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ABSTRACT 

 

 
Konstantinos Perrakis 

 

 

Comparison of MCMC Methods for the Estimation of the 

Marginal Likelihood for Bayesian Model Evaluation 

 
January 2008 

 

 

 

 
Model selection is the final and perhaps the most significant stage of 

statistical inference. In this thesis we examine this aspect of statistical 

inference from a Bayesian perspective. Bayesian statistics are established on a 

theory whose origins date back to the 18th century, yet they were not broadly 

used for many years since in most of the cases researches had to confront 

intractable, high dimensional integrals. However, the evolution in computer 

technology and the advent of simulation methods made the implementation of 

Bayesian ideas practically feasible. In particular, the recent Markov Chain 

Monte Carlo methods proved to be powerful implementation tools for 

researchers. 

 In this thesis, we examine how Markov Chain Monte Carlo methods 

can advocate Bayesian analysis not only with respect to single model 

investigation but also with respect to model comparison. Formal Bayesian 

model comparison is based on the evaluation of the marginal likelihoods data 

of the models under comparison. Through these conditional probabilities, one 

can subsequently calculate quantities such as the Bayes Factors and the 

Posterior Odds of competing models. Our aim is to present and evaluate 

several simulation-based methods that intend to estimate the marginal 

likelihood.                    

 IX



 

 

 

 X



ΠΕΡΙΛΗΨΗ 

 

 
Περράκης Κωνσταντίνος 

 

 

Σύγκριση μεθόδων προσομοίωσης Monte Carlo με χρήση 

Μαρκοβιανών Αλυσίδων για την Εκτίμηση Περιθώριων 

Πιθανοφανειών για την Μπεϋζιανή Αξιολόγηση Μοντέλων  
Ιανουάριος 2008 

 

Η επιλογή μοντέλου είναι το τελικό και ίσως το σημαντικότερο στάδιο της 

στατιστικής συμπερασματολογίας. Σε αυτήν την εργασία εξετάζουμε την 

επιλογή μοντέλου από την Μπεϋζιανή σκοπιά. Παρότι οι αρχές της 

Μπεϋζιανής θεωρίας ανάγονται στον 18ο αιώνα, η στατιστική κατά Bayes δεν 

είχε ευρεία διάδοση για αρκετά χρόνια, καθώς στις περισσότερες περιπτώσεις 

οι ερευνητές ήταν αναγκασμένοι να αντιμετωπίσουν δυσεπίλυτα 

ολοκληρώματα υψηλής τάξης. Όμως η ανάπτυξη των υπολογιστών και η 

εμφάνιση μεθόδων προσομοίωσης έκανε την εφαρμογή της Μπεϋζιανής 

θεωρίας πρακτικά δυνατή. Ειδικότερα, οι πρόσφατες μέθοδοι προσομοιώσης 

Monte Carlo με την χρήση Μαρκοβιανών αλυσίδων (MCMC) συνέβαλλαν 

αποφασιστικά στην διεκπεραίωση της Μπεϋζιανής ανάλυσης. 

 Στην παρούσα διατριβή εξετάζουμε πως οι μέθοδοι MCMC μπορούν να 

υποβοηθήσουν την Μπεϋζιανη ανάλυση όχι μόνο όσον αφορά στην 

διερεύνηση μεμονωμένων μοντέλων, αλλά και στην σύγκριση μεταξύ 

μοντέλων. Η κατά Bayes σύγκριση μοντέλων βασίζεται στον υπολογισμό των 

περιθώριων πιθανοφανειών των παρατηρούμενων δεδομένων των υπo 

σύγκριση μοντέλων. Μέσω αυτών των δεσμευμένων πιθανοτήτων μπορούν να 

υπολογιστούν οι παράγοντες Bayes (Bayes Factors) και οι εκ των υστέρων 

λόγοι σχετικών πιθανοτήτων (Posterior Odds) μεταξύ των συγκρινόμενων 

μοντέλων. Στόχος της παρούσας διατριβής είναι η παρουσίαση και η 

αξιολόγηση συγκεκριμένων μεθόδων προσομοιώσης που αποσκοπούν στην 

εκτίμηση  των περιθωρίων πιθανοφανειών.  
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Chapter 1: Introduction 
 

1.1 Purpose of the thesis 

 

Model selection is among the dominant issues in statistical analysis. This thesis 

is concerned with this issue from a Bayesian viewpoint. The formal Bayesian 

approach towards model selection is based on the calculation of marginal 

likelihoods, through which we can evaluate the Bayes Factors, the posterior 

probabilities and the posterior odds of competing models. 

Unfortunately, direct calculation of marginal likelihoods is in most of the 

cases cumbersome or even impossible, since it requires analytic solutions of high 

dimensional integrals. As we will see Monte Carlo and subsequent Markov Chain 

Monte Carlo methods offer the most trustworthy estimates of high dimensional 

integrals. The main purpose of this thesis is to present and evaluate the available 

simulation-based estimators of the marginal likelihood.  

              

1.2 Structure of the thesis 

 

Chapter 2 focuses on the main aspects of Bayesian theory. In the first sections 

the reader is familiarized with the concepts of the prior and the posterior 

distribution which form the basis of Bayesian theory. In the following sections 

we present in brief the main inferential tools most commonly used in Bayesian 

analysis. 

 The subject of chapter 3 is Markov Chain Monte Carlo. The concepts of 

Monte Carlo integration and Markov chains are succinctly described; a thorough 

theoretical investigation of these fields is not provided since it would exceed the 

context of this thesis. Instead, attention is drawn to the basic Monte Carlo 

Markov Chain algorithms; the Metropolis-Hastings algorithm, the Gibbs sampler 

and the Metropolis within Gibbs algorithm. Theoretical aspects of the 

aforementioned algorithms are examined and their use is described in detail. We 
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then implement these algorithms in two regression problems, the first is a normal 

linear regression example and the second a logistic regression example. 

In chapter 4 a review of the simulation-based marginal likelihood 

estimation methods is given. Each method is described in brief and practical 

implementation issues are discussed. 

Implementation and evaluation of the methods is the main topic of chapter 

5. The first data set presented in chapter 2 is re-examined by taking into account 

four competing regression models. Metropolis-Hastings and Gibbs sampling 

simulations are utilized in order to acquire posterior samples and posterior 

summaries for each model. The competing models are then compared based on 

the true marginal likelihood values. Finally, we present the results obtained from 

each estimation method and compare the estimates with the true values of the 

marginal likelihoods, the posterior probabilities and the Bayes Factors.   

Conclusions are summarized in chapter 6. Each method is evaluated 

according to the corresponding results and from the overall implementation 

experience. Further discussion regarding alternative model selection approaches 

is also provided. 

 

All computations and plots presented in this thesis were carried out in the R 

programming language, version 2.5.  
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Chapter 2: The Bayes Approach 
 

2.1 Introduction 

 

Bayesian theory is based on the original 1763 paper of Rev. Thomas Bayes, an 

English minister and mathematician. In this paper, inference for the parameters 

of a Binomial distribution is achieved by conditioning on the data which are also 

Binomial. The area generated some interest by Gauss, Laplace and other 

mathematicians of the time. In 1774 Laplace presented the general form of the 

Bayes theorem.  

 Unfortunately, most of the early 20th century statisticians ignored this 

field of work. In 1939, a physicist named Harold Jeffreys reintroduced Laplace’s 

work. Jeffreys, along with the econometrician Arthur Bowley, argued on behalf 

of Bayesian ideas during this period. Bayesian methods achieved recognition 

only after 1950, when many statistical researchers began to advocate this 

methods as remedies for certain deficiencies of the classical or frequentistic 

approach, such as the interpretation of the classical confidence interval in any 

single data experiment or the violation of the Likelihood Principle (Carlin and 

Louis, 1996, p.2-5). 

 The main difference between the classical approach and the Bayesian 

approach is rather philosophical in nature. The classical approach assumes a 

probability distribution (likelihood) for the data and considers the unknown 

parameters as fixed. The frequentistic uncertainty originates from the repetition 

of samples, so the evaluation procedures are based on repeated sampling, 

imagining an infinite replication of the same inferential problem for fixed values 

of the unknown parameters. The Bayesian approach considers the unknown 

parameters as random variables, so it assumes a sampling distribution 

(likelihood) along with a prior distribution for the parameters. The Bayesian 

uncertainty comes from the parameters, so the evaluation procedure is based on 

an infinite sampling experiment of parameters drawn from the distribution which 

is conditional on the data that is, the parameters posterior distribution. In 
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general, a frequentist conditions on the parameters and then replicates over the 

data, while a Bayesian conditions on the data and then replicates over the 

parameters (Carlin and Louis, 1996, p.6).  

 

2.2 The Bayes’ Theorem 

 

The Bayesian approach specifies for observed data ( )1 2, ,..., ny y y=y  a sampling 

distribution ( | )p y θ , that is the likelihood of the data given the parameter vector 

( )1 2, ,..., kθ θ θ=θ . The parameter vector θ  is also considered as a random quantity 

having a prior distribution ( )p θ . This is the distribution of θ  before the data are 

observed. The joint distribution of and y θ  can be expressed as a product of these 

two densities 

( , ) ( | ) ( )p p p=y θ y θ θ . 

 

From the basic properties of conditional probabilities we obtain the distribution 

of θ  given the data y  

( , ) ( | ) ( )( | )
( ) ( )

p p pp
p p

= =
y θ y θ θθ y
y y

, 

 

where ( )p y  is the marginal likelihood of the data given by ( ) ( | ) ( )p p p=∑
θ

y y θ θ  

if θ  is discrete or by ( ) ( | ) ( )p p p d= ∫
θ

y y θ θ θ  if θ  is continuous. This formula is 

known as the Bayes’ Theorem and ( | )p θ y  denotes the posterior distribution of 

θ , that is the distribution of θ  after observing the data. 

 All Bayesian inference about θ  is based on the posterior distribution 

which contains information from both the experimental data and the prior beliefs 

about θ . It should be noted that the prior and posterior distributions are always 

relative to the observations considered at a given moment (Gamerman and Lopes, 

2006, p.44); after observing y  and obtaining the posterior, new observations  
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newy ,  related to θ  through an eventually different likelihood function, could 

become available. Then, the posterior of y  can be considered as the prior for newy  

and we can obtain the posterior of newy  by a new application of the Bayes’ 

theorem.    

 The marginal likelihood provides the expected distribution of y  as 

[ ]( ) ( | )p E p=y y θ  and the expectation is taken with respect to the prior 

distribution of θ . It is also referred to as the integrated likelihood or as the prior 

predictive distribution. Marginal likelihood probabilities are of great importance, 

since they are required for the calculation of Bayes Factors (see section 2.7). 

According to Kass and Raftery (1995), ( )p y  can be interpreted as the predictive 

probability of the data; that is, the probability of seeing the data that were 

actually observed, calculated before any data were available.      

 Since, ( )p y  does not actually depend on θ , we can acquire the 

unnormalized posterior distribution from    

 

( | ) ( | ) ( )p p p∝θ y y θ θ . 

 

The above expression is often useful in Bayesian statistics, since it can 

significantly simplify the calculation of the posterior distribution.  

 

2.3 Prior distribution 

 

Determination of the prior distribution has vital importance in Bayesian 

statistics. Prior distributions are usually specified from information accumulated 

from past studies or from the opinions of subject area experts. When there is 

little or no available information about the parameters in question, then vague or 

non-informative distributions are adopted (Carlin and Louis, 1996, p.27-37).  

 

 

 



 6

2.3.1 Elicited Priors 

 

A rational approach in specifying ( )p θ  is to initially distinguish the values of θ   

which are deemed as ‘possible to occur’ and then to assign point masses which 

sum up to one in a way that reflects the prior beliefs. When θ  is continuous 

probability masses are assigned in intervals instead of points, resulting in a 

histogram prior for θ . Of course, this approach can be time consuming especially 

when θ  is multivariate. A simpler solution is to assume that the prior density 

belongs to a parametric distributional family ( | )p θ η , choosing η  so that the 

resulting distribution expresses prior beliefs as nearly as possible.  

 

2.3.2 Conjugate Priors 

 

When the prior is a known distribution of the form ( | )p θ η , then some choices of 

( | )p θ η  are more convenient for the calculation of the posterior distribution than 

others. More specifically, we may choose a member of the distributional family 

which is conjugate to the likelihood ( | )p y θ . This results to a posterior 

distribution which belongs to the same distributional family with the prior. 

Obviously, the use of conjugate priors simplifies considerably the computation 

of the posterior. 

 An important result presented by Morris (1983) is that distributions 

belonging to the exponential family always have a conjugate prior. In most of the 

cases, the sampling distribution is drawn from the exponential family therefore 

conjugate priors are broadly used. Additional information on the conjugate 

property of distributions belonging to the exponential family can be found in 

Consonni and Veronese (1992) and Gutierrez-Pena and Smith (1995). 

 When the use of a single conjugate prior is not adequate in terms of 

expressing prior beliefs accurately enough, then a mixture of conjugate prior 

distributions may be used in order to improve the accuracy. Mixtures of 

conjugate priors are more flexible and still simplify calculations. As shown in 
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Dalal and Hall (1983) a mixture of conjugate priors leads to a mixture of 

posteriors.  

