—y,»)logi—n"_y" ﬂ

i Pi n,—np,;

We evaluate the Bayesian p-value, defined as Pr(T(y’ep,B)ZT(y,0)|y) (see

section 2.6), through simulation. For this, we initially generate draws of

replicated data; for each set of parameters (a’,bl) ,1=1,...,30000, we first

exp{al +b’x}

calculate p’ = and then we generate y'*" :(yl’e"(”,yz’e"(”,...,yge”(”)

1+exp{a’+b’x}
from Bin(n,p'). Finally, we evaluate the test quantities 7(y,0') and T(y?",0")

for /=1,...,30000 and then obtain the corresponding Bayesian p-values by simply

counting the number of cases for which, inequality T(y?",0')>T(y,0') holds.

The resulting p-values are 0.589 for the chi-square test quantity and 0.802
for the deviance test quantity. The chi square p-value implies that observed and
replicated data seem to be in agreement. The p-value obtained from the deviance
test is larger, yet it cannot be considered as an extreme tail area probability.
Therefore, we could say that the model is not suspicious for major discrepancies.
Kernel smoothed densities of each test quantity are presented in Figure 3.10

below.
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Density

Figure 3.10 Kernel smoothed densities of the chi-square (left) and deviance (right) test quantities
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Chapter 4: Marginal Likelihood Estimators

4.1 Introduction

As discussed in section 2.7, hypothesis testing and model comparison are based
on the calculation of posterior odds ratios and consequently on Bayes factors. In
order to calculate Bayes factors we must obtain the marginal likelihood of the
data under each competing model. Without the notational dependence from the

model, the marginal density of the data y with parameter vector 0 is given by

p(y) =, p(y|0)p(8)d0.

Most often this integration cannot be derived analytically, so we usually have to
obtain an estimate of the marginal likelihood using alternative approaches such
as asymptotic or simulation based methods.

One can also notice that the integral is with respect to the prior
distribution of 0 and not with respect to the posterior distribution of 0. Thus, the
simplest Monte Carlo integration estimate is given by

~ M
p(y)=M‘1Z,p(y|9m),

where the values {Bm}, for m=1,...M , are now a sample from the prior

distribution. Unfortunately, this estimate is very unstable when the posterior
distribution is concentrated relative to the prior which is most often the case.
Thus, this estimate is dominated by a few values of @ which have a large
likelihood value (Kass and Raftery, 1995).

In this chapter we will focus on “direct” MCMC methods. These methods
utilize MCMC outputs from separate models in order to acquire the estimates of
marginal likelihoods and consequently estimates of Bayes factors. Alternative
options are asymptotic approximations to the marginal likelihood such as the
Laplace method or the Schwarz Criterion which can be used as an approximation
for Bayes factors; for details see Kass and Raftery (1995). There also exist

MCMC model selection methods which simulate over both parameter and model
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space such as the Reversible Jump MCMC (RIMCMC) algorithm (Green, 1995),
the Carlin and Chib algorithm (Carlin and Chib, 1995) and the Metropolised
Carlin and Chib algorithm (Dellaportas et al., 2002). These methods bypass
marginal likelihoods and deliver directly the posterior probabilities of each
model. Recently, Congdon (2004) also presented a method of estimating

posterior model probabilities.
4.2 Harmonic mean estimator

The harmonic mean estimator is based on the importance sampling method and
uses the posterior as the importance sampling function (Newton and Raftery

1994). The marginal density can be expressed as

1 1 1 1

PO [p(y) " p@®)do [ 5((9y|)yl)p(9|y)p(9)d9 [p(y10)'p(®]y)d0

p(y)=

-1
Thus, we have the identity p(y):{jp(y\ﬂ)_lp(e\y)dﬁ} which results to the

harmonic mean estimator

pH={N"Zp(y|9“’)“} :
t=1
where 0, for t=1,2,...N, are posterior draws from the MCMC output.

According to Newton and Raftery (1994) this estimator converges surely to p(y),
as t—>o. However ;AaH does not, in general, satisfy a Gaussian central limit

theorem, hence values 0 with small likelihood have a large effect on the final
result.

Although the harmonic mean estimator is quite unstable, it is easy to
calculate and according to Kass and Raftery (1995) produces results that are

accurate enough for interpretation on logarithmic scale.
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4.3 Laplace-Metropolis estimator

The Laplace-Metropolis estimator combines the asymptotic result of the
Laplace method with the MCMC output. Under the assumptions of the Laplace

method the marginal density can be approximated by
- an|s? o (0
p() =" [E " p(y19)p0),

where 0 is the posterior mode, ¥ is minus the inverse Hessian matrix evaluated

at 0 and d is the dimension of 0 (Tierney and Kadane, 1986; Kass and Raftery,
1995).

The Laplace-Metropolis estimator IA%M discussed in Lewis and Raftery

(1997) is given by the above equation with @ estimated by 0™ the point that

maximizes p(y|0")p(0"”) among the N posterior draws and T estimated by S

the sample covariance matrix of the output. Hence, the Laplace-Metropolis

estimator is given by

1/2

P =Qm)"? S| p(y|0™) p(0™),

where 0™ — {G : p(y | e)p(e) — tmaX {p(y | H(I))p(ﬂ(f))}} and

=1,..,N

5=~ (0" -0)(0" ) .

t=1

Alternative choices for 8 can be obtained by the multivariate posterior median or
by a nonparametric density estimate of the posterior mode or even by the
posterior mean when the posterior is a symmetric distribution. According to
Lewis and Raftery (1997) the resulting estimator performed well in numerical

experiments.
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4.4 Newton and Raftery’s estimator

Newton and Raftery (1994) suggested an estimator, based again on the
importance sampling method, which would be less unstable than };H. The

importance sampling function is now a mixture of the prior and posterior
densities

g(0)=5p(0)+(1-5)p@O]y),
where 0<o0 <1. One can notice that the choice 0 =0 results to harmonic mean
estimator. Sampling from g is achieved by randomly replacing 6 x N values of
the posterior sample with independent draws from the prior (Lopes, 2002).

Using g(0) as the importance sampling function results to the estimate

;NR(I). In order to obtain ;;NR(I) we must first specify an initial value and then

iterate the equation

Y. (3 10°){8 D, +(1-8)p(y |67

_ =
Pryray = N

Z {5;7NR(1) +(1-8)p(y| 90))}71

t=1

According to Newton and Raftery (1994) this estimator retains the efficiency of
;9,, but it also satisfies a Gaussian central limit theorem, unlike the latter.

In order to avoid sampling from both the prior and the posterior, Newton
and Raftery (1994) suggest to use all N values of the posterior sample and

imaging that further SN/(1-&) values are drawn from the prior, all with

likelihoods p(y|0) equal to their expected value p(y). This yields the estimator

Driy Which is obtained by iterating the equation

SN/1=8)+ Y, p(¥ [0"){ 8Py, + (1= 8)p(y |0

Prr) = N N . _
5N/(1_5)pNR(2) + 2{5171\/12(2) +(1-9)p(y| 9(1))}
=1

As with the first estimator, an initial value must be set in order to start the

iterative process.
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According to the authors both estimators performed well for values of o

as small as 0.01 without displaying the instability of ;H.

4.5 Bridge sampling estimator

Innovative methods for computing the ratio of normalizing constants based on
bridge sampling were studied by Meng and Wong (1996).
Suppose that we have two densities p,(0), i =1,2 which are known up to a

%)

l

normalizing constant so that p,(0)= , 0eQ, cR?, where Q. is the support

of p,(8) and that our interest is in calculating the ratio ¢, /c, .

We additionally presume that p,(0) and p,(0) have a common support that
1s,
[ Pi(©)p,(0)d0>0
Q,NQ,
and that samples from these densities are available. Then for any arbitrary

function a(0) defined on Q,(1Q, which satisfies

0<| [ a(0)p,(0)p,(6)d6| <0,
Q,NQ,
we have
[ a(6)q,(8) p,(6)d0 [ a®)p,®)p,(0)d0
Q, :& QNQ,
[a©®)q,©®)p,0)d0 <, [ a(0)p,(0)p,(0)d0
Q, Q,NQ,

which yields the key identity

4 E, [a(e)% (9)]
¢, E [a(ﬂ)(b (9)] ’

where the expectation in the numerator is with respect to p,(0) and the

expectation in the denominator is with respect to p,(9).
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In our context we choose a density g(0) which has the same support as the

posterior. So, the corresponding densities are

p(®)=p@ly), ¢,(0) = p(y[0)p(8), with ¢, = p(y)
and
p,(0)=¢g,(0)=g(0), with ¢, =1.
Thus, we have
I a(@)p(y|0)p(0)g(0)d0
[a®)2(0)p(®]y)0

p(y)=

from which we obtain the estimate

L
L' a®)p(y[87)p@")

=1

NS a(0)g(0)

t=1

p(y)=

The values 0 are draws from the available MCMC sample, while the values
0" are a sample of size L drawn from g(0). In general, we want the density
g(0) to be an accurate approximation of the posterior and also easy to sample
from (Lopes, 2002).

According to Meng and Wong (1996) different selections of the arbitrary

function a(@) produce different bridge sampling estimators. Some of these

estimators, also reviewed by Lopes (2002), are the following:

e For a(()):{p(y|ﬁ)p(0)g(0)}71 we obtain an estimate which resembles

the harmonic mean, that is

L

AWICN

=1

N ply 109 p(0)}

t=1

~

Pus =

-1
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e For a(8)={p(y|0)p(6) g(())}_”2 we obtain the geometric estimator

LY 10)p@ ) g @)

_ 1
P = N

2

N> {g(0")/ ply 169) p(0)]

t

e The optimal estimator ;OptB of Meng and Wong (1996) is obtained by
an iterative procedure. We specify an initial value, usually

~

Pops = Pos» and iterate the equation

L ~
Z Wz(l)/(lez(l) +8,Pop )

_ =
N ~
z 1/(31W1m +8,Pops )
=1
whete 5, = NJ(N+ L), s, = LJ(N+L), " = ply |07 p(0"")/ (6"

and W, = p(y|8“)p(8")/2(8").

~

Popz =

Additional information on other bridge sampling estimates and discussion over

efficiency issues can be found in Meng and Wong (1996).
4.6 Candidate’s estimator

The candidate’s approach is based on a simple identity following from Bayes

theorem that is

_pr(y[0)p®)
p@ly)

This alternative formula for calculating the marginal density of y was first

p(y)

mentioned in Besag (1989). The advantage of this formula is that it holds for any

value 0 of 0, thus an estimate of the marginal density on logarithmic scale is

log p(y) =log p(y|0")+log p(0") —log p(8° | y).
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We can notice that this expression requires only the evaluation of the log-

likelihood function and the prior along with an estimate of the posterior density
at point 0 . According to Chib (1995) this estimate does not suffer from any
instability problem since it is actually a density value that is averaged. In
addition, the entire estimation error arises from the estimation of the posterior
ordinate 2(9* |y) . Estimation of the posterior ordinate from a Gibbs output was

fully analyzed by Chib (1995). Later, Chib and Jeliazkov (2001) presented a
method for estimating the posterior ordinate from a Metropolis-Hastings output.
These two methods are being reviewed next.

Regarding the selection of the point @, Chib (1995) recommends
choosing a high density value such as the posterior mode or the maximum
likelihood estimate or even the posterior mean provided that it is not located in a

low density region.
4.6.1 Marginal likelihood from the Gibbs output

The presentation of this method in Chib (1995) includes parameter blocks along
with a latent data block. We will present the three vector blocks example of Chib
(1995) by replacing the latent data block with a parameter block.

Suppose that 0=(0,,0,,0,), then the Gibbs sampler is defined through the

full conditional densities
r®,1y.9,,65), p(8,]y.0,,0,), p(6,]y.0,.0,).
The goal is to estimate p(8” |y) which can be expressed as
p(®"|y)=p(6]6.,0,,y)p(0;[0,,y) (6 |y).
The first ordinate p(0;]0.,0,,y) can be calculated directly, since the full
conditional density of 0, is known when using a Gibbs sampler. The other two

ordinates can be expressed as
p(®; |y) = [ p(6716,,0,,)p(0,,0, | y)d0,do,,

p(6:10;,y)= [ p(0;|6},0,,y)p(6,|6;,y)d0, .
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The marginal ordinate p(0,|y) can be estimated by averaging the full
conditional density of 0, with the posterior draws of (0,,0,), this yields the

estimate

p(91 ly)=N 1zp(0] | 92( ):03( )aY) .
t=1
The reduced ordinate p(0,|0,,y) can be estimated with a similar technique which

requires draws from the distribution of ©,|0;,y. Therefore, we continue

sampling for additional L iterations from the full conditional densities
p(8,1y,8,,8,) and p(6,]y,6,.8,),

where 0, is now constant, equal to 0;. According to Chib (1995) the draws 0’

from this reduced Gibbs run follow the density p(8,]0,,y). Thus, we can now

estimate the reduced ordinate p(0; |0;,y) with

e * _ L * *
p0,[0,,y)=L IZP(Bz 10,,65",y).

I=1

So, the marginal density estimate, denoted as ;)Chib , 18

N p(y0)p(®)
pchib - * * * ~ * * ~ *
P(0510,,0,,y)p(6,[0,,y)p(0, |y)

and on logarithmic scale

10Z P s =l0g p(y |07) +log p(8°) —log p(8; 6,,0,,y)—log p(6, |8,,y)—log p(0; | y).

Although this procedure leads to an increase in the number of iterations, it
is rather straightforward since it does not require additional programming (Chib,

1995). Further note that the reduced Gibbs run is not necessary for two blocks
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parametric vectors 0=(0,,0,). The general case for an arbitrary number of blocks

0=(0,,0,,...,0,) is treated accordingly; see Chib (1995).

4.6.2 Marginal likelihood from the Metropolis-Hastings output

Chib and Jeliazkov (2001) extended the previous method in order to be
implemented in M-H output. They have illustrated the method for one parameter
block, two parameter blocks along with multiple latent variable blocks and
multiple parameter blocks. We will demonstrate the use of this method for the
simple case of one block sampling.

Let ¢(0,0 |y) denote the proposal density for a transition from 0to 0,
where ¢ is allowed to depend on the data y, then the M-H transition probability

1S

o B'):min{l p(® |y)q(e',e|y)}

" p(0]y)q(0,0'|y)

In addition, let p(0,0 |y) denote the sub-kernel of the M-H algorithm that is

p(0,0'|y)=a,,(0,6)9(6,0 |y),
then from the reversibility of this sub-kernel the equation
p®1y)p(0,0"|y)=p(0[y)p(07,0]y),

holds for any @". By integrating both sides of this expression with respect to 0

we obtain that the posterior ordinate equals

o0 3y A ZOIPO0 Y0
[ p(®",0]y)do

(0" 3~ 20 1Y) (0.095(0.0"[y)d0
[a,,(07,0)9(0",0|y)d0

This yields the estimator
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N
N> a,, (0,090, |y)
p@ |y)=—"="— _ :
Jflz Ay (9*’0(/))

J=1

where 0 are draws from the M-H output and 0 are draws from the

distribution ¢(0°,0|y), given the fixed value 0".

According to Chib and Jeliazkov (2001) values 8" that do not lie in the

support of p(0]y) are included in the average of the denominator with the value
a,,;(0°,87)=0. The authors also comment that although the sample sizes of the
numerator and denominator are let to be different, in practice they are set to be
equal and that sampling from ¢(0°,0|y) usually consumes a small amount of

time.
Thus, we acquire a marginal likelihood estimate, denoted as p._,, which

is given on logarithmic scale by

log p._, =log p(y|0")+log p(8")—log p(8” | y).
4.7 Chen’s estimator

The method presented by Chen (2005) is in fact a generalization of the
Candidate’s estimator method. Unlike the two previous methods, Chen’s method
does not require the specific form of the MCMC sampling process to be known.
Although the presentation of the method by Chen (2005) includes treatment of a

latent data block, we restrict ourselves to the simple case (without latent data).

Let g(0) be a proper density function, then for any point 8" the likelihood

function p(y|@) evaluated at 8" can be expressed as
p(y|0) = p(y|0)g(0)d0,

since J.g(O)dG =1. This equality can be re-expressed as
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oy [£© p(y[0) p(y|0)p(0)
PYIO=[ a8 o1y

Then, from the identity p(y) = p(y |0)p(0)/p(0|y) we have that

©) p(y10)
p®) p(y[0)

Solving this equation with respect to p(y) yields on logarithmic scale

p(0]y)do.

p(y10) = pw)[E2 L2 b0 y)do

Q) p(yw")}

1 =1 0)-logE
og p(y) =log p(y|0)—log [p(ﬂ) p(y|8)

where the expectation is with respect to the posterior distribution p(0]y). Thus,

we obtain an estimate of the marginal likelihood, denoted as lgcme which is

given by

2(0”) p(y|0") }
Y p(0”) p(y|0")

where the 8 are the draws from the MCMC output.

10g peyn =log p(y|0) —log{ Z

According to Chen (2005) the density g(0) corresponds to the weighted
conditional density which is used in the Importance Weighted Marginal Density
estimation method introduced by the same author (Chen, 1994). Therefore, the
guidelines for choosing a satisfactory function g can be found in Chen (1994). A
usual approach is to facilitate a common distribution which mimics the
conditional marginal density; in our context, the posterior distribution p(0]y).
This can be achieved by fitting posterior moments so that g will have a shape
roughly similar to that of the posterior distribution.

An alternative option discussed in Chen (2005) is to choose g(0)= p(0) if
p(0) is proper. This choice simplifies the estimate to

p<y|e)}

logpcmﬁlogp(ylﬂ*)—log{ Z (y10)

but this is not an optimal choice according to the author.
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The optimal choice of g discussed in Chen (2005) is g(0)=p(0]|y). In

this case we have that

log p(y) = log p(y |0") ~log £] LOLY) P<yl9"‘>}©

| p® p(y|6)
P(y[9)p(6) p(y|e*)}©
L P@)p(y) p(y[0)

log p(y) =log p(y|0")—log E p(y—lﬂ*)}
- p(y)

log p(y) =log p(y |0")—log E

However, we know that p(y[0")= p(8" |y)p(y)/p(®"), therefore it easy to see that

the optimal choice of Chen results to the familiar identity

log p(y) =log p(y|0")+log p(0")—log p(8” | y).