 

2.3.3 Non-informative Priors 

 

In many cases there is no reliable prior information concerning θ  or objective 

inference based solely on the data is desired. In these cases the prior density ( )p θ  

should contain no information about θ  in the sense that no value of θ  should be 

favored over another. Such priors are called vague or non-informative.  

 When the parameter space is discrete and finite, that is 

{ }1 2, ,..., nθ θ θ θ∈ =Θ  then the distribution  

1( ) ,   1, 2,...ip i n
n

θ = = , 

is obviously non-informative since all values of θ  are equally probable. 

 When the parameter space is continuous and bounded, say [ , ]a bθ ∈ =Θ , 

with a b−∞ < < < ∞  then a non-informative prior is given by the uniform 

distribution  

1( ) ,   p a b
b a

θ θ= < <
−

. 

In the case of an unbounded parameter space like ( , )= −∞ ∞Θ  the appropriate 

uniform prior has the form  

( ) ,   0p c cθ = > . 

This distribution is improper, since ( )p dθ θ = ∞∫ . Hence its use as a prior seems 

inappropriate. But if the integral of the likelihood with respect to θ  is finite then 

the resulting posterior distribution is proper, so inference is still feasible. 

 One drawback of the uniform distribution is that it is not invariant to 

reparametrization. This means that ( )p θ  may be non-informative for θ , but ( )p γ  

may be informative to γ , where ( )gγ θ= . A solution to this is the use of the 

Jeffreys’ non-informative prior which is invariant to transformations (Jeffreys, 

1961). Jeffreys’ prior has the form 
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1 2( ) ( )p I=θ θ , 

where ( )I θ  is the expected Fisher information matrix, having ij – element 

2

|( ) log ( | )ij
i j

I E p
θ θ

⎡ ⎤∂
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
XΘθ x θ . 

Calculating ( )I θ  can be cumbersome in high dimensional problems, so the 

common approach is to obtain a Jeffreys’ prior for each parameter individually 

and then form the joint prior from the product of the individual priors. In 

addition, Jeffreys’ prior seems to face difficulties in multi-parameter problems 

where only a subset or one or more parametric functions of the parameter vector 

θ  are of inferential interest and the remaining are nuisance parameters. 

Information over the use of Jeffreys’ prior for Generalized Linear Models (GLM) 

can be found in Ibrahim and Laud (1991). 

 Bernando (1979) introduced the so-called reference prior approach for 

deriving non-informative priors in multiparameter cases by splitting the 

parameter vector into parameters of interest and nuisance parameters. 

Information over reference priors can be found in the paper of Berger and 

Bernando (1992) who extended further the idea of Bernando (1979). Alternative 

proposals in constructing reference priors were presented by Ghosh and 

Mukerjee (1992); comparison of different constructing approaches for  reference 

priors can be found in the papers of Datta and Ghosh (1995, 1996). Additional 

information regarding the use and selection of non-informative priors is provided 

by Kass and Wasserman (1996).               

 

2.4 Summarizing posterior information 

 

After obtaining the posterior, it is meaningful to summarize the information 

provided by it. For this, we rely mainly in certain location and dispersion 

measures. In addition, credible sets or credible intervals of the parametric space 

are often presented. 
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2.4.1 Location and dispersion measures 

 

Location and dispersion measures provide an image of the possible central values 

and of the variability of the posterior distribution, respectively. 

 The common choices for the location measures are the mean, the mode 

and the median of the posterior distribution. These measures correspond 

respectively to the expected value of θ , the most likely value of θ  and the value 

of θ  which divides the parametric space in two equal probability parts 

(Gamerman and Lopes, 2006, p.47). When the posterior is symmetric the mean 

and median will be identical; for symmetric and unimodal posterior distributions 

all three measures will coincide. In the case of an asymmetric posterior the 

median is often preferred since it is intermediate to the mode and the mean 

(Carlin and Louis, 1996, p.39). Most often, the mode will be numerically harder 

to find, especially when θ  is multivariate. As a result, the posterior mode is 

usually approximated through the use of maximization algorithms. 

 The main dispersion measures are the posterior variance, the standard 

deviation, the precision, the interquartile range and the curvature at the posterior 

mode. When  θ  is multivariate the variance is given by the posterior covariance 

matrix; in this case the standard deviation is the vector of square roots of the 

diagonal elements of the covariance matrix. Posterior precision is given by the 

inverse of the covariance matrix, while the curvature at the mode is given by the 

matrix of the second derivatives of log ( | )p− θ y  evaluated at the posterior mode 

(Gamerman and Lopes, 2006, p.47).       

 

2.4.2 Credible sets 

 

The Bayesian analogue of a frequentist confidence interval is called a credible 

set. According to Carlin and Louis (1996, p.42) a 100 (1 )%a× −  credible set for 

∈θ Θ  is a subset C ⊆Θ  such that  

1 Pr( | ) ( | )
C

a C p d− ≤ = ∫y θ y θ , 
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where integration is replaced by summation over discrete components of θ . In 

contrast to the classical confidence interval interpretation this definition enables 

direct probability statements about the likelihood of  θ  falling in C.  The 

interpretation of this credible set is  

 

“The probability that θ  lies in C given the observed data is at least  (1 )a− ”. 

 

When the posterior is asymmetric or multimodal then it would be preferable to 

obtain the Highest Posterior Density (HPD) credible set, which groups together 

the “most likely” values of θ  and hence is narrower than the equal tail credible 

set. Yet, obtaining the HPD credible set is not straightforward, since it requires 

solving iteratively a non-linear equation. Wright (1986) presented an iterative 

method for univariate cases; Ghosh and Mukerjee (1995) and Hyndman (1996) 

introduced iterative solutions for multivariate cases.    

 

2.5 Predictive distribution 

 

An important issue in statistical analysis is the ability to make inference about 

future observations. In Bayesian statistics this comes naturally from the use of 

the predictive distribution. 

 Suppose that 1ny +  is a future observation independent of ( )1 2, ,..., ny y y=y  

conditional on θ . Then the distribution of 1 |ny + y  is given by 

1 1

1 1

1 1

( | ) ( , | )

( | ) ( | , ) ( | )

( | ) ( | ) ( | )

n n

n n

n n

p y p y d

p y p y p d

p y p y p d

+ +

+ +

+ +

= ⇔

= ⇔

=

∫
∫
∫

y θ y θ

y θ y θ y θ

y θ θ y θ

 

since 1ny +  and y  are conditionally independent. 

 The predictive distribution provides information for new observations 

given the likelihood, the prior and the data observed. It is also referred to as the 

posterior predictive distribution, in contrast to the marginal likelihood (the prior 

predictive distribution), since it is the expected distribution of a future 
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observation 1ny +  as [ ]1 1( | ) ( | )n np y E p y+ +=y θ  and the expectation is taken now 

with respect to the posterior distribution of θ .  

 The predictive distribution forms the basis of the predictive inference 

within the Bayesian paradigm. According to the predictive approach, inference 

about parameters is not possible since they are not observed. In contrast, the 

predictive distribution is defined in terms of observable values of the dependent 

variable and seems to be the natural instrument for decisions concerning model 

adequacy and model selection. 

 Several model selection methods and criteria have been generated by this 

approach; see Geisser and Eddy (1979), Laud and Ibrahim (1994), Greenberg and 

Parks (1997) and Gelfand and Ghosh (1998). These methods can be viewed as 

alternative options to Bayes Factors which are the formal Bayesian approach 

regarding the issue of model selection; see section 2.7.                          

 

2.6 Bayesian p-values 

 

Bayesian p-values or posterior predictive p-values are based on posterior 

predictive checks. Posterior predictive checks are used to evaluate the fit of a 

model and are in fact generalizations of the classical tests in that they average 

over the posterior distribution rather than fixing the unknown parameter at some 

point �θ  (Gelman et al., 1993). To evaluate the fit of a model we compare the 

observed data y  to the predictive or replicated data repy  drawn from the 

predictive distribution. The discrepancy between observed and expected data is 

measured through test quantities ( , )T y θ  which can be functions of the unknown 

parameters as well as the data. When the distribution of the test quantity is free 

of θ , then ( , ) ( )T T≡y θ y  is a pivotal quantity and the Bayesian p-value concurs 

with the frequentist p-value (Gelman et al., 1993).   

 The Bayesian p-value is defined by Rubin (1984) as the probability that 

the replicated data could be more extreme than the observed data, as measured by 

the test quantity 
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( )Bayes p-value Pr ( , ) ( , ) |repT T= ≥y θ y θ y , 

 

where the probability is defined over the posterior distribution of θ  and the 

predictive distribution of repy , thus 

 

( )( , ) ( , )
Bayes p-value ( | ) ( | )rep

rep rep
T T

I p p d d
≥

= ∫ ∫ y θ y θ
y θ θ y θ y , 

 

where ( )( , ) ( , )repT T
I

≥y θ y θ
 is the indicator function given by 

( )( , ) ( , )

1,    ( , ) ( , )
0,    ( , ) ( , ).rep

rep

repT T

T T
I

T T≥

⎧ ≥⎪= ⎨
<⎪⎩

y θ y θ

y θ y θ
y θ y θ

 

 

It should be noted that Bayesian p-values serve only as measures of discrepancy 

between the assumed model and the observed data, providing information 

concerning model adequacy, and they should not be compared across models 

(Carlin and Louis, 1996, p.57). 

 Since Bayesian p-values are in fact measures of discrepancies, there are 

no general rules when choosing a test quantity. According to Gelman et al. 

(1993) the choice of test quantities should reflect our inferential interests; a test 

quantity can be any function of the data alone or of the data along with the 

unknown parameters which can possibly reveal discrepancies between observed 

and replicated data. Moreover, we can evaluate more than one discrepancy 

measures and judge the fit of a specific model from different perspectives.  

Nevertheless, general goodness-of-fit discrepancy measures are useful for 

routine checks of the overall fitness. Such a measure recommended by Gelman et 

al. (1993) is the chi-square discrepancy quantity given by 
2( ( | ))( , )

( | )
i i

i i

y E yT
Var y
−

=∑ θy θ
θ

, 

where the summation is over the sample observations. 
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 A model is considered suspect if the Bayesian p-value for a meaningful 

test quantity is near to 0 or 1. According to Gelman et al. (1995, p.173) major 

failures of a model, corresponding to tail area probabilities less than 0.01 or 

more than 0.99, can be addressed by expanding the model in an appropriate way. 

Lesser failures might also suggest model improvement or might be ignored if the 

main inferences are not affected. 

 For more information over Bayesian p-values see Gelman et al. (1993) 

with the associated comments and Meng (1994).  

 

2.7 Posterior Odds and Bayes Factors 

 

In the Bayesian framework hypothesis testing is strongly associated with model 

selection. There is no constrain to the number of hypotheses that may be 

simultaneously considered, so we usually switch notation from “hypotheses” iH  

to “models” iM , 1, 2,...,i k=  (Carlin and Louis, 1996, p.47). Model selection and 

hypothesis testing are based on posterior probabilities, posterior odds and Bayes 

factors. Bayesian methods provide flexibility in hypothesis testing; according to 

Kass and Raftery (1995) we can evaluate evidence in favor of the null 

hypothesis, compare non-nested models, draw inferences by taking into account 

model uncertainty and determine which competing model provides better 

predictive results. 

 Consider two competing models 0 1and  M M , each with a corresponding 

parameter vector 0 1 and  θ θ . These models specify the distribution of the data 

( )( | ) ( | , )i i ip M p M≡y y θ , with 0,1i = . In addition, each model iM  has a prior 

probability ( )ip M , with 0,1i =  and 0 1( ) ( ) 1p M p M+ = . From Bayes theorem the 

posterior probability of a model is given by 

 

1 1 2 2

( | ) ( )( | )
( | ) ( ) ( | ) ( )

i i
i

p M p Mp M
p M p M p M p M

=
+

yy
y y

, 

for 0,1i = . 
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The posterior odds 01PO  of model 0 1versus model  M M  is given by  

 

0 0 0
01

1 1 1

( | ) ( | ) ( )
( | ) ( | ) ( )

p M p M p MPO
p M p M p M

= = ×
y y
y y

. 

 

The quantity 0
01

1

( | )
( | )

p MBF
p M

=
y
y

 is called Bayes factor of model 0 1 versus model M M , 

while 0

1

( )
( )

p M
p M

 corresponds to the prior odds of model 0 1versus model M M . Thus, we 

have that 

Posterior Odds = Bayes Factor × Prior Odds . 

 

The distribution ( | )ip My  is the marginal likelihood of the data, discussed in 

section 2.2, conditional on the model. By taking into account the dependence 

from the model, ( | )ip My  is given by  

 

( | ) ( | , ) ( | )
i

i i i i i ip M p M p M d= ∫
θ

y y θ θ θ . 

 The above model comparison can be extended to more than two competing 

models. Suppose we have 1K +  competing models 0 1 2, , ,..., KM M M M . Each model 

1 2, ,..., KM M M  is compared in turn with 0M , yielding Bayes factors 

10 20 0, ,..., KBF BF BF . Then the posterior probability of the model iM , for 0,...,i K= , 

is given by 

0

0
1

( | ) i i
i K

r r
r

a BFp M
a BF

=

=

∑
y . 

The term 0( ) ( )r ra p M p M= , with 0,...,r K= ,  is the prior odds of the 

corresponding model rM  against model 0M , with  00 0 1BF a= = .  
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 When trying to make inference about a quantity of interest which is well 

defined for every model we can deal with model uncertainty by using the 

posterior model probabilities as weights (Kass and Raftery, 1995). According to 

the authors this technique, known as model averaging, yields consistently and 

substantially better predictions than the methods based on individual models; for 

more information on model averaging see Hoeting et al. (1999) and Raftery et al. 

(1997).  

  Interpretations of Bayes factors provided by Kass and Raftery (1995) are 

given in Tables 2.1 and 2.2. According to the authors the categories presented in 

Table 2.2 seem to furnish appropriate guidelines for most of the cases. 

 

 

10 10log BF  10BF  Evidence Against 0M  

0 to 0.5 1 to 3.2 Not worth than a bare mention 

0.5 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

Greater than 2 Greater than 100 Decisive 

Table 2.1 Interpretations for Bayes factors and for the common logarithm of Bayes factors. 
 
 
 

102 ln BF  10BF  Evidence Against 0M  

0 to 2 1 to 3 Not worth than a bare mention 

2 to 6 3 to 20 Positive 

6 to 10 20 to 150 Strong 

Greater than 10 Greater than 150 Very Strong 

Table 2.2 Interpretations for Bayes factors and for twice the natural logarithm of Bayes factors. 

 

2.8 Information Criteria 

 

An alternative and often easier solution when comparing different models is 

through the use of information criteria. The most popular criteria are the 
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Bayesian version of Akaike’s Information Criterion (AIC) (Akaike, 1974), the 

Bayes Information Criterion (BIC) (Schwarz, 1978) also known as the Schwarz 

Criterion and the most recent Deviance Information Criterion (DIC) 

(Spiegelhalter et al., 2002). All of these information criteria are based on the 

evaluation of the deviance. The deviance of model m is defined as 

( ) 2 log ( | )m mD p= −θ y θ . 

 Akaike’s information criterion (AIC, Akaike, 1974) is defined as  

�( ) ( ) 2m mAIC m D d= +θ , 

where �( )mD θ  is the minimum value of the deviance of model m and md  is the 

number of estimated parameters.  

 The Bayesian information criterion (BIC, Schwarz, 1978) is estimated by  

�( ) log( )mm mBIC D d n= +θ , 

where n is the number of observations. The BIC is also used as a rough 

approximation to the logarithm of the Bayes factor; see Kass and Raftery (1995). 

Both AIC and BIC penalize for the number of parameters and in general tend to 

choose the less complex models. According to Brooks (2002) Bayesian variations 

of AIC and BIC based on posterior summaries of the deviance are given by 

 

( ) ( ) 2m mDAIC m D d= +θ , ( ) ( ) log( )m mDBIC m D d n= +θ  

and 

( )( ) ( ) 2m mDAIC m D dθ = +θ , ( )( ) ( ) log( )m mDBIC m D d nθ = +θ . 

 

The term ( )mD θ  is the posterior expectation of the deviance which actually 

summarizes the fit of model m, while the term ( )mD θ  is the deviance of model m 

evaluated at the posterior mean. 

 Recently, Spiegelhalter et al. (2002) introduced the Deviance information 

criterion (DIC) which is calculated as  

( ) ( )m mDIC m D p= −θ , 
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where mp  represents the “effective” number of parameters. The above expression 

of DIC is equivalent to  

( ) 2 ( ) ( )mmDIC m D D= −θ θ . 

 

This criterion is useful in locating the best model within a group of models; it 

does not indicate whether a model is correct or not (Lopes, 2002).   

   

2.9 Conclusion 

 

In this chapter we tried to summarize the main aspects of Bayesian theory. As we 

have seen, Bayesian theory is rather autonomous in nature since it is strictly 

based on basic properties of conditional probabilities. As such it is relatively 

easy to understand. In fact, it requires only comprehension of three basic 

distributions; the prior distribution, the likelihood and the posterior distribution. 

All subsequent aspects of Bayesian theory are products of the relationships 

between these distributions.  

 We also presented brief descriptions of common inferential tools used in 

Bayesian data analysis. In particular, we discussed the use of location and 

dispersion measures along with the use of credible sets in order to summarize 

posterior information. The purpose of Bayesian p-values based on posterior 

predictive checks was examined and finally we showed how Bayes factors, 

posterior odds and information criteria can be utilized in terms of model 

selection. 

 In the following chapter we focus on the basic Markov Chain Monte Carlo 

algorithms. We then implement the algorithms in a linear regression example and 

a logistic regression example.             
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Chapter 3: Markov Chain Monte Carlo 

 

3.1 Introduction 

 

Bayesian inference is strictly based on the posterior distribution. Having at hand 

the posterior distribution, we can easily calculate any summary of interest or 

even graphically present the posterior for inferential purposes. As we have seen, 

the computation of the posterior distribution comes down to the evaluation of 

complex, often high dimensional, integrals. In many circumstances this 

integration cannot be derived analytically. In addition, posterior summarization 

often involves computing moments or percentiles, which leads to the evaluation 

of more integrals. Due to the above problems, Bayesian statistics were not 

broadly used for many years.  

 First attempts to use the Bayesian approach relied mainly on conjugate 

prior distributions. The use of a conjugate to the likelihood prior distribution is 

an easy and acceptable solution for some cases. In particular, priors from the 

beta or the gamma distributions have proven to be quite flexible in expressing 

prior beliefs, since they can produce various forms of densities. The use of 

Generalized Linear Models (GLM) was also available due to the fact that 

distributions which belong to the exponential family always have a conjugate 

prior (Morris, 1983). So, many common problems could be solved with the use 

of appropriate conjugate distributions.  

 As large sample theory became more popular, it was also implemented in 

Bayesian statistics. Asymptotic methods were used in order to obtain analytic 

approximations of the posterior distribution. The simplest method is to use a 

normal approximation to the posterior. This approximation is essentially a 

Bayesian version of the central limit theorem. A more complicated asymptotic 

method is the Laplace approximation which provides more accurate posterior 

approximations.     

 The recent development of simulation methods and the evolution of 

computer technology provided statisticians with new computational orientated 
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methods. Concerning Bayesians, it was no longer necessary to use a conjugate 

prior in order to calculate the posterior distribution. Moreover, asymptotic 

approximations were not the only alternative now; the ability to generate random 

draws from the posterior gave the researches the option to calculate directly any 

summary of interest, even get an estimate of the full joint posterior density. This 

approach is generally known as Monte Carlo integration or simply Monte Carlo. 

 

3.2 Asymptotic methods 

 

Large sample or asymptotic theory indicates that if the posterior distribution is 

unimodal and roughly symmetric, then the posterior distribution can be 

approximated by a normal distribution around its mode as sample size increases. 

That is, for n →∞   

� �( ) 1
( | ) ,p y N J

−⎛ ⎞⎡ ⎤≈ ⎜ ⎟⎣ ⎦⎝ ⎠
θ θ θ , 

where �θ  is the posterior mode of θ  and ( )J θ  is the observed information matrix 

given by 

( )
2

2 log ( | ).dJ p y
d

= −θ θ
θ

 

This approximation results from a Taylor expansion of log ( | )p yθ  at �=θ θ  

(Gamerman and Lopes, 2006, p.83). Usually a maximization algorithm like the 

Newton-Raphson or the Expectation-Maximization (EM) algorithm is being used 

in order to locate the posterior mode. Then we can adopt the normal 

approximation or even a Student’s t approximation, if sample size is not 

adequately large (Gelman et al., 1995, p. 275). Of course, the question how large 

should a sample be in order to use the normal approximation is not 

straightforward to answer. Nevertheless, the approximation is quite accurate if θ  

is a low dimensional vector. This means that the method works better for 

conditional and marginal distributions rather than for full joint distributions. If 

the dimension of θ  is high then θ  can be partitioned into ( )1 2, ,..., kθ θ θ  
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subvectors and we can approximate all or some of the lower dimension 

conditional densities ( )( | , )i ip −θ θ y , where ( )( ) 1 2 1 1, ,..., , ,...,i i i k− − +=θ θ θ θ θ θ  for  

1, 2,...i k= . On the other hand, a marginal distribution of one component of θ , is 

actually an average over all other components stretching this distribution closer 

to normality (Gelman et al., 1995, p.97).  

 Another, more complex, approach is the Laplace approximation. This 

method produces in general better point estimates if the posterior density is 

significantly far from the normal one. The Laplace approximation is subjected to 

the same limitations with the normal approximation, regarding the issues of 

sample size and dimensionality; for details on the Laplace approximation see 

Tierney and Kadane (1986), Gamerman and Lopes (2006, p. 88-92) and Carlin 

and Louis (1996, p.146).     

  

3.3 Monte Carlo Integration 

 

The basic idea of Monte Carlo (MC) integration is attractively simple; suppose y 

is a random variable, from which we can generate random draws, that is ( )y p y∼ . 

Then for every quantity of interest [ ]( ) ( ) ( )E g y g y p y dyγ ≡ = ∫  which cannot be 

calculated analytically, we can draw 1 2, ,..., ( )
iid

Ny y y p y∼  (N is now a simulated 

sample) and calculate  

      
1

1ˆ ( )
N

i
i

g y
N

γ
=

≡ ∑ . 

The estimate γ̂  is a strongly consistent estimate of γ  in that 

ˆ   as  Nγ γ→ →∞ , 

this means that γ̂  converges to γ  with probability 1 as N →∞ . In addition from 

the Central Limit Theorem we have that 

 

ˆ
(0,1)  as  N N N

σ
γ γ−

→ →∞ . 
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Strong consistency follows directly from the Strong Law of Large Numbers. One 

can immediately see that MC estimates improve their precision at rate ( )1/ 2O N −  

as the simulated sample size is increased. Unlike asymptotic results, the value of 

N  is under the control of the researcher and can be increased by drawing more 

values from ( )p ⋅ . For more information see Gamerman and Lopes (2006, p.96).  

 Another contrast with asymptotic methods is that we can evaluate the 

accuracy of γ̂  for any fixed value of N. Since γ̂  is itself a sample mean of 

independent observations, we have that 
2

ˆ( )Var
N
σγ = , where [ ]2 ( )Var g yσ = . But 

[ ]( )Var g y  can be estimated by the sample variance of the ( )ig y  values, where 

1,2,...,i N= . Thus, a standard error estimate for γ̂  is given by  

m [ ]2

1

1ˆ ˆ. ( ) ( )
( 1)

N

i
i

s e g y
N N

γ γ
=

≡ −
− ∑ , 

(Carlin and Louis, 1996, p.150). This quantity is called Monte Carlo error. By 

this term we refer to the standard error of the estimated due to the fact that we 

use a simulated sample. Monitoring the Monte Carlo error is essential; this 

quantity should be low in order to evaluate the parameter of interest with 

increased precision.     

 There are various Monte Carlo methods, such as the Inverse CDF method, 

Importance Sampling, Rejection Sampling and Weighted Bootstrap. The first 

method requires knowledge of the density or cumulative density functions, the 

latter three are based on the existence of an approximating density. An overview 

of these methods will not be presented here, since the main purpose of this 

chapter is to present the Markov Chain Monte Carlo (MCMC) methods. More 

information about these methods can be found in Carlin and Louis (1996, p.153-

158) and Gamerman and Lopes (2006, p.25-34). 

 The main characteristic of these simulation methods is that all of them are 

non-iterative. Therefore, we generate a sample of size N one time and then stop. 

Another attribute is that they do not perform well for high dimensional problems. 

In such cases it is difficult to identify an approximating density. Even if an 
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approximating density is found it rarely leads to satisfactory results. Sometimes, 

these methods are used in combination with some asymptotic approximation in 

order to acquire initial values for the MCMC simulation.             

 

3.4 Markov Chain Monte Carlo Algorithms 

 

MCMC methods have recently become very popular in Bayesian statistics. They 

owe their popularity to their ability to accurately approximate high dimensional 

integrals through simulation. The basic idea of MCMC simulation is to formulate 

a Markov chain from a specific starting point. This chain converges to a 

stationary distribution due to the properties of Markov chains. 

 

3.4.1 Markov chains   

 

A Markov chain is a stochastic process  { }1 2, ,..., tθ θ θ  with two important 

properties:  

 

1. The distribution of θ  in period t+1, given the θ  for all preceding periods 

depends only on the θ  in the latest time period t. That is, 

( ) ( )1 1 1 1| , ,..., |t t t t tf f+ − +=θ θ θ θ θ θ . 

Alternatively one could say that given the present state of a Markov chain, past 

and future states are independent. 

  

2. If a Markov chain is irreducible, aperiodic and positive recurrent, then as t 

tends to infinity ( t →∞ ) the distribution of ( )tθ  tends to a stationary distribution.  