Thus, Chen’s optimal choice of g leads to the use of the Candidate’s estimator

method of Chib (1995) or Chib and Jeliazkov (2001) if p(@" |y)cannot be

directly calculated.
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Chapter S: Illustration and Comparison of Methods in a

Simple Regression Example

5.1 Models and prior selection

In this chapter we will evaluate the methods discussed in the previous chapter on
four competing regression models. The data are the DC output and wind velocity
observations presented in section 3.5. The four models we wish to compare are

M. y,=a,+¢&,

M,: y =a+b(x, —)_c)+gli

M,: y =a,+b,(z,—2)+&,

M,: y =a,+b(x. —x)+cx’ +¢,,

where y, is the DC output, x, is the wind velocity, z; is the logarithm of wind velocity

and sﬁiijN(O,af) with i=1,...,25 and j=0,1,2,3. The parameter vector 0_1. of each
model is 0,=(a,,0;), 0,=(a,b,o.), 0,=(a,,b,,05) and 0, =(a,,b,,c;,0;). The
selected prior densities are
M0 . a,~N(0,D,0]), o ~IG(107,107)

(al, )~ N,(0,D,0?), o ~IG(107,107)

: (a5,h,)" ~ Ny(0,D,02), o2 ~IG(107°,107)

: (ay,b5,¢,)" ~ N,(0,D,02), of ~IG(107,107),
where D, :nz(Xij)_l, for j=0,1,2,3. With X, we denote the corresponding
design matrix of each model while » stands for sample size.

A more common choice for D, would be n(XfX].)*IO']z.; see Fernandez et

al. (2001). Yet, preliminary MCMC runs revealed that the prior corresponding to
the latter selection was informative; in the sense that provided posterior
distributions away from the corresponding ones when an improper flat prior was

adopted.
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5.2 Simulating from the posterior

Gibbs sampling and M-H simulation are required in order to implement the
methods which were reviewed in Chapter 4. Therefore, we use each method in

order to obtain samples from the distributions p(Gj ]y,Mj), for j=0,1,2,3.

5.2.1 Details of the Gibbs sampler implementation

The full conditional distributions under each model are all of known form. For
simplicity we denote x, =x,—x, x,, =x’, x, =z —z. In addition, d’ is considered
as the (mxn) element of the matrix D,. Starting from the simple model we have

Model 0:

a, |a§,y~N(wa Y, W, —0],
0 o n

O'g ‘aoaY'“IG(AoaBo)’

wherew, =n/C, , C, —n+(d1°1)_1,

4,=10" +”‘T+1 and B, =10 +0.5{Zyl,2 ~2a,)y, +a02CaO}.
i=1 i=1

Model 1:

a,1bo5,y ~ N(w, (ny=5G )n w, o7n™),

-1 -1
b|al,00,y N(Wb[ VX, — lj(Zxﬁj ,wblaf[foij j,
i=1 i=1

ol |a,b,y ~IG(4,B)

where w, =n/C, , w, =ixfl./Cbl, C, :n+(a’111(1—,051b1))_1,
i=1

A -1 < d| n+2
C, = xi+(dy,(1-p’ ,C =Y X —————2—— 4 =107+ and
y =2+ (da-p) s G= 2 did,(1-p2,) 2

i=l1 i=1 i=1

B, =107+ 0.5{2 yi+a’C, +b’C, +2ahC, —2a,) y,—2b ) yixll}
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Model 2:

a, | b, 0'2,y N( (;—bzcz)n_l,wazofn_l),

-1 -1
b, |a2,0'2,y N(Wb [ yx3i_a2C2J(Zx32i] ’szo'zz(zx;j J’
i=1 i=1 i=1

o5 |ay,b,.y ~IG(A2,BZ),

where w, =n/C,_, Zx3,/

. < - . d;
Caz =n-+ (d]21 (1 - pjzbz )) ’ Cbz - IZZI:X; + (d222 (1 - plibz )) ’ C2 B ;X3i - d121d222 (112— pjzbz) ’
42107+ %2 and

B, =10 +05{Zy +a,’C, +b,°C, +2a,b,C, 2azzy -2b Zy;g}

i=l i=1 i=1

Model 3:

-1 2 -1
a,|b,,c;,00,y ~ N(w, (ny bCab—c3Cac)n W, O30 )

2

-1 ) -1

W, (zy,xh a,C,, — ¢ bcj(thj aWb3O'32 [lezlj ja
n -1 n -1

y'x21 a3Cac _b3Cbc](zx22[) ’Wc3032 (ijt] J’

=

¢ | as, by O'3ay N

!3|”35639C3’3 N(
WC ( =
’ i= i=1

os | ay,by,cy,y ~IG(A3,B3),

2 2 2
Where k = 1 - p%b} - pa3c3 - pb3€3 + 210(13[73 pa3c3 pb3c3 4

Wa3 :n/Ca3 lel/ by 0 W _Z‘x21/ I

Ca3 =n +(kd131 /(1 - plics ))_l ? Ch3 - Zn:xlzl +(kd232 /(1 _pjsc,z ))_1 ’
i=1

C, = Zn:x; + (kd; (1= p2, ))" ,
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C _ . X _pa3b3 _pa3c3pc3b3 C :ix _pa3c3 _pa3b3pb3c3
= Y A = N P£P 1)
< pb3c; - Ioa3b3 pa3c3

G, = leiXZi Y e

5 ey d2yd,
+
4 =107 +"53 4nd
D i +a’C, +b’C, +¢’C, +2a,b,C,, +2a,c,C,,
B,=10"+0.5¢ "

+2b,¢,C,, — 2“32)’:‘ - 2b3zyixli - Zc3zyix2i

i=1 i=1 i=1

We utilize five parallel chains of size 11.000 and discard the 1000 first iterations
of each chain for the ‘burn-in’ period. Point estimates, posterior quantiles and

the R-root measure for each model are summarized in Tables 5.1 to 5.4 below.

Model 0
Posterior Quantiles
Parameter | Mean | St.dev | 0% | 25% | Median | 75% | 100% | R-root
a, 1.608 | 0.134 | 0919 | 1.520 1.608 1.695 | 2.250 | 1.0001
o, 0.663 | 0.098 | 0.408 | 0.593 | 0.652 | 0.719 | 1.356 | 0.9999

Table 5.1 Model 0 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Gibbs sample of 50000 draws.

Model 1
Posterior Quantiles
Parameter | Mean | St.dev | 0% | 25% | Median | 75% | 100% | R-root
a, 1.607 | 0.049 | 1.381 | 1.574 1.607 1.639 | 1.833 | 0.9999
b, 0.241 | 0.019 | 0.152 | 0.228 | 0.241 0.254 | 0.341 | 1.0000
o, 0.244 | 0.036 | 0.149 | 0.218 | 0.240 | 0.265 | 0.496 | 0.9999

Table 5.2 Model I parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Gibbs sample of 50000 draws.
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Model 2

Posterior Quantiles

Parameter | Mean | St.dev | 0% | 25% | Median | 75% | 100% | R-root
a, 1.607 | 0.031 | 1.432 | 1.586 | 1.607 | 1.627 | 1.782 | 0.9999
b, 1.415 | 0.070 | 1.051 | 1.368 | 1.415 | 1.461 | 1.816 | 1.0001
o, 0.153 | 0.023 | 0.092 | 0.138 | 0.151 | 0.167 | 0.373 | 0.9999

Table 5.3 Model 2 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Gibbs sample of 50000 draws.

Model 3
Posterior Quantiles
Parameter | Mean | St.dev | 0% 25% | Median | 75% | 100% | R-root
a, 1.841 | 0.043 | 1.649 | 1.812 1.841 1.869 | 2.028 | 1.0001
b, 0.255 | 0.011 | 0.176 | 0.247 0.255 | 0.263 | 0.337 | 0.9999
c, -0.038 | 0.005 | -0.063 | -0.042 | -0.038 | -0.035 | -0.013 | 1.0000
o, 0.139 | 0.021 | 0.084 | 0.124 0.136 | 0.151 | 0.287 | 1.0000

Table 5.4 Model 3 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Gibbs sample of 50000 draws.

5.2.2 Details of the Metropolis-Hastings implementation

The joint posterior distribution for each model on logarithmic scale is

nT 3) logo, - LZB0 + Constant

log p(8, |y, M,)=—-2(10""+
2 o,

nr 4) log o, —LZB1 + Constant

log p(8, |y, M,) =-2(10"" +
2 o,

log p(0, |y,M,)=-2(10" +n+2)logo, —LZB2 + Constant
o

2

log p(0, |y,M,)=-2(10" +n+2.5)log o, —%33 + Constant
o

3
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An independence chain which 1is allowed to depend on the data

q(0".,0" |y)=¢q(0' |y) for j=0,1,2,3 is utilized for each M-H simulation. The

proposal distribution under each model is

(
Q((al’bl,logo-l) |Y)~N3(( 0 b(M) loga(M)) avl)
q((az,bz,logaz) |y)~N3((a§M)’b2(M),1ogg§M>)T’VZ)
0|y :q((a3,b3,c3,10g0'3)T|y)~N4((a§M),b3(M) (M) loga(M)) ,V3).