 

The stationary distribution is often called the equilibrium distribution of the 

Markov chain. Irreducible and aperiodic, mean that there is positive probability 

moving from any state to any other state and that there are no absorbing states 

from which the chain cannot escape (Carlin and Louis, 1996, p.75). Positive 
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recurrent, means that the probability of returning to the state from which we 

started equals to 1 and that the expected time of return is finite (Gamerman and 

Lopes, 2006, p.118). Further details for the properties of Markov chains and 

examples can be found in Gamerman and Lopes (2006, p,113-136 ) and Gilks et 

al. (1996, p.59-71).  

 Within the Bayesian framework, we wish to generate observations 

{ }1 2, ,..., tθ θ θ  of the Markov chain, as a dependent sample from the posterior 

distribution ( )|p θ y . In order to achieve that, the equilibrium distribution of the 

simulated Markov chain must actually concur to the posterior distribution. Once 

this is accomplished, we must discard an initial part of the simulated 

observations from 1θ to 0tθ  and keep { }0 01 2, ,...,t t t+ +θ θ θ . The discarded part is the so 

called “burn-in” period, that is, the period the Markov chain has not yet 

converged to its equilibrium distribution. Finally, it is essential to use some kind 

of a diagnostic tool, in order to check whether or not our Markov chain has 

reached its equilibrium distribution. 

 The two basic MCMC methods are the Metropolis-Hastings algorithm and 

the Gibbs Sampler. There is also the Metropolis within Gibbs algorithm which is 

in fact a combination of the two previous algorithms mentioned.  

 

3.4.2 The Metropolis and Metropolis-Hastings Algorithms 

 

The basic Metropolis algorithm was introduced by Metropolis et al. (1953), later 

Hastings (1970) presented a generalized version of that algorithm, the 

Metropolis-Hastings algorithm. 

 The Metropolis-Hastings (M-H) algorithm is based on the existence of a 

proposal distribution (also called ‘candidate’ or ‘jumping’ distribution) 
1( , )t t

tq −θ θ  which is actually part of a certain transition kernel (the Metropolis 

algorithm is restricted in symmetric proposal distributions). According to 

Markov chain theory, iterations from the transition kernel converge to the 

equilibrium distribution when the number of iterations is large; for information 
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on the transition kernel see Chib and Greenberg (1995), Brooks (1998) and Gilks 

et al. (1996, p.7).    

 Our aim is to sample from ( )|p θ y , the target distribution which we may 

know only up to a constant multiple. Given any states ,a bθ θ , ( , )b a
tq θ θ  is actually 

the probability of transition from state bθ  to state aθ . If the proposal distribution 

satisfies the relation ( | ) ( , ) ( | ) ( , )b b a a a b
t tp q p q=θ y θ θ θ y θ θ  for all states aθ  and bθ , 

then iterations from tq  for t →∞  converge to the target distribution ( )|p θ y . 

This sufficient condition is called the reversibility condition, and can be 

intuitively explained as ‘the unconditional probability of moving from bθ  to aθ  

when bθ  is generated by ( | )p ⋅ y  equals the unconditional probability of moving 

from aθ  to bθ  when aθ  is generated by ( | )p ⋅ y ’ (Chib and Greenberg, 1995). 

 This condition is not always satisfied; therefore the Metropolis-Hastings 

algorithm introduces a probability of transition or move MHa  as part of the 

transition kernel. For example, if the unconditional probability of moving from 
bθ  to aθ  is greater than the unconditional probability of moving from aθ  to bθ , 

that is ( | ) ( , ) ( | ) ( , )b b a a a b
t tp q p q>θ y θ θ θ y θ θ , then this means that transitions from 

bθ  to aθ  are made too often while transitions from aθ  to bθ  are made rarely 

(Chib and Greenberg, 1995). Therefore, the transition probability ( , )a b
MHa θ θ  

from aθ  to bθ  is set equal to 1 in order to have more transitions from aθ  to bθ , 

and the transition probability ( , )b a
MHa θ θ  from bθ  to aθ   must then balance the 

two sides of the reversibility condition. That is,  

( | ) ( , ) ( , ) ( | ) ( , ) ( , )

( | ) ( , ) ( , ) ( | ) ( , )

( | ) ( , )( , ) .
( | ) ( , )

b b a b a a a b a b
t MH t MH

b b a b a a a b
t MH t

a a b
b a t

MH b b a
t

p q a p q a

p q a p q

p qa
p q

= ⇔

= ⇔

=

θ y θ θ θ θ θ y θ θ θ θ

θ y θ θ θ θ θ y θ θ

θ y θ θθ θ
θ y θ θ

 

Thus, balance is obtained between the two sides of the reversibility condition. 

For more details see Chib and Greenberg (1995), Brooks (1998), Besag (2001) 

and Gilks et al. (1996). 
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  In a more general notation, for any states ,x y  the transition probability 

from state x to state y is given by  

( ) ( , )( , ) min ,1
( ) ( , )MH

p y q y xa x y
p x q x y

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

This implies that knowledge of the normalizing constant of the target distribution 

is not needed, since it cancels out in the ratio   

( ) ( , )
( ) ( , )

p y q y x
p x q x y

. 

In the case of the Metropolis algorithm we have that ( , ) ( , )q x y q y x= , since the 

proposal distribution is symmetric, therefore the transition probability reduces to    

    ( )( , ) min ,1 .
( )M

p ya x y
p x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 A relatively simple proof that the Metropolis algorithm sequence 

{ }1 2, ,..., tθ θ θ  converges to the target distribution is provided by Gelman et al. 

(1995, p.325). First, it is shown that the simulated sequence is a Markov chain 

that converges to a unique stationary distribution. The proof of this is trivial, 

since the selection of the proposal 1( | )t t
tq −θ θ  ensures the properties of 

irreducibility, aperiodicity and positive recurrency, properties that hold for most 

random walks. Then, it is shown that the stationary distribution equals the target 

distribution. 

Consider two states ,a bθ θ  generated from 1( | )tp −θ y with ( | ) ( | )b ap p≥θ y θ y , then 

the unconditional probability of a transition from aθ  to bθ  is 

  
1( , | ) ( | ) ( , ) ( , )

                                   ( | ) ( , ),

t a t b a a b a b
t M

a a b
t

p p q a

p q

− = = =

=

θ θ θ θ y θ y θ θ θ θ

θ y θ θ
 

because the probability of move ( , ) 1a b
Ma =θ θ , since      

   ( | )( | ) ( | ) 1.
( | )

b
b a

a

pp p
p

≥ ⇒ ≥
θ yθ y θ y
θ y

  

The unconditional probability of a transition from bθ  to aθ  is 



 27

  

1( , | ) ( | ) ( , ) ( , )

( | )                                   ( | ) ( , )
( | )

                                   ( | ) ( , ).

t b t a b b a b a
t M

a
b b a

t b

a b a
t

p p q a

pp q
p

p q

− = = =

=

=

θ θ θ θ y θ y θ θ θ θ

θ yθ y θ θ
θ y

θ y θ θ

 

This two probabilities are equal since tq  is symmetric ( ( , ) ( , )b a a b
t tq q=θ θ θ θ ). 

This means that the joint distribution of tθ  and 1t−θ  is symmetric and therefore tθ  

and 1t−θ  have the same marginal distributions. So, 
1

1 1( , ) ( | )
t

t t t tp d p
−

− − =∫
θ

θ θ θ θ y  

is also the stationary distribution of the Markov chain. The same proof can be 

also utilized for the Metropolis-Hastings algorithm by simply replacing the 

probability of transition. 

 To simulate a Metropolis sample of size N we use the following steps: 

1. Set initial values 0θ . 

2. For 1,2,...,t N= : 

a. Generate *θ  from the proposal density 1( , )t
tq −θ θ . 

b.  Calculate 
*

1

( | )min ,1
( | )M t

pa
p −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

θ y
θ y

. 

c. Set 
*

1

   ,  with probability  
 ,  with probability  1- .

Mt
t

M

a
a−

⎧⎪= ⎨
⎪⎩

θ
θ

θ
 

 

 Likewise, to simulate a Metropolis-Hastings sample of size N we use the 

following steps: 

1. Set initial values 0θ . 

2. For 1,2,...,t N= : 

a. Generate *θ  from the proposal density 1( , )t
tq −θ θ . 

b. Calculate 
* * 1

1 1 *

( | ) ( , )min ,1
( | ) ( , )

t
t

MH t t
t

p qa
p q

−

− −

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

θ y θ θ
θ y θ θ

. 

c. Set 
*

1

   ,  with probability  

 ,  with probability  1 .
MHt

t
MH

a

a−

⎧⎪= ⎨
−⎪⎩

θ
θ

θ
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Step (c) of each algorithm requires the generation of a uniform random number u 

from U(0,1). If  1 *( , )tu a −≤ θ θ  we set *t =θ θ , else we set 1t t−=θ θ .  

 

Regarding the issue of proposal distribution selection, according to Gelman et al. 

(1995, p.326) a good jumping density possesses the following properties: 

 

• It is easy to sample from 1( , )t
tq −θ θ  for any θ . 

• The probability of transition ( )1 *,ta −θ θ , can be easily calculated. 

• Each move or jump goes a reasonable distance in the parameter space. 

• The jumps are not rejected too frequently.   

 

The most commonly used choice is the random walk chain, in which the 

candidate *θ  is drawn according to the process 1 1t t t+ += +θ θ z . In this case the 

candidate value equals the present value plus noise. A usual choice for a random 

walk chain is a multivariate normal distribution, * ( , )tNθ θ Σ∼  or a multivariate t 

distribution, * ( , )ttνθ θ Σ∼ . These densities have the advantage of being 

symmetric, so utilizing them simplifies calculations. The use of a random walk 

chain requires only the determination of the covariance matrix Σ . 

 Another candidate-generating family of distributions, arises from a 

simpler process, that is 1 1t t+ +=θ z . In this case the candidate value is independent 

of the current value and  ( )* *≡z θ  has a multivariate density, which can again, be 

a multivariate normal or t distribution, * ( , )Nθ μ Σ∼  or * ( , )tνθ μ Σ∼  respectively.  

This is called an independence chain and requires both location and scale 

parameters to be determined. For a more detailed description and other 

approaches on proposal densities see Chib and Greenberg (1995) and Gamerman 

and Lopes (2006, p.198-205). 

 The issue of determining the scale of the proposal distribution is one that 

has not yet been fully explored. This issue is of vital importance, regarding the 

speed of convergence. If the scale is set very large then a lot of candidate values 
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will be far away from the high density region of the posterior parameter space, 

and thus the acceptance ratio will be very low. On the other hand, given that the 

starting values are not extreme in regard to posterior parameter space, a very 

small scale will result in a higher acceptance ratio but still we will have to face 

the problem of undersampled low density regions, since the chain will need more 

time to reach those regions (Chib and Greenberg, 1995; Carlin and Louis, 1996).  

 One approach suggested, is to run an initial chain, obtain a crude estimate 

Σ�  and use this estimate as the scale of the proposal distribution (Carlin and 

Louis, 1996). Gelman et al. (1995, p.334) proposed for problems with  normal 

target and normal random walk proposal densities, ( )22.4 d Σ�  to be the most 

efficient scale, with d  being the number of dimensions and Σ�  some estimate of 

Σ . This rule results to acceptance ratios around 0.45 and 0.25, respectively for 

one-dimensional and multi-dimensional problems which are up to six 

dimensions. In absence of general rules, the selection of scale is in most of the 

cases a calibrating process; we increase or decrease the scale in order to achieve 

an acceptance ratio usually within the rate of 0.3-0.5 for univariate distributions 

(Gilks et al., 1996).   

 

3.4.3 The Gibbs Sampler  

 

The Gibbs sampler algorithm was introduced by Geman and Geman (1984). This 

algorithm is actually a special case of the Metropolis-Hastings algorithm but it is 

often presented separately due to its popularity and easy-to-use nature. 

 In Gibbs sampling each component of the vector θ  is drawn separately. 

Therefore, when θ  is of dimensionality d, we have d steps in every iteration. The 

components of θ  are actually generated from their full conditional distribution, 

this means that component jθ  is sampled from ( )1
( )| ,t t

j jp θ −
−θ y , with 

( )1 1 1 1
( ) 1 2 1 1 1, ,..., , ,..., ,t t t t t t t

j j j d dθ θ θ θ θ θ− − − −
− − + −=θ . This cycling process ends when all d 

components have been drawn. One can see that Gibbs sampler is a special case of 

a Metropolis-Hastings algorithm for a single component with proposal 
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distribution 1
, ( , )t t

j t jq θ−θ , the full conditional distribution ( )1
( )| ,t t

j jp θ −
−θ y . 