The upper script (M) stands for the mode of the log-target density while V, is the

inverse of the negative Hessian of the log- target evaluated at the mode. The

covariance matrices V/. are

<
Q
»
5
_W‘Q
\S]
™

=

:H

|
_.Q,\
S
a9
>
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Ie)

;/

a

_ 2(M)
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¢, C, C, 2[Zy _a3M>ca b§M>Cab—c§M>C,,cj

(M) (M) (M)
* b3 G 2( Vi — Cb3_a3 Cp—6 Cacj

* C 2[2.)/ x21 _C3M)C aéM)Cac _bgM)Cbcj

. 4B

3

The posterior means from the Gibbs sampling are used as estimates of the mode.
Although, the posterior mean is a rough estimate of the mode, preliminary M-H
simulations revealed that the use of the posterior median or of the ML estimate
instead results to lower acceptance ratios. The M-H probability of transition for

each model is

logaMH(Gy_”,Gg’)) = logp(();’) ly,M )+logq( U ]y) logoﬁ D_

—logp(ﬂi."” ly.M,)~logq(0" |y)+10g0'jt :

Five parallel chains of size 11.000 are used again from starting points that are
located within the posterior space of each model. The first 1000 iterations of
each chain are discarded. Acceptance ratios average to approximately 82% for
model 0, 80% for models 1 and 2 and 56% for model 3. Parameters point
estimates, posterior quantiles and the R-root measure are presented in Tables 5.5

to 5.8 below.

Model 0

Posterior Quantiles

Parameter | Mean | St.dev | 0% 25% | Median | 75% | 100% | R-root

a, 1.608 | 0.130 | 1.116 | 1.522 | 1.607 | 1.694 | 2.188 | 0.9999

o, 0.648 | 0.094 | 0.395 | 0.522 | 0.638 | 0.703 | 1.218 | 0.9999

Table 5.5 Model 0 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws.
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Model 1
Posterior Quantiles
Parameter | Mean | St.dev | 0% | 25% | Median | 75% | 100% | R-root
a, 1.607 | 0.048 | 1.423 | 1.575 1.607 1.638 | 1.801 | 0.9999
b, 0.241 | 0.019 | 0.156 | 0.228 | 0.241 | 0.254 | 0.318 | 1.0001
o, 0.239 | 0.035 | 0.137 | 0.215 | 0.235 | 0.260 | 0.434 | 0.9999

Table 5.6 Model I parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws.

Model 2
Posterior Quantiles
Parameter | Mean | St.dev | 0% 25% | Median | 75% | 100% | R-root
a, 1.607 | 0.030 | 1.483 | 1.587 1.607 1.627 | 1.731 | 1.0000
b, 1.414 | 0.069 | 1.111 | 1.369 1.414 1.460 | 1.696 | 1.0001
o, 0.151 | 0.022 | 0.091 | 0.135 | 0.148 | 0.163 | 0.282 | 1.0001

Table 5.7 Model 2 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws.

Model 3
Posterior Quantiles
Parameter | Mean | St.dev | 0% 25% | Median | 75% | 100% | R-root
a, 1.840 | 0.043 | 1.649 | 1.812 1.840 1.868 | 2.039 | 1.0001
b, 0.255 | 0.011 | 0.205 | 0.248 0.255 | 0.262 | 0.301 | 1.0001
c, -0.038 | 0.005 | -0.060 | -0.042 | -0.038 | -0.034 | -0.016 | 0.9999
o, 0.135 | 0.019 | 0.084 | 0.121 0.133 | 0.146 | 0.268 | 1.0001

Table 5.8 Model 3 parameters posterior estimates of mean, standard deviation, quantiles and the
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws.
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5.3 Implementation of the methods

In this section we demonstrate the implementation of the marginal likelihood

estimation methods presented in Chapter 4. The G draws from the Gibbs sampler

are denoted as {O(g’}, with g=1,..,G, while the M Metropolis-Hastings draws

are denoted as {9(’")} , with m=1,..,.M .

5.3.1 Harmonic Mean Estimator

-1
The Harmonic Mean estimator is given by pH {M Zp(y|9(’”)) } . This

m=1
method is relatively easy to implement. We simply calculate the likelihood of the

data under model Mj for all Gibbs iterations

(&)

1 —-a
o) oo ()|

-n 1 A (&) b("’)x 2
p(y\ﬂiglMl):(\/m) eXp{E . st b,
g O

= o8
1y, —a'® —bEx g
p(y105".,) = (2701 ) exp{—g [y e
- 1y, —a® —b®x, —c®x ?
(Y| ng),M3) :( lzﬂaz(g)) exp {_5 > [yz ég) i G Xy )

where i =1,....,nand g =1,...,G.

From the likelihood values we obtain the marginal likelihood estimates by

summing over the Gibbs draws under each separate model

G
Zp(y 10, M

pyIM,), =
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5.3.2 Laplace-Metropolis Estimator

As discussed in section 4.3 the Laplace-Metropolis estimator is given by

p(y|0™)p(6™),

where 0™ is the point that maximizes p(y | 0®)) p(8*)) among the G posterior draws and

| |1/2

— (272_)51/2 S

S is the sample covariance matrix of the output. The prior densities p(8,|M ) have the

form
pO,|M,))= (27[|P0|)_”2 exp{—%(aOTPolao )}x
3\I07 5 \-1074 107 B}
x(102)" (a2)™" )exp£— = j/F(lO D)
PO, M) =27"|P[" ex { %((a1 b) P (aq, bl))}x
<(107)" (o) e

p(0, | M,)=2z"p,["” {

(10°)" (02) " Mew

pO,| M) =27"" |P | "2 e {—%((% b, c3)T P, (a3 b, Q))}x

s e 3
><(10—3)10 (0_32) (107 +1) exp(_lgﬁ ]/F(10—3),

_ 2
where Pj —Djaj .

/H\ ~ ” /_\\

N

=

IS}

N

NQ“

~
~—

—
X

We calculate p(y|0',M )p(8'¢' |M,) for g=1,..,G and locate the point 7™

which maximizes this quantity. The marginal likelihoods are then obtained from

-~ 172 max max
PYIM),, =@m)"7 (S| p(y |07, M )p(@7™ | M),

d/Z‘

where d; is the dimension of the parameter vector 9, .
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We also evaluate the marginal likelihoods for alternative choices of 07 such as

the posterior medians ijd and the posterior means 0,. These choices do not

require further calculations, we simply compute the quantities

~ ) 1/2 e e
POYIM ), =S| p(y |07, M ) p(0) | M)
and

~ ) 1/2 — —
PYIM )y, =S| p(y10,,M)p®; M)
5.3.3 Newton and Raftery Estimator

We implement the first method mentioned in section 4.4. The marginal

likelihood estimates are given by

G ~ -1
R > Py 107, M) S p(y M) +(1-8)p(y| 00, M)]
p(yle)NR ==

3

Y {SP(y M) +(1-5)ply 00,0}

J
I=1

with o €(0,1). The By) are draws from the mixture distribution
f(e] |Mj) :517(9] |M,)+(1_5)P(9] |Yan)a

for /=1,..,G and j=0,1,2,3. In order to acquire the draws 0" we first generate
6xG independent draws from the prior distributions p(6,|M ). Then, we

randomly replace dxG values of the posterior Gibbs samples with these draws.

A problem that arises is that some draws from the distributions

p(af |Mj)~IG(10_3,10"3) take an infinite value. Therefore, we substitute these

values with the maximum value observed among the draws af(k) <o, with k<.
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We use as initial values the marginal likelihood estimates of the Harmonic Mean
method and the Laplace-Metropolis method evaluated at the posterior mean and
compare the resulting estimates after 1000, 5000 and 10000 iterations for a

choice of 0 equal to 0.05.
5.3.4 Bridge Sampling Estimators

In order to implement the bridge sampling techniques we must initially generate

draws {9;"’"} from a density g(ﬂf”’|Mj), which must be an accurate

approximation of the corresponding posterior distribution p(8,|y,M ). This is

achieved by appropriately fitting posterior moments.

2 Apr

We generate the parameters ;" from an Inverse Gamma distribution,

that is o>*" ~ IG(e,, f,) . The mean and variance of this distribution are
2
E(Uprr) = L and Var(aprr) = fzj )
e, —1 (e, =D (e, +1)
- 1 G 1 G —\2
Equating these to the estimates o-f =EZGf(g) and sz =HZ(af(g) —0']2,)
-1 J

-5

obtained by the posterior Gibbs samples and solving with respect to e, and f, we

have that

J

—\2
_(Gf) 5 and f = oP(e -1
e._S—2+ and f; =o7(e; —1).

gj

The rest of the parameters are sampled similarly from normal distributions:

. a~ N(a S? ) where a, ZG:a(g) and S? :Li( (g)—a_)
0 0 0= G = 0 “~ G & 0

apr 7 Apr\T — 7\ — 13 @ 71 N 3)
. (a1 b, ) ~ N, ((al bl) ,Sl),where a, :EZal , b =62b1 and
=1

g=l

5=l 60)~(a B (e #)~(a 5)

g=
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(4, b, ~ N, ((aj b_z)T,Sz),where aj:é >0, b =L 35 and

2
g=1 G g=1

.= (a0 (@ ) (a0 847 -(a 8))

- — — G —
. (a3Apr b3Apr C}Apr )T N N3 ((a3 b3 e )T ,S3) . where a, :é a}(g), b3 — G zb(g)

g=1 g=1
P lic@) and
TG i 3
S, :ﬁi((aég) pe) C§g>)_(z b, g))((%(g) b ng>)_(a—3 by 0_3))T :

In total we sample L =50000 draws of {9;"”} , for j=0,1,2,3. Thus, the densities

g(|M)) are

g(-|M,)=N(a,,S. )xIG(e,, f,)
gC1M) =N ((a B) .8, |x 16(e,. f)
g(-|M,)=N, ((a_z b_z)T ’Sz)XIG(ez’fz)

g(-|M,) = ((a3 b, c3)T,S3)><1G(e3,f3).