According to Gelman et al. (1995, p.328) we have  

   ( )* 1 * 1
( ) ( ) ( )1 *

,

| ,  ,  if   
( , )  

0                       ,  otherwise.

t t
j j j jt

j t j

p
q

θ
θ

− −
− − −−

⎧ =⎪= ⎨
⎪⎩

θ y θ θ
θ  

The above relation means that the j component of θ  is updated when all 

components of vectors *θ , 1t−θ , except j , match. In this case the probability of 

transition becomes 

 

( )
( )

( )
( )

( )
( )

( )
( )

* 1 1
( )

* 1 1 1 * 1 1
( ) ( ) ( )

1 * 1 1 * 1 1 * *
( ) ( ) ( )

1
( )

* 1

( | ) , ,

( | ) | , | ( | ) , ,
   

( | ) | , ( | ) , , ( | ) , ,

|

( | ) ( |        

t t
j j

t t t t t
j j j j j

Gibbs t t t t t
j j j j j j

t
j

t

p p

p p p p p
a

p p p p p p

p

p p

θ

θ θ

θ θ θ

− −
−

− − − − −
− − −

− − − − −
− − −

−
−

−

= = =

=

θ y θ y

θ y θ y θ y θ y θ y

θ y θ y θ y θ y θ y θ y

θ y

θ y θ
1 *

) 1.
( | ) ( | )tp p− =

y
θ y θ y

  

Thus, in Gibbs sampling the acceptance ratio equals 1 which means that the 

proposed move is always accepted.  

 To simulate a Gibbs sample of size N, for ( )1 2, ,..., dθ θ θ=θ , we use the 

following steps: 

1. Determine 1d −  initial values ( )0 0 0
2 ,..., dθ θ=θ . 

2. For 1, 2,...,t N= :   

    Generate 1
tθ  from ( )1 1

1 2| ,..., ,t t
dp θ θ θ− − y , 

    Generate 2
tθ  from ( )1 1

2 1 3| , ,..., ,t t t
dp θ θ θ θ− − y , 

    Generate 3
tθ  from ( )1 1

3 1 2 4| , , ,..., ,t t t t
dp θ θ θ θ θ− − y , 

          #                               # 

    Generate t
dθ  from ( )1 2 3 4 1| , , , ,..., ,t t t t t

d dp θ θ θ θ θ θ − y . 

 

 The ordering of the generating components has no affect on the 

convergence of the algorithm. For additional information concerning the Gibbs 
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sampler see Casella and George (1992), Brooks (1998), Gelfand (2000), Besag 

(2001), and Gilks et al. (1996). 

 

3.4.4 The Metropolis within Gibbs Algorithm 

 

As we have seen, the Gibbs sampler algorithm requires that all full conditionals 

are of known form and easy to generate from, in order to be applicable. In many 

cases though, we do not know the exact form of all or some full conditionals. 

 Suppose we know all full conditionals of ( | )p θ y  except the one for 

component iθ . The idea of the Metropolis within Gibbs algorithm, (some authors 

refer to it as  Univariate Metropolis or Metropolis Steps), is to run a Gibbs 

sampler for the known full conditionals and use a Metropolis step, within the 

former, in order to update component iθ . The target density of iθ  can be easily 

approximated, since it is analogous to the posterior, ( ) ( )( )| , |i ip pθ − ∝θ y θ y , when 

all components except iθ  are held constant to their given value. This means that 

in the i-th step of each Gibbs iteration, we run a Metropolis chain of size T from 

which we keep the last value T
iθ  and then proceed with the outer Gibbs loop for 

component 1iθ + . 

 Thus, to simulate a Metropolis within Gibbs sample of size N, for 

( )1 2, ,..., dθ θ θ=θ , we use the following steps: 

1. Determine 1d −  initial values ( )0 0 0
2 ,..., dθ θ=θ . 

2. For 1,2,...,t N= :   

     Generate 1
tθ  from ( )1 1

1 2| ,..., ,t t
dp θ θ θ− − y , 

     Generate 2
tθ  from ( )1 1

2 1 3| , ,..., ,t t t
dp θ θ θ θ− − y , 

              #                               # 

     Generate 1
t
iθ −  from ( )1 1

1 1 2 2| , ,..., , ,..., ,t t t t t
i i i dp θ θ θ θ θ θ− −
− − y , 

     Use an inner Metropolis-Hastings loop in order to acquire t
iθ . 
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     For 1, 2,...,l T= : 

     a. Generate *
iθ  from the proposal density 1( , )l

t i iq θ θ− . 

     b. Calculate  
* * 1

( )
1 1 *

( )

( | , ) ( , )
min ,1

( | , ) ( , )

l
i i t i i

MH l l
i i t i i

p q
a

p q
θ θ θ
θ θ θ

−
−

− −
−

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

θ y
θ y

. 

     c. Set 
*

1

   ,  with probability  

 ,  with probability  1 .
i MHl

i l
i MH

a

a

θ
θ

θ −

⎧⎪= ⎨
−⎪⎩

 

When l T=  set t T
i iθ θ=  and continue with the outer Gibbs loop as follows. 

     Generate 1
t
iθ +  from ( )1 1

1 1 2 2| , ,..., , ,..., ,t t t t t
i i i dp θ θ θ θ θ θ− −
− + y , 

          #                               # 

     Generate t
dθ  from ( )1 2 3 4 1| , , , ,..., ,t t t t t

d dp θ θ θ θ θ θ − y . 

 

 The convergence of this algorithm is not perfectly clear, since it is not a 

mixture or cycle of two separate algorithms. The Metropolis within Gibbs is 

rather, a deterministic combination of algorithms, which by themselves alone 

would not converge. Still, if the proposals used for each component are 

irreducible and aperiodic then each component will tend to its equilibrium 

distribution and convergence will occur (Carlin and Louis, 1996, p.182). 

 Another issue of concern is the selection of T for the inner Metropolis 

loop. A very large T would of course lead to a confident selection of  T
iθ , but it 

would be useless, in terms of overall convergence, especially in the early stages 

of the outer Gibbs loop. A very small T, like 1, would delay overall convergence, 

since it will be unlikely that T
iθ  will originate from the correct full conditional 

distribution (Carlin and Louis, 1996, p.182). In practice though, the selection 

1T =  is often adopted.            
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3.4.5 Convergence Diagnostics 

 

There is a variety of MCMC convergence diagnostics, which can be used in order 

to determine whether or not the equilibrium distribution of the Markov chain has 

been reached. These diagnostic tools have different characteristics. They can be 

quantitative and produce a single numeric summary, or qualitative like graphs 

and time series plots. Some require a single chain to be produced, while others a 

small number of parallel chains. Most of these methods base their approach on 

bias considerations, but there are also methods which check the variance or 

precision of the estimates. Extensive information on diagnostic tools can be 

found in Brooks and Roberts (1998), Mengersen et al. (1998), Cowles and Carlin 

(1996) and Brooks et al. (1997). 

 In this thesis we rely mainly on the diagnostic tool introduced by Gelman 

and Rubin (1992); see also Brooks and Gelman (1998). This approach addresses 

the issue of variance and requires a small number of parallel chains who must be 

initially overdispersed with respect to the target density. It can be used in either 

Metropolis-Hastings or Gibbs sampler simulations.  

 For each estimand θ  of interest, the draws from the J parallel chains are 

labeled ,  with  1, 2,....,   and  1, 2,...,ij i N j Jθ = = . Then, we calculate the between and 

within chain variation, B and W respectively. They are, 

( )

( )

2

. .. . .. .
1 1 1

22 2
.

1 1

1 1,   where  ,   ,
1

1 1,   where  .
1

J N J

j j ij j
j i j

J N

j j ij j
j i

NB
J N J

W s s
J N

θ θ θ θ θ θ

θ θ

= = =

= =

= − = =
−

= = −
−

∑ ∑ ∑

∑ ∑
 

An estimate of the marginal posterior variance ( )|Var θ y  can be given by a 

weighted average of B and W, which is  m ( ) 1 1| NVar W B
N N

θ −
= +y . This estimate 

is unbiased under stationarity but overestimates the variance under the 

assumption that the starting distribution is overdispersed. Furthermore, the 

within chain variance is an underestimate of the marginal posterior variance, 

because each chain alone will not have time to visit the entire posterior space 
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and thus will have lower variability. Yet, for N →∞  the expectation of W 

approaches ( )|Var θ y  and therefore, convergence can be monitored by the scale 

reduction measure 

    l
m ( )|Var

R
W
θ

=
y

, 

which declines to 1 for N →∞  (Gelman et al., 1995, p.332). 

 Convergence can be also be checked by monitoring the Monte Carlo error 

of the estimates, since small values of it indicate that we have calculated the 

quantity of interest with precision. Calculating the MC error as described in 

section 3.3 - from the MCMC sample variance - would probably be 

anticonservative; the sampling chain will likely feature positive autocorrelation 

leading to an underestimate of the simulated sample’s standard deviation (Carlin 

and Louis, 1996, p.194). 

 The computationally easiest way of estimating MC error is through the 

batch mean method. For any quantity ( )h θ  of interest we simply partition the 

MCMC sample 1 2, ,..., Nθ θ θ  into K batches 1 2, ,..., KB B B  of size BN . Thus, we have 

that BN KN= . For each batch we estimate the corresponding sample mean from 

( )

( 1) 1

1( ) ( )
B

k
B

kT
t

B
t k TB

h h
T = − +

= ∑θ θ , 

where 1,2,...,k K= . Then, an estimate for the MC error of  n( )h θ  is given by 

l n( ) 2

1

1( ) ( ) ( )
( 1) k

K

B
k

se h h h
K K =

⎡ ⎤= −⎣ ⎦− ∑θ θ θ , 

where  ( )h θ   is given by  
1

1( ) ( )
k

K

B
k

h h
K =

= ∑θ θ . Note that K must be large enough to 

ensure proper estimation of the variance (the usual choice is 30 50K≤ ≤ ) and BN  

must also be large enough in order to ensure that the batch means are roughly 

independent. According to Carlin and Louis (1996, p.195) the latter can be 

determined by checking whether the lag 1 autocorrelation of the kB  is less than 

0.05. If this is not the case, BN  must be increased.       
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 In the remaining of this chapter we will make use of the aforementioned 

algorithms with two examples. In the first example we implement the 

Metropolis-Hastings and Gibbs Sampler algorithms on a normal linear regression 

problem and in the second one we use the Metropolis and Metropolis within 

Gibbs algorithms on a logistic regression example.  

 

3.5 A linear regression example with normal data 

 

The data presented here are wind velocity observations measured in miles per 

hour and electricity observations measured in volts (Montgomery et al., 2001, 

p.182). Our concern is the effect of wind velocity on the production of electricity 

from a water mill. Although wind velocity is by itself positively correlated with 

electricity production capacity, we will use the logarithm of wind velocity which 

has an even higher coefficient of correlation equal to 0.978. 

 The model used is the simple linear regression model y a bx ε= + + , with y  

the dependent variable, that is electricity production capacity (DC output), and x 

the explanatory variable, the logarithm of wind velocity. The Maximum 

Likelihood (ML) estimates of a , b and the standard deviation estimates are    

    

�

l

0.83   (0.111)

1.417    (0.06)

0.137.

a

b

σ

= −

=

=

�      

The values in brackets correspond to the coefficients standard deviations. The 25 

observations of wind velocity and DC output are given in Table 3.1. From the 

histogram of DC output observations presented in Figure 3.1 we notice that the 

distribution of the dependent variable seems to be skewed to the right, yet we 

cannot be absolutely sure due to the relatively small sample size. The plot right 

to the histogram indicates the strong positive correlation between the logarithm 

of wind velocity and DC output. 

  

 

 



 36

        
Obs. 

DC 

output 

(volts) 

Wind 

Velocity 

(mph) 

Logarithm of 

Wind 

Velocity 

Obs. 

DC 

output 

(volts) 

Wind 

Velocity 

(mph) 

Logarithm of 

Wind 

Velocity 

1. 1.582 5.00 1.609 13. 1.562 4.60 1.526 

2. 1.822 6.00 1.792 14. 1.737 5.80 1.758 

3. 1.057 3.40 1.224 15. 2.088 7.40 2.001 

4. 0.500 2.70 0.993 16. 1.137 3.60 1.281 

5. 2.236 10.00 2.303 17. 2.179 7.85 2.061 

6. 2.386 9.70 2.272 18. 2.112 8.80 2.175 

7. 2.294 9.55 2.257 19. 1.800 7.00 1.946 

8. 0.558 3.05 1.115 20. 1.501 5.45 1.696 

9. 2.166 8.15 2.098 21. 2.303 9.10 2.208 

10. 1.866 6.20 1.825 22. 2.310 10.20 2.322 

11. 0.653 2.90 1.065 23. 1.194 4.10 1.411 

12. 1.930 6.35 1.848 24. 1.144 3.95 1.374 

 25. 0.123 2.45 0.896 

 
Table 3.1 DC Output observations measured in volts and wind velocity observations in physical 
scale measured in miles per hour and in logarithmic scale. 

DC Output (volts)

Fr
eq

ue
nc

y

0.0 0.5 1.0 1.5 2.0 2.5

0
2

4
6

8

1.0 1.4 1.8 2.2

0.
5

1.
5

Logarithm of wind velocity

D
C

 O
ut

pu
t

 
Figure 3.1 Histogram of the 25 DC output observations (left) and scatter plot of the DC output 
and the wind velocity observations transformed into logarithmic scale (right).   
 

3.5.1 M-H algorithm implementation  

 

As described before, our model assumption is y a bx ε= + + , with 2(0, )Nε σ∼ . 