We then calculate the marginal likelihoods for the three types of bridge

estimators reviewed in section 4.5 from

i g®" "M ))"

A~ J J

p(y‘Mj)HB e = 7
Y {p(y|0%9.M)p(0% | M )}

g=

—_
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L - " . 1/2
) Y {p(y 070 M )pO " | M)/ 2@ | M)}
p(y‘Mj)GB ==

3

G 1/2
> {g®% M)/ p(y|09,.M)p®% | M)}

g=l

and

L A~
ZVVz(jI')/(SIVVZ(]I') +5, p(y | Mj)OptB)

p(y| Mj)OptB = IZIG ~
S V(I 5Py M)
g=1

For the optimum estimator we have that
s, =s,=0.75,
W) = p(y |07 M )p(0"" | M,)/g(07"" | M) and
W = p(y |0, M )p®F | M)/ g (O | M).

J

We set as initial values the estimates ;J(y|Mj)GB and iterate the equation 1000

times.
5.3.5 Candidate’s estimators

As discussed in section 4.5 the Candidate’s estimators are based on the identity

p(y10)p(®)
p®y)

which holds for any point 0. The goal is to estimate the posterior

p(y)=

b

ordinate p(8” |y) at point ® which is usually taken to be a high density point with
respect to the posterior density. We select Bj., for j=0,1,2,3 as the point that

maximizes the corresponding log target density of each model M ;.
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5.3.5.1 The Chib Estimator

The Gibbs sample is utilized again in order to implement the method of Chib.
The calculation of the posterior ordinate depends on the dimension of 0, so we

will demonstrate the use of this method for each model separately.

Starting from model 0 we have that p(0,|y) = p(a,,o; |y)=p(o, |a,,y)p(a,|y).
The quantity p(o, |a,,y) can be calculated directly since the full conditional

densities are of known form as we have seen earlier in this chapter. In addition,

we have that
play|y) =] pla; | o3.¥)p(o; | y)doy,

so we obtain the estimate

~ * _ g *
p(ay|Y)=G"Y pla,|o3¥,y).

g=1
Thus, we can estimate the marginal likelihood of model 0 on logarithmic scale

from

~ * * * _ G * >
log p(y | M), =10g p(y | 6;)+log p(8,)—log p(o;" | a,,y) —log(G > p(a, | Gé(é),y)]

g=1
Notice that a reduced Gibbs run was not necessary in order to estimate the

marginal likelihood of model 0.

For model 1 the posterior ordinate can be decomposed similarly
PO 1Y) =p(a.b 0" |y)=p(o] |a,b,y)p(a; |b,Y)p(b |Y).
The ordinate p(o] |a,,b,y) can be calculated directly. Thus, the reduced
ordinates p(a, |b,,y) and p(b, |y) remain to be estimated; we have that
p( 1Y) = [ P} lay, 07 y)p(ay, 07 | y)dados

which yields the estimator

. G
pB IY)=G"D pb |a'®, 00, y).

g=l1
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In addition, we have that

p(a; |5,y) = [ p(a; |B],07,y)p(o] | b, y)o
In order to estimate this ordinate we continue sampling from the distributions
p(olla,b,y) and p(a,|b ,o0,y) keeping b, fixed at point b . We iterate this
Gibbs sampler 51.000 times and discard the first 1000 iterations acquiring in
total a sample L=50.000. The draws {alm,af(”} for /=1,....L, follow the

distribution of a,,o; |b,y. So, we acquire the estimate

VIR _ L PR
pla, |b,y)=L lzp(a1 ’b1a0'12([)a}')-

=1

The marginal likelihood on logarithmic scale is then estimated from

I=1

~ * * * * * _ L * *
log p(y | M), =10g p(y |0)) +1og p(8,)—log p(a; | a;,b, ,y)—log(L " pla; | b, ,af(”,y)j

G
-1og[G-lzp<b: | a#g’,af‘g%y)].

g=l

The estimation of p(y|M,) for model 2 is identical since the two models have
equal number of parameters. The reduced Gibbs run is applied on the

distributions p(o; | a,,b,,y) and p(a, |b,,o;,y), resulting to L draws of {az”),azz“)}

from a,,o; | b,y . Thus, we have

~ L
log p(y [ M) cpp = logp(y|92)+10gp(92)_10gp(0'22 |a2,b2,y)—log(L_IZp(a2 |b2,0'22(1),y)j

=1
G *
~log| G™'Y " p(by |a,*,65y) |.

g=1

Estimating the marginal likelihood of model 3 is more complicated. The

posterior ordinate is decomposed as shown below

(0, |y) = p(a;,b;,c; 05 |y) = p(or | ay,b;,c;,¥) play | b ey, V) p(b; | ;. ¥) ples | Y).
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The first reduced ordinate can be again calculated directly. The last reduced
ordinate can be expressed as p(c; |y):J‘p(c;|a3,b3,<732,y)p(a3,b3,032 \'y)da,db,do;

and therefore, estimated from

ok _ g *
p(03 |y):G IZP(Q |a3(g):b3(g)aa32(g)9Y)'

g=1
In addition, we have that p(b; |c;,y)=jp(b; |a;,c;,01,y)pas, 01 | ¢5,y)dado; . So,
draws from the distribution a;,0; |c;,y are required in order to estimate this
ordinate. Therefore, we sample from the distributions

p(a3 ‘bbc;ao-?ay)a
p(b3 |Cl3,C;,O'32,y),
p(032 | a3ab3ac;:y)a

with ¢, remaining constant at c,. The draws {a3<1),b3(1),0'32(l)} for /=1,...,L, follow

the distribution of a,,b, o7 | c;,y . Thus, we obtain the estimate

Nk * _ L * *
p(bs ey y)=L 1217(173 | a3(1),c3,0'32(1),y) )
=1
again with L equal to 50.000.
Finally, we have that p(a;|b},c;,y)=]p(a;|b;,c;,0,y)p(c3 |b;,cl,y)do; . The
estimation of this integral requires draws from the distributionao; |b;,c;,y.

Therefore, we run a second reduced Gibbs run with the distributions

pla, | b;,c;,0:,y) and p(o; |b;,c;,a,,y) keeping b, and ¢, fixed at points b;,c;.
This reduced run provides draws of {a3(’"),a32(’”)}, for m=1,...M , from the

distribution a;,07 | b;,c;,y and yields the estimator
ok * % 1 M * * % 2
p(Cl3 |b3,C3,y)=M_ ZP(% |b3,6‘3,0'3(m),y),
m=1

with M =50.000. Thus, we can estimate the marginal likelihood of model 3 from
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~ * * * * ook % _ u * * % m
log p(y | M;)c;,, = log p(y | 6;) +log p(8;) —log p(o; !ag,bg,c3,y)—log(M > p(@|b;.c;.07 ),y)J

m=1

L G
—1og[uzp<b; | a;”,c;,asﬂny)j—log(c;lzp@; |a;g>,b;g>,o§<g>,y>j.

=1 g=1

In brief, the calculation of the posterior ordinate for each model required the

following steps:

Model 0:

e Decompose the posterior ordinate as p(ay,o, |y) = p(o; |a,,y)p(a,|y)
e Compute p(o; |a,,y) (known)

~ G
e Estimate p(aq, |y) from p(a,|y)=G "D p(a,|o;®,y)

g=1
Model 1:

e Decompose the posterior ordinate as
p(a).bo7 |y)=p(o |a.b,y)pla |5, ¥)p(b, | y)
e Compute p(o; |a,,b,y) (known)
~ G
o Estimate p(f |y) from p(b; |y)=G" ) p(b |4, 07"y)
-1

e Acquire a sample L from a,,o; | b,y through Gibbs sampling with the

distributions p(o; |a,,b;,y) and p(a, |b,,07,y)

~ L
e Estimate p(a; |b],y) from p(a; |5, y)=L") p(a; |b/,07".y)

=1
Model 2:

e Decompose the posterior ordinate as
p(a;,b;,0,"|y) = p(o; | a;.b,.¥)p(ay | b, ¥)p(b; | y)

e Compute p(o; |a,,b,,y) (known)

~ G
e Estimate p(b, |y) from p(b, |y) = G_IZp(b; |a,9,629y)

g=l
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e Acquire a sample L from a,,o; |b,,y through Gibbs sampling with the

distributions p(o; | a,,b;,y) and p(a, |b,,05,y)

~ L
o Estimate p(a, |b,.y) from p(a; |b,,y)=L"Y p(a, |b;,0,".y)
1=1

Model 3:

e Decompose the posterior ordinate as
playby.c;,07" 1Y) = poi | a5,by,¢;,y) plas | by, ey, ) p(by | ¢, y)p(e; |Y)

e Compute p(o?'|a].b}.c;.y) (known)