The selected priors for parameters a  and b are 
2 2 2 2| (0, ),   | ~ (0, )a N k b N kσ σ σ σ∼ , 

with k considered as a multiplying constant. 
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We select a gamma prior for the inverse of 2σ  that is, 
2

0 0~ ( , )G a bσ − , 

where 0a  is the shape parameter and 0b  is the rate parameter. The distribution of 

2σ −  is given by 

( ) ( ) ( )
0

0 12 2 20
0

0

( ) exp
a abp b
a

σ σ σ
−− − −= −

Γ
 for 2 0σ − > .  

This means that the prior for 2σ  is an inverse gamma distribution with shape 

parameter 0a  and scale parameter 0b  that is, 2
0 0~ ( , )IG a bσ . So, the prior 

distribution of 2σ  is given by  

( ) ( )
0

0 12 20 0
2

0

( ) exp
a ab bp
a

σ σ
σ

− − −⎛ ⎞= ⎜ ⎟Γ ⎝ ⎠
 for 2 0σ > .  

We further assume that parameters a and b are conditionally independent given 
2σ . The prior distribution 2( , , )p a b σ  is actually conjugate to the likelihood. 

Therefore, this a case for which the posterior distribution can be calculated 

analytically. Our aim though, is to demonstrate the use of the Metropolis-

Hastings algorithm regardless of prior selection.  

  The use of a hyper prior for parameters a  and b means that we presume 

dependence between these parameters and the variance parameter. The prior 

design aims to reflect our ignorance concerning the three parameters. The 

selection of k is set large equal to 1000 and we use a gamma distribution with 

both location and rate parameters equal to 310− . This means that 2σ −  is a random 

variable with mean equal to 1 and variance equal to 1000 and it also results to 

the fact that 2 3 3~ (10 ,10 )IGσ − − , which is an inverse gamma random variable with 

infinite mean. 

 The joint posterior distribution of 2,  ,  a b σ , under the assumption of 

conditional independence for parameters a and b, is 
2 2 2

2 2 2

2 2 2 2

( , , | ) ( , , ) ( | , , )
                     ( , | ) ( ) ( | , , )
                     ( | ) ( | ) ( ) ( | , , )

p a b p a b p a b
p a b p p a b
p a p b p p a b

σ σ σ

σ σ σ

σ σ σ σ

∝

∝

∝

y y
y

y
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( )
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a
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i

n
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− +

=
+
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⎪ ⎪⎩ ⎭
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After some algebra on the logarithm of this density we conclude to 

 

2 2 2 10
0 2 2

1

2 2 1

1 1 1 1

1log ( , , | ) (2 4) log ( )
2

                             2 2 Constant.

n

i
i

n n n n

i i i i i
i i i i

bp a b a n y a n k
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∑ ∑ ∑ ∑
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The next step is to select the proposal distributions for the three parameters in 

question. For parameters a  and b we choose a bivariate normal random walk 

proposal, that is 
21

2 1 2

       
~ ,  ,  with  .

    

t t
a a b

t t
a b b

a a
b b

σ ρσ σ

ρσ σ σ

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

N Σ Σ   Sampling from 

this distribution is simple, since ( , ) ( | ) ( )t t t t tq a b q b a q a= . Therefore, we initially 

generate  
1 2~ ( , )t t

aa N a σ−  

and then we generate tb  from the distribution which is conditional on ta , that is  

1 1 2 2| ~ ( ), (1 ) .t t t t tb
b

a

b a N b a aσ
σ

σ
ρ ρ− −⎛ ⎞

+ − −⎜ ⎟
⎝ ⎠

 

The bivariate normal distribution is symmetric and therefore, not needed for the 

calculation of the transition probability. The selection of the proposal 

distribution for σ  is more complicated, since standard deviation is strictly 

positive. Therefore, we cannot use a normal proposal distribution on σ  as above, 

but we can use such a proposal on logσ , which takes values on the real line 
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unrestricted. So, we generate log tσ  from a normal random walk proposal 

( )1 2log ~ log ,t tN σσ σ σ−  and then sample tσ  through the exponential 

transformation on log tσ . An important remark one should have in mind, is that 

although the proposal for logσ  is again symmetric and therefore not needed in 

the calculation of the transition probability, the latter does not stand for the 

Jacobian of the exponential transformation which is 1
σ

. Thus, the probability of 

move is given by 

( )

( )

* * 2*
1

1 1 2
*

1

1, , |

1, , |

t

MH
t t t

p a b
a

p a b

σ
σ

σ
σ

−

− − −

⎛ ⎞
⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠

y

y
  

and on logarithmic scale 

 

( ) ( )* * 2* * 1 1 2 11
log log , , | log log , , | logt t t

MH

t
a p a b p a b σσ σ σ− − −−

= + − −y y . 

 

An equivalent sampling technique would be to sample σ  directly from a log-

normal random walk proposal that is  ( )1 2~ ,t tLog N σσ σ σ−−  with proposal 

density given by  
1 2

2

1 (log )( ) exp
22

t t
t

Log N t
q

σσ

σ σσ
σσ πσ

−

−

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
 for 0tσ > . 

 

Yet, then we would be forced to compute probability densities from the log-

normal distribution since in this case the probability of move is given by  

  

( )
( )

* * 2* 1

1 1 2 *1

, , | ( )

, , | ( )

t
Log N

MH t t
Log N

t
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−=
y
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An alternative approach would be a gamma random walk proposal distribution 

( , )prop propG a b  with shape parameter propa  and rate parameter propb . Knowing that 

this distribution has mean equal to prop prop
a b , we set the shape parameter as 

1t
prop propa b σ −= . Thus, we sample σ  from a gamma random walk proposal 

1( , )t t
prop propG b bσ σ −∼  which has mean 1tσ −  and density 

( ) ( ) ( )
1

1 1

1
( ) exp

t
prop t

prop

b
bpropt t t

Gamma propt
prop

b
q b

b

σ
σ

σ σ σ
σ

−
− −

−
= −
Γ
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The probability of move is now given by 

( )
( )
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and calculated on logarithmic scale 

 

( ) ( )* * 2* 1 1 1 2
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1
log log , , | log ( ) log , , |

            log ( ).

t t t
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t
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q
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−
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The role of the rate parameter propb  is as significant as that of the parameter 2
σσ  of the 

normal proposal for logσ . The bigger the selection of  propb , the more symmetric and 

less variable will the proposal get, tending to a normal distribution in .+\  A small 

selection of  propb  on the other hand, will result to a proposal density which will be 

skewed to the left with bigger spread. 

Our first approach will be to run an initial small chain of size 1000 in order to 

acquire a first impression of the posterior parameter space. We choose starting values 

which are not far distant from the MLE estimates (0) 0.5,a = −  (0) 1b =  (0)and 0.1σ =  and 

keep the second half of the M-H chain for inferential purposes. The proposal scale for 

parameters a  and  b, which at this stage are kept uncorrelated, is set equal to 1 

( l l 1a bσ σ= = ) and the scale parameter of the gamma proposal distribution of 
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parameter σ  is set equal to 25 ( 25propb = ). If the acceptance ratio is lower than 

20% by the time the chain reaches the half of its course, then we decrease the 

spread of the proposals in order to increase acceptance ratio. In this case, scale 

parameters are divided or multiplied with 10 giving l l 0.1a bσ σ= =  and 250propb = , 

respectively.  

 The resulting acceptance ratio is low equal to 9.6 %. Mean and standard 

deviation estimates from this first simulation are shown in Table 3.1. This initial 

run also reveals a strong negative correlation, near -0.95, for parameters a  and b. 

 
Parameter a b σ 

Mean -0.776 1.385 0.146 

St. Deviation 0.109 0.060 0.021 

Table 3.2 Mean and standard deviation estimates for parameters a, b and σ acquired from a 
Metropolis-Hastings sample of size 500. 
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Figure 3.2 Time series plots (up) of the 1000 iterations for parameters a, b and σ (sigma), 
autocorrelation plots (middle) and histograms (down) resulting from the last 500 iterations. 
 

Time series plots of the three parameters are shown in Figure 3.2. We can notice 

that the acceptance ratio is affected positively from the decrease in the proposals 

spread, since about half the distance, at iteration 500, the chain fluctuates more 
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than before. The rest of the plots in Figure 3.2, unlike time series plots, refer to 

the second half of the Metropolis-Hastings sample; that is the part we keep for 

inferential purposes. The ACF plots are a graphical representation of the 

parameters autocorrelation function. The histograms provide us a rough image of 

the posterior space. 

 Based on this information we can initialize a multi chain Metropolis-

Hastings simulation from starting points that are over-dispersed in regard to 

posterior space. We now use five parallel chains of 9000 iterations each. The 

first 1000 iterations of each chain are discarded for the “burn-in” period. The 

initial values used are the following: 

( )
( )
( )
( )
( )

0 0 0
1 1 1

0 0 0
2 2 2

0 0 0
3 3 3

0 0 0
4 4 4

0 0 0
5 5 5

Chain 1 : , , ( 1.2,1.2,0.5)

Chain 2 : , , ( 1,1.4,0.12)

Chain 3 : , , ( 0.9,1.6,0.14)

Chain 4 : , , ( 0.7,1.8,0.16)

Chain 5 : , , ( 0.5, 2,0.18)

a b

a b

a b

a b

a b

σ

σ

σ

σ

σ

= −

= −

= −

= −

= −

 

We use a multivariate normal random walk proposal for parameters a , b and 

logσ , presuming zero correlations between the latter and the former two 

parameters ( , , 0a bσ σρ ρ= = ). The scale parameters of the proposal distribution 

are set equal to the standard deviation estimates acquired from the initial M-H 

run, l 0.109,aσ =  l 0.06bσ = , l 0.021σσ =  and the correlation coefficient ,a bρ  is set 

equal to -0.99, thus we presume a very strong negative correlation between a  

and b.  

 Convergence of the five parallel chains can be monitored through the first 

series of plots presented in Figure 3.3. We notice that the ergodic mean of each 

chain converges to a value which is common for all chains, as the number of 

iterations becomes large. Also, the histograms of the 40000 draws from the 

posterior distribution, in Figure 3.3, provide us a clear image of the parameters 

posterior space. 
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 Point estimates, posterior quantiles and the lR  root reduction measure for 

each parameter are summarized in Tables 3.3 and 3.4, presented below. We notice 

that the calculation of the lR  root measure is close to unity for all parameters, 

which implies successful convergence of the algorithm.   
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Figure 3.3 Ergodic mean plots (up) for five parallel M-H chains each of size 9000 and histograms 
(down) of parameters a, b, and σ (sigma) acquired by an M-H sample of 40000 draws. 
 
 

Parameter a b σ 

Mean -0.831 1.416 0.133 

St. Deviation 0.109 0.061 0.019 

Table 3.3 Mean and standard deviation estimates for parameters a, b and σ. 
 

                  

Posterior Quantiles 
Parameter 

0% 25% Median 75% 100% R root 

a -1.311 -0.902 -0.831 -0.759 -0.393 1.001 

b 1.153 1.376 1.416 1.457 1.701 1.000 

σ 0.086 0.119 0.131 0.144 0.217 1.002 

Table 3.4 Posterior quantiles and the calculated R root reduction measure for each parameter. 
   

                                                          

The five parallel chains achieve acceptance ratios of 62.4%, 62.3%, 61.5%, 

60.9% and 62.5% respectively. 
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3.5.2 Gibbs Sampler implementation  

 

The normal setting used previously is one of the special cases for which the 

Gibbs sampler algorithm can be utilized, since all of the full conditionals are of 

known form. The prior design is the same as before with 2(0, )a N kσ∼ , 
2 2

0 0~ (0, ),  ~ ( , )b N k IG a bσ σ  and prior parameters 0 0,  ,  k a b  set equal to 1000, 

310−  and 310−  respectively. The full conditional distributions for parameters 

,   and a b σ  are 

2
2

1( | , , ) ~ ( ),  ,  with  a a a
kp a b N w y bx w w
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∑
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We will use 5 parallel chains of 5000 iterations and discard the first 1000 values. 

To demonstrate the efficiency of Gibbs sampling, we use some initial values 

which are located in extreme regions of posterior space. 

( )
( )
( )
( )
( )

0 0 0
1 1 1

0 0 0
2 2 2

0 0 0
3 3 3

0 0 0
4 4 4

0 0 0
5 5 5

Chain 1 : , , ( 4, 5,0)

Chain 2 : , , ( 2, 3,0.5)

Chain 3 : , , (2,0,1)

Chain 4 : , , (3,1,1.5)

Chain 5 : , , (4,3, 2)

a b

a b

a b

a b

a b

σ

σ

σ

σ

σ

= − −

= − −

=

=

=

 

Descriptive statistics, posterior quantiles and the lR  root reduction measure are 

shown in Tables 3.5 and 3.6. As we can see the resulting estimates for parameters a  and 

b are quite similar to those acquired by the M-H algorithm. This is not the case for 
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estimates of σ . As we can see the estimates of the mean and of posterior quantiles are 

larger than the M-H estimates.    

    
Parameter a b σ 

Mean -0.833 1.418 0.142 

St. Deviation 0.114 0.064 0.022 

Table 3.5 Mean and standard deviation estimates acquired by a Gibbs sample of size 20000.  
 
                                     

Posterior Quantiles 
Parameter 

0% 25% Median 75% 100% R root 

a -1.316 -0.906 -0.833 -0.759 -0.366 1.001 

b 1.141 1.377 1.418 1.459 1.691 1.001 

σ 0.087 0.127 0.139 0.155 0.274 0.999 

Table 3.6 Posterior quantiles and the calculated R root reduction measure for parameters a, b 
and σ. 
 

Ergodic mean plots and histograms of the 20000 draws from the Gibbs sample 

are presented below, in Figure 3.4. 
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Figure 3.4 Ergodic mean plots (up) for five parallel Gibbs chains each of size 5000 and 
histograms (down) for parameters a, b and σ (sigma) resulting from a Gibbs sample of size 
20000. 
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Scatter plots of parameters a  and b, resulting from both MCMC methods, are 

presented in Figure 3.5. 
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Figure 3.5 Scatter plots of parameters a and b resulting from 40000 M-H draws (left) and from 
20000 Gibbs draws (right).   
 

 

3.5.3 Informal model checking through plots of predicted values 

 

One first approach on checking discrepancy between the fitted model and the 

observed data according to Gelman et al. (1995, p.167), is to simulate draws 

from the predictive distribution and then compare them with the observed data. 

Systematic differences between observed and replicated data imply potential 

failures of the model.  

 In our example, simulating from the predictive distribution is easy; for 

every set of ( ), ,l l la b σ , with 1,..., 20000l = , acquired from the Gibbs sampler we 

simulate ( )( ) ( ) ( ) ( )
1 2 25, ,...,rep l rep l rep l rep ly y y=y  from ( )( ) ( ) 2( ),l l lN a b σ+ x . We then select in 

random manner 20 replications ( repy ). The histograms of these replicated datasets 

are presented in Figure 3.6. We notice that most of them are skewed to the right. 
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In addition, six out of twenty histograms seem quite similar to that of the 

observed data. Thus, draws from the predictive distribution indicate no evidence 

of systematic differences between what is observed and what is predicted 

through our model. 
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Figure 3.6 Histograms of 20 replicated datasets. Most of the histograms are skewed to the right 
similar to the histogram of observed data.  
 
 
 A more formal way of examining model discrepancy and lack of fit is 

through the use of test quantities; see section 2.6. We will see how test quantities 

can be utilized in the subsequent logistic regression example.       

 

3.6 A logistic regression example with binomial data 

 

The data in this second example are presented by Cox and Snell (1989). They 

concern number of deaths, during the period 1950-1959 caused from leuchaimia 

and other types of cancer, for the survivors of Hiroshima who where between 25 

and 64 years old at year 1950. The death occurrences are presented according to 
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the dose of radiation which is originally given in unequal intervals. The data are 

shown below in Table 3.7. 

 

Intevals 0 1-9 10-49 50-99 100-200 200+ Dose of 

Radiation 

(rads) Points 0 4.5 29.5 74.5 149.5 249.5 

Leuchamia 13 5 5 3 4 18 

Other 

Cancer 
378 200 151 47 31 33 

Number 

of Deaths 

Total 391 205 156 50 35 51 

Table 3.7 Numbers of deaths caused from leuchaimia and other types of cancer according to the 
dose of radiation. The dose of radiation is measured in rads and given in unequal intervals in the 
original dataset (1st row). For the logistic regression we actually use points that lie near the 
center of the intervals (2nd row).   
    

A common model used for such types of problems is the logit model. For y being 

the dependent variable, that is number of deaths caused from leuchaimia, and x 

the explanatory variable, dose of radiation, then  

 

( )logit i ip a bx= + , with | ~ ( , )i i i iy p Bin n p  for 1,...,6i = . 

 

The probability of dying from leuchamia is ip , while in  is the total number of 

deaths caused by cancer, the subscript 1,...,6i =  represents the corresponding 

dose of radiation. The term ( )logit ip  is the logarithm of the odds of the unknown 

binomial probabilities ip  that is, 

( )logit log
1

i
i

i

pp
p

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 for 1,...,6i = . 

In this dataset the explanatory variable is given in unequal intervals, therefore 

we will actually use the points that lie near the center of each interval shown in 

Table 3.7. The ML estimates of a  and b are 

� 3.564  (0.212)a = −  and 0.011  (0.001)b =� , 

with the values in brackets corresponding to the coefficients standard deviations. 
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3.6.1 Metropolis algorithm implementation 

 

For the model ( )log i iit p a bx= + , 1,...,6i =  we use the independent priors 

(0, )  anda N k∼  ~ (0, )b N k . The multiplying constant k is set again equal to 1000 

in order to reflect prior ignorance. The joint posterior distribution is, 
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On logarithmic scale the expression simplifies to  

 

{ }( )
2 2 6 6 6

1 1 1
log ( , | ) log 1 exp Constant.

2
               

i i i i i
i i i

a bp a b a y b y x n a bx
k = = =

+
= − + + − + + +∑ ∑ ∑y  

Presuming that we have no prior knowledge of the parameters posterior space, 

we will generate three parallel chains of size 20000, from the following starting 

points:   

( )
( )
( )

0 0
1 1

0 0
2 2

0 0
3 3

Chain 1 : , ( 3, 1)

Chain 2 : , (0,0)

Chain 3 : , (3,1).

a b

a b

a b

= − −

=

=

 

 

We use a bivariate normal random walk proposal, that is  
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~ ,  ,  with  .

    

t t
a a b

t t
a b b

a a
b b

σ ρσ σ

ρσ σ σ

−

−

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

N Σ Σ  

Determining the scale of the proposal density will be more difficult, in absence 

of an initial run. In our previous example scale parameters 2
aσ  and 2

bσ  were set 

equal to 1 and later on they were decreased in order to increase acceptance ratio. 

In addition, the initial values set for parameters a  and b, where not extreme. As 

we have seen, this resulted to a relatively low acceptance ratio equal to 9.6%, 

therefore such a strategy will be probably inefficient if our main purpose is 

inferential. 

 We initially set 2 2 25a bσ σ= =  and 0ρ = ; the scale selection seems large 

enough in order to explore the posterior space with adequacy, while correlation 

is set equal to zero in the absence of any prior knowledge. When each chain 

reaches the first fourth of its course, that is at iteration 5000, we use the past 

5000 draws to obtain estimates of ,   and  a bσ σ ρ . Then, the proposal distribution 

for each separate chain becomes  

1
( )

2 ( )1
( )

,
t

i
it

i

a

b

−

−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

N Σ , with 
m l l l

l l l m

2
( ) ( )( )( )

( )
2

( ) ( )( ) ( )

            

       

a i b iia i
i

a i b ii a i

σ ρ σ σ

ρ σ σ σ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

Σ and 1,2,3i = .   

Estimates m m l2 2,    and  a bσ σ ρ  are updated twice again, at iterations 10000 and 15000, 

from the corresponding 5000 previous draws.  

 The probability of transition is affected only from the unnormalized 

posterior distribution since a normal random walk proposal is used. Thus, it is 

given by  

( )
( )

* *

1 1

, |

, |M t t

p a b
a

p a b− −
=

y

y
. 

 

Calculated on logarithmic scale the probability of move is given by 

 

( ) ( )* * 1 1log log , | log , |t t
Ma p a b p a b− −= −y y . 
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We keep the second half of each chain for inferential purposes. The resulting 

acceptance ratios are 23.5%, 28.6% and 25.6% respectively. Descriptive 

statistics, posterior quantiles and the lR  root measure for parameters α and b are 

presented in Tables 3.8 and 3.9, ergodic means plots and histograms are 

presented in Figure 3.7.  
                                                   

Parameter a b 

Mean -3.586 0.012

St. Deviation 0.215 0.001

Table 3.8 Mean and standard deviation estimates for parameters a and b acquired by a 
Metropolis sample of size 30000.          
        
 

Posterior Quantiles Parameter 

0% 25% Median 75% 100% R root 

a -4.491 -3.731 -3.581 -3.437 -2.846 1.0002 

b 0.006 0.011 0.012 0.013 0.017 1.0000 

Table 3.9 Posterior quantiles and the calculated R root reduction measure for each parameter of 
interest. 
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Figure 3.7 Ergodic mean plots (up) for parameters a and b from three parallel Metropolis chains 
of 20000 iterations each. Histograms (down) for parameters a, b resulting from a Metropolis 
sample of 30000 draws.  
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 Point estimates of the means and standard deviations are almost identical 

to the ML estimates while the correlation estimate equals -0.668. Overall 

convergence, according to the calculation of the lR  roots and the examination of 

the ergodic mean plots presented in Figure 3.7, seems satisfactory. 

 An acceptance ratio of approximately 80% can be achieved by setting 

0.1,  0.0005a bσ σ= =  and 0.66ρ = −  along with initial values located within the 

posterior space. 

 

3.6.2 Metropolis within Gibbs implementation        

 

Now we will demonstrate the Metropolis within Gibbs algorithm for the same 

logistic regression example. The term Univariate Metropolis is in this case a 

more proper description of the algorithm in use, since none of the two full 

conditionals are of known form. So, we will actually use two separate Metropolis 

algorithms for parameters a  and  b. As we have seen, the joint posterior 

distribution is 
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2 2 6

1

1( , | ) exp .
2 1

i
i

i
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a bx
i

a bp a b e
k e

+
+
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∏y  

 

Thus, the full conditionals of parameters a  and b are 
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1
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and on logarithmic scale 
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{ }( )
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1 1
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1 1

log ( | , ) log 1 exp Constant,
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We now use univariate proposal densities 1 2( , )t t
aa N a σ−∼  and 1 2( , )t t

bb N b σ−∼ , 

with 2 2 25a bσ σ= = . The updating scheme presented above is now utilized for each 

parameter separately. The probabilities of transition on logarithmic scale are 

 

( ) ( )* 1 1 1log log | , log | ,t t t
Ma p a b p a b− − −= −y y

( ) ( )* * 1 *log log | , log | ,t
Ma p b a p b a−= −y y . 

 

Three parallel chains of size 20000 with the same initial values produce 

acceptance ratios of 41.3%, 42%, 42.4% for parameter a  and 32.1%, 38.7%, 

33.6% for parameter b. Results are summarized in Tables 3.10, 3.11 and Figure 

3.8. 

 
Parameter a b 

Mean -3.581 0.012

St. Deviation 0.210 0.001

Table 3.10 Mean and standard deviation estimates resulting from a Metropolis within Gibbs 
simulation of size 30000.     
   
             

Posterior Quantiles 
Parameter 

0% 25% Median 75% 100% R root 

a -4.550 -3.722 -3.575 -3.434 -2.924 0.9999 

b 0.005 0.011 0.012 0.013 0.018 1.0000 

Table 3.11 Posterior quantiles and the calculated R root reduction measure for parameters a and 
b. 
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Figure 3.8 Ergodic mean plots (up) for parameters a, b from three parallel Metropolis within 
Gibbs chains of 20000 iterations each. Histograms (down) for parameters a, b resulting from a 
simulated sample of size 30000.   
   

Acceptance ratios of approximately 80% for parameter a  and 85% for parameter 

b can be achieved, by setting initial values located within the posterior space and 

initial scale parameters 0.1,  0.0005a bσ σ= = . 

 Estimates of means, standard deviations and quantiles obtained from the 

two algorithms are similar. This does not hold for the correlation estimates; from 

the Metropolis algorithm we obtain l 0.668Mρ = − , while from Metropolis within 

Gibbs we obtain l 0.606MGρ = − . In order to check the efficiency of these estimates 

we run a single chain of 50000 iterations using both methods and conclude to 

l l 0.67M MGρ ρ −� � , a value not far from the initial estimate of the Metropolis 

algorithm. This non negligible difference between the two estimates can be 

noticed in the scatter plots of Figure 3.9.  
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Figure 3.9 Scatter plots for parameters a, b resulting from 30000 Metropolis draws (left) and 
30000 Metropolis within Gibbs draws (right).  
 

 

3.6.3 Checking model discrepancies through test quantities 

  

We will now use the Metropolis sample in order to evaluate the chi square and 

the deviance test quantities. 

 As discussed in section 2.6 the chi-square discrepancy measure suggested 

by Gelman et al. (1993) is given by   
2( ( | ))( , )

( | )
i i

i i

y E yT
Var y
−

=∑ θy θ
θ

. 

 Under the model hypothesis the parameter vector is =θ p , with  

{ }
{ }

exp
1 exp

a b
a b
+

=
+ +

x
p

x
. 

So, the chi-square test quantity has the form  
2

1

( , )
(1 )

n
i i i

i i i i

y n pT
n p p=

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠
∑y θ , 

since ( | )i i iE y n p=θ  and ( | ) (1 )i i i iVar y n p p= −θ . 
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 Another test quantity which is frequently used for overall goodness-of-fit 

checks is the deviance quantity. As already mentioned in section 2.8 the deviance 

of any model is generally obtained from ( ) 2 log ( | )D p= −θ y θ . Thus, in general 

the deviance quantity is given by 

( , ) 2 log ( | )T p= −y θ y θ . 

In binomial logistic regression the deviance from the maximal model can be 

calculated analytically (Dobson, 1990, p.112), so we actually evaluate the 

deviance quantity from    

( , ) log ( ) logi i i
i i i

i i i i i i

y n yT y n y
n p n n p

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= + −⎢ ⎥⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎣ ⎦
∑y θ . 