~ G
e Estimate p(c; |y) from p(c; |y) =G p(c; |a,?,b,%, ;% y)

g=1

e Acquire a sample L from a3,b3’0'32 |c;,y through Gibbs sampling with the
distributions p(a3 ’ b3 > C;, 032 > Y)a p(b3 | 613 b C;, O-; b y)’ p(az | b; 0-22 H y) and
p(032 ‘ a3,b3’C;>y)

~ L
o Estimate p(b; |C;,y) from p(b; [c;,y) :L_lzp(b3 ]a3(1),c;,032(1),y)
=1

e Acquire a sample M from a, 07 | b;,c;,y through Gibbs sampling with the
distributions p(a3 | b3* s C; s 032 s Y) and p(O'32 | b; H C; s a3 s Y)

2(m)

R M
o Estimate p(a, |by,c;,y) from p(a; | b, 903:Y):Milzp(a3 | by,¢5,05",Y)

m=1

5.3.5.2 The Chib and Jeliazkov Estimator

The posterior ordinate estimator of Chib and Jeliazkov reviewed in section 4.5.2

is based on the equation

a,,;(0,07)9(0,0" | y) p(8|y)d0

o y-1
PO 0000 y)do

As discussed earlier in this chapter we use an independence M-H chain which is
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allowed to depend on the data y, that is ¢(0'",0' |y)=g(0’ |y); see section 5.2.2.
Thus, the posterior ordinate under each model M,, for j=0,1,2,3 is given
by

J@,(0,,6))a(®, 1)p(®, |y, M, )do0
[@,0:(67.6,)(0, | y)d0

p@|y)=

The probabilities of transition in the numerator and denominator are given by

p(013.M,)q(0, 1)

aMH(Gjaej»)zmin 1, lj
P(0,1y.M,)q(0 1)

J

and

p(()j |y’Mj>q(9j' |Y)Ul*

aMH(ej'aﬂj):min 1, lj
p(ﬂj |y’Mf)q(0j |Y);

J

So, we estimate the posterior ordinates p(ﬂj ly), for j=0,1,2,3 from

M
) > a4, (097,0°)9(0' |y)
p@;|y)=21— : :
D4 (87,01

k=1

where 03’") are draws from the M-H outputs and 0;") are draws from the
distributions ¢(8,[y) presented in section 5.1.2. Thus, the marginal likelihood

estimates on logarithmic scale are given by

M
~ > a,,(89”,67)9(8’ |y)
log p(y | M ,)_, =log p(y|0,,M ;) +log p(8, | M) —log| “=—
> a,,(07,01)
k=1

An important remark is that new sampling from the distributions ¢(8,[y) was not

necessary for the implementation of the method. Due to the use of an
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independence chain, we simply kept all the proposed draws from ¢(0,|y) during

the M-H runs. This also means that the sample sizes cancel out in the estimation

of the posterior ordinates since K =M =50.000. In addition, the quantities

q(ﬂj |y) are in fact constant and need to be calculated only once.

5.3.6 Chen estimator

According to this method we estimate the marginal likelihoods p(y [M ;) from

5 . L& g0 M) p(y|6,,M))
log p(y | M )., =log p(y |87, M ,)~log| G L ey Loy
j/Ch J J ;p(egg) |M/) p(y | Q(jg)’Mj)

where ng) are the draws from the Gibbs simulations and Oj. is again the point
which maximizes the log target density under each model M,, for j=0,1,2,3.

The distributions g(-|M;) are approximating densities of the posterior
distributions p(0,|y,M ;). We actually use the same approximating densities

which were utilized for the Bridge sampling estimators; see section 5.3.4.
5.4 Comparing the models

In this example, we have used conjugate priors in order to be able to calculate

the marginal likelihoods under each model p(y|M ) analytically and compare

them with the estimates obtained from each method. In Table 5.9 we present the
true marginal likelihood values on physical scale and on natural logarithmic
scale along with the posterior probabilities under the assumption that each model

is equally probable a-priori, that is p(M;)=0.25 for j=0,1,2,3. Model 2 and

model 3 seem to be clearly preferable from model 0 and model 1. Between the
former, model 2 yields the highest marginal likelihood value and posterior

probability.
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Model 0 Model 1 Model 2 | Model 3
Marginal 7111107 | 1.959%x10° 0.2028 0.1078
Log-Marginal -34.8797 -13.1429 | -1.5953 | -2.2270
Posterior Probability | 2.288x10™" | 6.306x10° 0.6528 0.3471

Table 5.9 Marginal likelihood of the data under each regression model calculated in physical and
logarithmic scale and the resulting posterior probabilities under the assumption that the
competing models are equally probable a-priori. Model 2 yields the highest marginal likelihood
and posterior probability.

In Table 5.10 we compare the models considering twice the natural logarithm of

the Bayes factor.

2InBF,
Model (j)
Model (i) - - - -
Jj=01,/=1|j=21]j =3
i=1 43.47 1 23.1 | -21.83
i=2 66.57 | 23.1 1 1.26
i=3 6531 | 21.83 | -1.26 1

Table 5.10 Comparison of the models based on twice the natural logarithm of Bayes Factors.
Evidence against model 0 is very strong when compared to models 1, 2 and 3. Model 2 is also
very strongly supported in comparison to model 1 but not in comparison to model 3; between
model 2 and model 3, evidence in favor of the former is “not worth than a bare mention”.

Based on the interpretations discussed in section 2.7 we can say that evidence
against the simple model is very strong when compared to models 1, 2 and 3. In
addition, the comparisons of model 2 and model 3 versus model 1, respectively,
indicate very strong evidence against the latter. This is not the case for models 2
and 3; the value 1.26 is not adequate in order to make decisive statements against
model 3 or in favor of model 2.

From the posterior sample acquired by the Gibbs sampler we also evaluate
the AIC, BIC and DIC criteria. The variation of AIC and BIC evaluated at the
posterior mean of the deviance is also computed. Results are summarized in
Table 5.11. In contrast to the marginal likelihoods and Bayes factors which tend
to support model 2, all information criteria conclude to model 3 as the best fitted

model.
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AIC,,.», | AIC; | BIC,,,,, | BIC; | DIC
Model 0 52.56 52.63 55 55.06 | 52.54
Model 1 2.68 2.95 6.34 6.61 2.65

Model 2 -24.32 -23.24 -20.66 -19.59 | -23.97
Model 3 -29.15 -27.59 -24.27 -22.71 | -28.46
Table 5.11 The calculated AIC, BIC and DIC values for each model. AIC and BIC are evaluated
at the minimum value and at the posterior mean of the deviance. All information criteria support
Model 3 which yields the smallest values.

5.5 Comparing results

In this section we will compare results obtained from each method with respect
to the true marginal likelihood values. All estimates except that of Chib and
Jeliazkov were obtained from the Gibbs sampler. The Gibbs and M-H posterior
samples are of size 50.000. The marginal likelihood estimates, calculated on
logarithmic scale and rounded up to four decimal places, are summarized in
Table 5.12.

As we can see the Harmonic Mean (HM) point estimates are more distant
from the true marginal values than any other estimates. The Laplace-Metropolis
method produces in general better results. Among the Laplace-Metropolis

estimators the ones evaluated at the posterior mean (LM,, ) are closer to the

Mean
true marginal likelihoods. Newton and Raftery’s estimators are strongly affected
from the selection of starting values and from the number of iterations. For the
first estimator (NR1) we used the HM results as initial values and iterated the
equation 5000 times. These estimates are substantially better than the HM
estimates but still distanced from the true marginal likelihood values. Using the

LM estimates as initial values resulted to the estimators NR2 and NR3 after

Mean
1000 and 10000 iterations respectively; we can notice that the increase in the
number of iterations resulted to point estimates which are a little closer to the
target values, yet convergence is extremely slow. The Bridge sampling
estimators are among the most accurate; the Geometric (GB) and Optimum
(OptB) point estimates converge to the true marginal values with an accuracy of
two decimal places. Chib’s estimator also produces satisfactory results; its point

estimates for models 1 and 2 are closest to the true marginal likelihood values
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than any other estimates. This is not the case for the Chib-Jeliazkov’s (C-J)
estimates which are actually similar to the Laplace-Metropolis estimates. Finally,
Chen’s estimates are also very close to the target values, especially the point

estimates for models 0 and 3 which are more accurate than any other estimates.

Model

Method Estimators j=0 j=1 j=2 j=3
Harmonic Mean ~

Esti log p(y | Mj)HM -27.0795 | -2.3291 | 10.3757 | 12.3474

stimator

log ;(y | Mj)LM -34.9255 | -12.0834 | -0.0748 | -0.4867

Laplace-Metropolis | log p(y |M ), =~ |-35.0587 | -12.2900 | -0.2847 | -0.7894
Estimators —

logp(y\Mj)LMMEAN -35.1299 | -12.3835 | -0.3738 | -0.8947

log}\?(y|Mj)NRl -35.4089 | -10.8035 | 1.8898 | 3.8843
Newton and =

R , logp(y|Mj)NR2 -35.4137 | -12.4280 | -0.3968 | -0.8966

aftery’s

Estimator log p(y | M ;) s -34.1560 | -12.7516 | -0.5790 | -0.9136

log ;(y | MJ)HB -34.7110 | -13.8097 | -1.4798 | -2.6405

Bridge Sampling | log p(y | MJ.)GB -34.8789 | -13.1437 | -1.5941 | -2.2278
Estimators =

logp(y|Mj)0ptB -34.8788 | -13.1436 | -1.5940 | -2.2275

Candidate’s log p(y | Mj)Chib -34.8792 | -13.1429 | -1.5950 | -2.2305

Fstmators oo p(y M), -32.8172 | -12.4058 | -0.3959 | -0.7456

Chen’s Estimator | log p(y | Mj)Chen -34.8799 | -13.1448 | -1.5931 | -2.2273

TARGET -34.8797 | -13.1429 | -1.5953 | -2.2270

Table 5.12 Marginal likelihood estimates for the four competing regression models resulting from
simulated posterior samples of 50000 draws. Gibbs sampling has been used for all estimators
except that of Chib and Jeliazkov (C-J) which was calculated through the use of Metropolis-
Hastings simulation.

In Table 5.13 we present the posterior probabilities estimates for model 2 and

model 3 obtained from the corresponding marginal likelihood estimates - the
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posterior probabilities of models 0 and 1 are not shown, since they are very close
to zero. Concerning the Laplace-Metropolis and Newton and Raftery’s

estimators, we restrict attention to the estimates LM and NR3 respectively.

Mean
As we can see, the HM method provides clearly the most inaccurate estimates,

since it assigns greater posterior probability in model 3.

Model
Method Estimators j=2 | j=3
Harmonic Mean ~
p(Mj ]y)HM 0.1222 | 0.8778

Estimator

L-M Estimator P(M|Y),,,, |0-6274 | 0.3726

N&REstimator | p(M;|y)ye | 0.5829 | 0.4171

PIM 1Y) 0.7615 | 0.2385
Bridge Sampling | p(M., |¥) gy 0.6533 | 0.3467
Estimators

P(M [ |Y)ops | 0.6533 | 0.3467

Candidate’s | P, [ Ve | 0.6537 | 0.3463

Estimators

P(M 1Y), 0.5866 | 0.4134

Chen’s Estimator | p(M; [Y) ¢, 0.6534 | 0.3466

TARGET 0.6528 | 0.3471

Table 5.13 Posterior probabilities estimates for model 2 and model 3 (the corresponding
estimates for models 0 and 4 are not presented since their posterior probabilities are very close
to zero).

In order to estimate the MC error of the marginal likelihood estimates we use the
batch mean method utilizing 50 batches of size 1000. The batched marginal
likelihood estimates and the corresponding batched MC error (batched standard
deviations) estimates are presented in Table 5.14. The Geometric Bridge (GB)
and Optimum Bridge (OptB) estimates have the smallest batched standard
deviations among all estimators. Chib’s and Chen’s estimates follow; the former

results to lower batched standard deviations for models 0, 1 and 2 while the latter
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has a lower standard deviation for model 3. Among the rest, Chib-Jeliazkov’s
(C-J) estimates have the smallest standard deviations. The methods that result to
the highest deviations are the Harmonic Bridge (HB) and the Harmonic Mean

(HM) methods.

Model

Method Estimators j=0 j=1 j=2 j=3

-26.7117 | -1.8917 | 10.7979 | 12.9799
(0.1011) | (0.1077) | (0.1083) | (0.1338)
-35.1311 | -12.3849 | -0.3751 | -0.8976
(0.0032) | (0.0042) | (0.0035) | (0.0048)
-36.1431 | -12.6974 | -0.5580 | -0.9161
(0.1885) | (0.0439) | (0.0290) | (0.0066)
-35.0194 | -13.5857 | -1.9113 | -2.7294
(0.1719) | (0.1489) | (0.2001) | (0.2022)
-34.8789 | -13.1437 | -1.5941 | -2.2278
(0.0006) | (0.0010) | (0.0010) | (0.0010)
-34.8788 | -13.1436 | -1.5940 | -2.2275
(0.0006) | (0.0010) | (0.0010) | (0.0009)
-34.8792 | -13.1429 | -1.5950 | -2.2302
(0.0007) | (0.0010) | (0.0009) | (0.0036)
-32.8172 | -12.4058 | -0.3959 | -0.7456
(0.0015) | (0.0017) | (0.0024) | (0.0037)
-34.8799 | -13.1447 | -1.5930 | -2.2272
(0.0013) | (0.0021) | (0.0016) | (0.0017)
TARGET -34.8797 | -13.1429 | -1.5953 | -2.2270

Harmonic Mean

log p(y M),

Estimator

Laplace-Metropolis ~
log p(¥ | M )1us, 0

Estimator (at mean)

Newton & Raftery’s ~
log p(y | M ;) yes

Estimator

log p(y| M)

Bridge Sampling | log ;?(y | M j)GB

Estimators

log p(y | M) o,

Candidate’s log p(y [ M ;) ¢y

Estimators

log p(y M),

Chen’s Estimator | log p(y | M_/)Chm

Table 5.14 Batched marginal likelihood estimates and MC error estimates (in brackets) resulting
from 50 batches of size 1000.

In conclusion, we could say that the Geometric and the Optimum Bridge
sampling estimators, Chib’s candidate’s estimator and Chen’s estimator are the
methods which perform substantially better according to the aforementioned
results. The ergodic means plots of these estimates for all four competing models

are presented in Figures 5.1 to 5.4. One can notice the slightly higher batched
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MC error resulting from Chen’s method for models 0, 1 and 2 and from Chib’s

method for model 3.

Model O

Geometric Bridge Estimator
Optimum Bridge Estimator
Gibbs Estimator

Chen Estimator

Target

-34.865

-34.885 -34.880 -34.875 -34.870
] II ]

-34.890

Figure 5.1 Ergodic mean plots for the four marginal likelihood estimates of model 0 which
perform better, the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s
estimators. The black dashed line represents the true marginal density of model 0.

Model 1

-13.145

-13.150

Geometric Bridge Estimator
Optimum Bridge Estimator
Gibbs Estimator

Chen Estimator

Target

-13.155

T T T T T T
(0] 10 20 30 40 50

Figure 5.2 Ergodic mean plots for the four marginal likelihood estimates of model 1 which
perform better; the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s
estimators. The black dashed line represents the true marginal density of model 1.
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Model 2

Geometric Bridge Estimator
Optimum Bridge Estimator
Gibbs Estimator

Chen Estimator
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]
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-1.600
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Figure 5.3 Ergodic mean plots for the four marginal likelihood estimates of model 2 which
perform better, the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s
estimators. The black dashed line represents the true marginal density of model 2.

Model 3

Geometric Bridge Estimator
Optimum Bridge Estimator
Gibbs Estimator

Chen Estimator

Target

2205
]

2230 2225 -2220 -2215 -2210
] ] ] ] ]

2235
|
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Figure 5.4 Ergodic mean plots for the four marginal likelihood estimates of model 3 which
perform better, the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s
estimators. The black dashed line represents the true marginal density of model 3.
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Despite that not all of the methods result to accurate marginal likelihood
estimates some may still produce results that are accurate enough for
interpretation of Bayes factors on logarithmic scale. Point estimates of twice the
natural logarithm of the Bayes Factor of model 2 versus model 3 are shown in

Table 5.15.

Method | Point Estimates of 21n BF,
Harmonic Mean 71 B/F\ 30432
n -3.
Estimator 23 (HM)
Laplace-Metropolis —
) 21nBF23(LM ) 1.0418
Estimator (at mean) MEAN
Newton & Raftery’s 71 B/F\ 0.6669
n .
Estimator 23 (NR3)
21nBF23(HB) 2.3214
Bridge Sampling | 21n BF,, (B) 1.2675
Estimators ——
21nBF23(osz) 1.2670
Candidate’s 21nBF23(Chib) 1.2711
Fstmators | 2 BF, ., 0.6442
Chen’s Estimator | 2In BF), (Chen) 1.2684
TARGET 1.2635

Table 5.15 Point estimates of twice the natural logarithm of the Bayes Factor of model 2 versus
model 3; the Optimum and Geometric bridge sampling estimates (OptB and GB) along with
Chib’s and Chen’s estimates are closer to the true value.

The methods which perform well in the estimation of the marginal likelihoods
produce of course satisfactory points estimates; the Optimum Bridge (OptB)
estimate is closer to the true target value than any other estimate while the
Geometric Bridge (GB), Chen’s and Chib’s estimates follow. The Laplace-
Metropolis approximation also results to a fairly satisfactory estimate (LM, ).
Chib-Jeliazkov’s (C-J) and Newton and Raftery’s (NR3) estimates are more

distant from the target value, yet these estimates do not affect the interpretation
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of 2InBF,,. Unlikely, the Harmonic Bridge estimate (HB) indicates stronger
evidence in favor of model 2 and therefore affects the interpretation. The
Harmonic Mean (HM) estimate changes the interpretation totally from “weak
evidence in favor of model 2” to “positive evidence against model 2”.

Batched estimates of 2InBF,;, and the corresponding MC errors along with

95% confidence intervals resulting from the percentiles of the 50 batches are presented in

Table 5.16.

Method Estimator Batched point estimates | 95% Percentiles C.I.
Harmonic Mean —
] 2In BF23(HM) -4.3640 (0.3409) (-9.1272,-0.1488)
Estimator
Laplace-Metropolis —
) 21nBF23(LM ) 1.0449 (0.0121) (0.8850,1.2286)
Estimator (at mean) MEAN
Newton & Raftery’s 21 Z?F\ 0.7194 (0.0618) (-0.0922 ,1.0168)
n ) . -0. ,1.
Estimator B (NR3)
2lnBF23(HB) 1.6361 (0.5543) (-6.3735, 8.3093)
Bridge Sampling 2In BFB(GB) 1.2675 (0.0026) (1.2388,1.2983)
Estimators ——
2In Ban(optB) 1.2669 (0.0026) (1.2340,1.2977)
Candidate’s 2In BF23(Chib) 1.2705 (0.0072) (1.1683,1.3715)
Estimators 2In BFy, ., 0.6445 (0.0069) (0.5525,0.7282)
Chen’s Estimator | 2In BFB(CM) 1.2684 (0.0046) (1.2096,1.3276)
TARGET 1.2635

Table 5.16 Batched estimates of twice the natural logarithm of the Bayes factor of model 2 versus
model 3 and the corresponding MC errors (in brackets), derived from 50 batches of size 1000.
The 95% confidence intervals resulting from the percentiles of the 50 batches are shown in the
last column to the right .The Optimum (OptB) and the Geometric (GB) bridge sampling
estimators produce the smallest batched standard deviation.

The Geometric (GB) and Optimum Bridge (OptB) sampling methods result again
to accurate point estimation and to the lowest batched MC errors. Chen’s and
Chib’s estimates follow with the latter resulting to a slightly higher batched

standard deviation. Chib-Jeliazkov’s (C-J) estimate is far from the target value
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but results to a small batched standard deviation, while the Laplace-Metropolis

estimate (LM,,, ) is closer to the target value but yields a higher batched

standard deviation. Nevertheless, none of the latter two estimates affect the
interpretation of the Bayes Factor. This is not the case for the rest of the
estimates especially for the Harmonic Bridge (HB) and Harmonic Mean (HM)
estimates which result to the highest batched MC errors.

5.6 Summary

In this chapter we implemented the marginal likelihood estimation methods
reviewed in chapter 4 for four linear regression models. Metropolis-Hastings
simulation and Gibbs sampling were utilized in order to acquire posterior
samples from the four competing models. Posterior summaries for the
corresponding parameters of each model resulting from both simulation methods
were presented.

We then described the implementation process for each estimation method
and finally compared the resulting marginal likelihood, Bayes Factor and
posterior probability estimates with respect to the true values of the
corresponding quantities. The main conclusions derived from the preceding
analysis are the following:

e The Optimum and Geometric Bridge sampling estimators performed overall
better than the rest of the methods. They produced accurate point estimates
and the lowest batched standard deviations for all models.

e Chib’s and Chen’s estimates were also accurate with relatively low batched
standard deviations but without displaying the same stability among the
different models.

e The Harmonic Bridge and Harmonic mean estimators - especially the latter
- proved to be unstable; the resulting estimates were not accurate even for
interpretations of Bayes Factors on logarithmic scale.

e The rest of the methods produced results satisfactory enough for

interpretations of Bayes Factors on logarithmic scale.
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Chapter 6: Conclusions and Further Discussion

6.1 Conclusions concerning the marginal likelihood estimators

Based on the implementation process and on the results obtained and presented
in the previous chapter certain final remarks can be made for each marginal
likelihood estimation method reviewed in this thesis.

The Harmonic Mean method is easy to implement but it is clearly unstable
and fails to estimate accurately the marginal likelihood. The resulting estimates
were more distant from the true values than any other estimate. In addition, its
results proved to be unsafe for interpretation of Bayes Factors on the logarithmic
scale.

The Laplace-Metropolis method is based on an approximating result;
hence the estimates derived from this method were not accurate. Despite this fact
it is easily implemented and can it can produce results that are accurate enough
for interpretation on logarithmic scale.

The Newton and Raftery’s method provided estimates which were closer
to the true marginal likelihood values but still not accurate enough. In addition,
its iterative process required substantial computer time since convergence proved
to be slow. As discussed in section 4.4, this method requires sampling from the
prior distribution therefore the results presented in this thesis may be affected

from the extremely vague prior selection for the linear regression nuisance

parameter af , for models j=0,1,2,3.

The Harmonic Bridge sampling estimates were in general close to the true
marginal likelihood values but shared the instability of the Harmonic Mean
estimates. These estimates resulted to the highest batched standard deviations
and have proven to be unsafe for interpretation of Bayes Factors between models
with similar marginal likelihoods. Contrary, the Geometric and Optimum
estimators have proven to be more accurate and stable than all other estimates;
the results were accurate to the second decimal place for all models and had the

lowest standard errors observed. In addition, these methods were easier to
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implement and less time consuming than other methods. As discussed in section
4.5 Bridge sampling techniques are based on the existence of an approximating
density. So, as long as a satisfactory approximating density can be found, Bridge
sampling seems to be the most trustworthy method of marginal likelihood
estimation. This implies that Bridge sampling may be difficult to implement in
high dimensional problems; nevertheless, increased dimensionality is a setback
for nearly all methods.

The Candidate’s method produced diverse results. The Gibbs sampling
based method of Chib resulted to satisfactory estimates which were accurate and
had relatively small standard errors. More specific, Chib’s method provided the
most accurate marginal likelihood point estimates for two out of the four
competing models. However, the method can be time consuming in terms of
computer programming, especially for high dimensional cases, although radically
new programming is not required and clever blocking of the parameter vector
may facilitate the implementation process. Chib’s method has also received
criticism; Neal (1999) argues that this method produces bias for marginal
likelihood estimates of mixture models, hidden Markov models and other models
with similar symmetries; see also Frithwirth-Schnatter (2004). The Metropolis-
Hastings based method of Chib and Jeliazkov did not perform as well as the
method of Chib. Despite the small batched standard deviations, the resulting
estimates were not as accurate as the estimates derived from the method of Chib.
Nevertheless, they proved to be safe for interpretation of Bayes Factors on
logarithmic scale. The method is rather computationally intense; as we have seen
in section 4.6.2 it is based on the reversibility of the sub-kernel of the
Metropolis-Hastings algorithm and therefore requires draws from the proposal
distributions and calculation of probabilities from these densities. So, clever
blocking is recommended before implementing this method in high dimensional
problems. In addition, experimenting with alternative choices such as the
multivariate t distribution instead of the multivariate normal distribution may

result to more accurate estimates than those presented in this thesis.
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Finally, the method of Chen also resulted in satisfactory estimates and low
standard errors. Two of the marginal likelihood point estimates were more
accurate than the corresponding Optimal estimates of Bridge sampling but
overall batched standard deviations were higher. Viewed as a generalization of
the Candidate’s method, the method of Chen has certain advantages with respect
to the former; first it does not depend on the specific form of the MCMC
sampling process and second it is less time consuming and much easier to
implement. As with Bridge sampling the method of Chen requires an
approximating density, therefore, performance actually depends on the precision

of the approximation.

6.2 Further discussion

As we have seen, all methods investigated in this thesis are “direct” methods
which use existing MCMC posterior samples in order to estimate marginal
likelihoods of separate models and then evaluate the corresponding Bayes
Factors; this by itself implies much effort when the number of competing models
is large. Alternatives to these “direct” methods are existing MCMC algorithms
like the RIMCMC algorithm (Green, 1995), the Carlin and Chib algorithm
(Carlin and Chib, 1995) and the Metropolised Carlin and Chib algorithm
(Dellaportas et al., 2002). These methods sample simultaneously over parameter
and model space and deliver posterior model probabilities. Yet, neither the
implementation of such methods is effortless since they require careful
specification of all competing models along with certain tuning constants in
order to ensure successful mixing in model space. In addition, they do not
perform always better; Han and Carlin (2001) compare some of the
aforementioned methods and the method of Chib in linear regression models and
conclude that Chib’s point estimate is more accurate than those of five of the
other six methods.

Finally, Bayes Factors themselves have received some criticism for not

always being the safest solution regarding model selection. The main argument
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against Bayes Factors is their apparent sensitivity to the specification of the prior
distribution. The sensitivity of Bayes Factors to prior selection can be observed
for both proper and improper prior distributions, yet the latter case is more
problematic since Bayes Factors are not interpretable under improper priors; see
Kass and Raftery (1995) and Draper (1995) and the associated discussion.

Several authors proposed alternative versions of Bayes Factors in order to
cope with this problem. Among them, Aitkin (1991) proposed the use of
Posterior Bayes Factors which remain interpretable under improper priors, while
O’Hagan (1995) introduced the Fractional Bayes Factors based in the use of a
training sample in order to acquire prior information.

Alternative options to Bayes Factors regarding model selection are also
available. As already mentioned, the simplest option is the use of Information
Criteria. More elaborate approaches are mainly based on predictive schemes;
Geisser and Eddy (1979) were among the first to propose the use of conditional
predictive densities for model selection, Gelfand et al. (1992) argue that model
selection remains closely linked to model assessment and proposed several cross-
validatory analyses of predicted residuals, Laud and Ibrahim (1995) introduced
three model selection criteria based on the predictive density while Waller et al.
(1997) extended their methods, Greenberg and Parks (1997) recommended the
examination of changes in predicted means and general variance ratios. Finally,
Gelfand and Ghosh (1998) introduced a more general approach, based on loss

functions, which aims to minimize the posterior predictive loss.
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