 

We evaluate the Bayesian p-value, defined as ( )Pr ( , ) ( , ) |repT T≥y θ y θ y  (see 

section 2.6), through simulation. For this, we initially generate draws of 

replicated data; for each set of parameters ( ),  , 1,...,30000l la b l = , we first 

calculate 
{ }
{ }

exp

1 exp

l l
l

l l

a b

a b

+
=

+ +

x
p

x
 and then we generate ( )( ) ( ) ( ) ( )

1 2 6, ,...,rep l rep l rep l rep ly y y=y  

from ( , )lBin n p . Finally, we evaluate the test quantities ( , )lT y θ  and ( )( , )rep l lT y θ  

for 1,...,30000l =  and then obtain the corresponding Bayesian p-values by simply 

counting the number of cases for which, inequality  ( )( , ) ( , )rep l l lT T≥y θ y θ  holds. 

  The resulting p-values are 0.589 for the chi-square test quantity and 0.802 

for the deviance test quantity. The chi square p-value implies that observed and 

replicated data seem to be in agreement. The p-value obtained from the deviance 

test is larger, yet it cannot be considered as an extreme tail area probability. 

Therefore, we could say that the model is not suspicious for major discrepancies. 

Kernel smoothed densities of each test quantity are presented in Figure 3.10 

below. 
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Figure 3.10 Kernel smoothed densities of the chi-square (left) and deviance (right) test quantities 
derived from observed data (blue line) and replicated data (red dashed line).  
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Chapter 4: Marginal Likelihood Estimators 
 

4.1 Introduction 

 

As discussed in section 2.7, hypothesis testing and model comparison are based 

on the calculation of posterior odds ratios and consequently on Bayes factors. In 

order to calculate Bayes factors we must obtain the marginal likelihood of the 

data under each competing model. Without the notational dependence from the 

model, the marginal density of the data y  with parameter vector θ  is given by   

( ) ( | ) ( )p p p d
Θ

= ∫y y θ θ θ . 

Most often this integration cannot be derived analytically, so we usually have to 

obtain an estimate of the marginal likelihood using alternative approaches such 

as asymptotic or simulation based methods.  

 One can also notice that the integral is with respect to the prior 

distribution of θ and not with respect to the posterior distribution of θ . Thus, the 

simplest Monte Carlo integration estimate is given by 

l 1

1
( ) ( | )

M

m
m

p M p−

=

= ∑y y θ , 

where the values { }mθ , for 1,...,m M= , are now a sample from the prior 

distribution. Unfortunately, this estimate is very unstable when the posterior 

distribution is concentrated relative to the prior which is most often the case. 

Thus, this estimate is dominated by a few values of  θ  which have a large 

likelihood value (Kass and Raftery, 1995).         

 In this chapter we will focus on “direct” MCMC methods. These methods 

utilize MCMC outputs from separate models in order to acquire the estimates of 

marginal likelihoods and consequently estimates of Bayes factors. Alternative 

options are asymptotic approximations to the marginal likelihood such as the 

Laplace method or the Schwarz Criterion which can be used as an approximation 

for Bayes factors; for details see Kass and Raftery (1995). There also exist 

MCMC model selection methods which simulate over both parameter and model 
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space such as the Reversible Jump MCMC (RJMCMC) algorithm (Green, 1995), 

the Carlin and Chib algorithm (Carlin and Chib, 1995) and the Metropolised 

Carlin and Chib algorithm (Dellaportas et al., 2002). These methods bypass 

marginal likelihoods and deliver directly the posterior probabilities of each 

model. Recently, Congdon (2004) also presented a method of estimating 

posterior model probabilities.              

 

4.2 Harmonic mean estimator   

 

The harmonic mean estimator is based on the importance sampling method and 

uses the posterior as the importance sampling function (Newton and Raftery 

1994). The marginal density can be expressed as  

 

11 1 1

1 1 1 1( )
( )( ) ( ) ( ) ( | ) ( | )( | ) ( )
( | )

p
pp p p d p p dp p d
p

−− − −
= = = =

∫ ∫∫
y

yy y θ θ y θ θ y θθ y θ θ
θ y

. 

 

Thus, we have the identity { } 1
1( ) ( | ) ( | )p p p d

−
−= ∫y y θ θ y θ  which results to the 

harmonic mean estimator  

l
1

1 ( ) 1

1

( | )
N

t
H

t

p N p
−

− −

=

⎧ ⎫= ⎨ ⎬
⎩ ⎭

∑ y θ , 

where ( )tθ , for 1,2,...,t N= , are posterior draws from the MCMC output. 

According to Newton and Raftery (1994) this estimator converges surely to ( )p y , 

as t →∞ . However lHp  does not, in general, satisfy a Gaussian central limit 

theorem, hence values ( )tθ  with small likelihood have a large effect on the final 

result.  

 Although the harmonic mean estimator is quite unstable, it is easy to 

calculate and according to Kass and Raftery (1995) produces results that are 

accurate enough for interpretation on logarithmic scale. 
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4.3 Laplace-Metropolis estimator 

 

 The Laplace-Metropolis estimator combines the asymptotic result of the 

Laplace method with the MCMC output. Under the assumptions of the Laplace 

method the marginal density can be approximated by  

l i � �1/ 2/ 2( ) (2 ) ( | ) ( )dp p pπ=y Σ y θ θ , 

where �θ  is the posterior mode, iΣ  is minus the inverse Hessian matrix evaluated 

at �θ  and d  is the dimension of θ  (Tierney and Kadane, 1986; Kass and Raftery, 

1995). 

 The Laplace-Metropolis estimator l LMp  discussed in Lewis and Raftery 

(1997) is given by the above equation with �θ  estimated by maxθ  the point that 

maximizes  ( ) ( )( | ) ( )t tp py θ θ  among the N posterior draws and lΣ  estimated by S  

the sample covariance matrix of the output. Hence, the Laplace-Metropolis 

estimator is given by  

 

l 1/2/2 max max(2 ) ( | ) ( )d
LMp p pπ= S y θ θ ,  

 

where  { }{ }max ( ) ( )

1,...,
: ( | ) ( ) max ( | ) ( )t t

t N
p p p p

=
= =θ θ y θ θ y θ θ   and 

( )( )( ) ( )

1

1
1

N Tt t

tN =

= − −
− ∑S θ θ θ θ . 

 

Alternative choices for �θ  can be obtained by the multivariate posterior median or 

by a nonparametric density estimate of the posterior mode or even by the 

posterior mean when the posterior is a symmetric distribution. According to 

Lewis and Raftery (1997) the resulting estimator performed well in numerical 

experiments. 
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4.4 Newton and Raftery’s estimator 

 

Newton and Raftery (1994) suggested an estimator, based again on the 

importance sampling method, which would be less unstable than l
Hp . The 

importance sampling function is now a mixture of the prior and posterior 

densities  

( ) ( ) (1 ) ( | )g p pδ δ= + −θ θ θ y , 

where 0 1δ< < . One can notice that the choice 0δ =  results to harmonic mean 

estimator. Sampling from g  is achieved by randomly replacing Nδ ×  values of 

the posterior sample with independent draws from the prior (Lopes, 2002). 

 Using ( )g θ  as the importance sampling function results to the estimate 

l
(1)NRp . In order to obtain l (1)NRp  we must first specify an initial value and then 

iterate the equation 

l
l{ }

l{ }

1
( ) ( )

(1)
1

(1) 1
( )

(1)
1

( | ) (1 ) ( | )
.

(1 ) ( | )

N
t t

NR
t

NR N
t

NR
t

p p p
p

p p

δ δ

δ δ

−

=
−

=

+ −
=

+ −

∑

∑

y θ y θ

y θ
 

According to Newton and Raftery (1994) this estimator retains the efficiency of 

l
Hp  but it also satisfies a Gaussian central limit theorem, unlike the latter. 

 In order to avoid sampling from both the prior and the posterior, Newton 

and Raftery (1994) suggest to use all N values of the posterior sample and 

imaging that further (1 )Nδ δ−  values are drawn from the prior, all with 

likelihoods ( )( | )tp y θ  equal to their expected value ( )p y . This yields the estimator 

l
(2)NRp  which is obtained by iterating the equation 

l
l{ }

l l{ }

1
( ) ( )

(2)
1

(2) 1
( )

(2) (2)
1

(1 ) ( | ) (1 ) ( | )
.

(1 ) (1 ) ( | )

N
t t

NR
t

NR N
t

NR NR
t

N p p p
p

N p p p

δ δ δ δ

δ δ δ δ

−

=
−

=

− + + −
=

− + + −

∑

∑

y θ y θ

y θ
 

As with the first estimator, an initial value must be set in order to start the 

iterative process. 
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 According to the authors both estimators performed well for values of δ  

as small as 0.01 without displaying the instability of lHp .   

  

4.5 Bridge sampling estimator 

 

Innovative methods for computing the ratio of normalizing constants based on 

bridge sampling were studied by Meng and Wong (1996).  

 Suppose that we have two densities ( ),  1, 2ip i =θ  which are known up to a 

normalizing constant so that ( )( ) i
i

i

qp
c

=
θθ ,  d

i R∈Ω ⊂θ , where iΩ  is the support 

of ( )ip θ   and that our interest is in calculating the ratio 1 2c c .  

 We additionally presume that 1( )p θ  and 2 ( )p θ  have a common support that 

is, 

1 2

1 2( ) ( ) 0p p d
Ω Ω

>∫ θ θ θ
∩

 

and that samples from these densities are available. Then for any arbitrary 

function ( )a θ  defined on 1 2Ω Ω∩  which satisfies 

1 2

1 20 ( ) ( ) ( )a p p d
Ω Ω

< < ∞∫ θ θ θ θ
∩

,  

we have 

2 1 2

1 1 2

1 2 1 2

1

22 1 2 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

a q p d a p p d
c
ca q p d a p p d

Ω Ω Ω

Ω Ω Ω

= ×
∫ ∫

∫ ∫

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ
∩

∩

, 

which yields the key identity 

[ ]
[ ]

2 11

2 1 2

( ) ( )
( ) ( )

E a qc
c E a q

=
θ θ
θ θ

, 

where the expectation in the numerator is with respect to 2 ( )p θ  and the 

expectation in the denominator is with respect to 1( )p θ . 
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 In our context we choose a density ( )g θ  which has the same support as the 

posterior. So, the corresponding densities are  

 

1 1 1( ) ( | ),  ( ) ( | ) ( ),  with  ( )p p q p p c p= = =θ θ y θ y θ θ y   

and 

2 2 2( ) ( ) ( ),  with  1.p q g c= = =θ θ θ  

Thus, we have  

( ) ( | ) ( ) ( )
( )

( ) ( ) ( | )

a p p g d
p

a g p d
= ∫

∫
θ y θ θ θ θ

y
θ θ θ y θ

, 

from which we obtain the estimate   

l
1 *( ) *( ) *( )

1

1 ( ) ( )

1

( ) ( | ) ( )
( ) .

( ) ( )

L
l l l

l
N

t t

t

L a p p
p

N a g

−

=

−

=

=
∑

∑

θ y θ θ
y

θ θ
 

 

The values ( )tθ  are draws from the available MCMC sample, while the values 
*( )lθ  are a sample of size L drawn from ( )g θ . In general, we want the density 

( )g θ  to be an accurate approximation of the posterior and also easy to sample 

from (Lopes, 2002). 

 According to Meng and Wong (1996) different selections of the arbitrary 

function ( )a θ  produce different bridge sampling estimators. Some of these 

estimators, also reviewed by Lopes (2002), are the following: 

 

• For { } 1( ) ( | ) ( ) ( )a p p g −=θ y θ θ θ  we obtain an estimate which resembles 

the harmonic mean, that is 

l

{ }

1 *( ) 1

1

11 ( ) ( )

1

( )
.

( | ) ( )

L
l

l
HB N

t t

t

L g
p

N p p

− −

=

−−

=

=
∑

∑

θ

y θ θ
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• For { } 1/ 2( ) ( | ) ( ) ( )a p p g −=θ y θ θ θ  we obtain the geometric estimator 

l
{ }

{ }

1/ 21 *( ) *( ) *( )

1

1/ 21 ( ) ( ) ( )

1

( | ) ( ) ( )
.

( ) ( | ) ( )

L
l l l

l
GB N

t t t

t

L p p g
p

N g p p

−

=

−

=

=
∑

∑

y θ θ θ

θ y θ θ
 

 

• The optimal estimator lOptBp  of Meng and Wong (1996) is obtained by 

an iterative procedure. We specify an initial value, usually 

l l
OptB GBp p= , and  iterate the equation 

l
l( )

l( )

( ) ( )
2 1 2 2

1

( )
1 1 2

1

1

L
l l

OptB
l

OptB N
t

OptB
t

W s W s p
p

s W s p

=

=

+
=

+

∑

∑
, 

      where 1 2( ),  ( )s N N L s L N L= + = + , ( ) *( ) *( ) *( )
2 ( ) ( ) ( )l l l lW p | p g= y θ θ θ                                      

      and  ( ) ( ) ( ) ( )
1 ( ) ( ) ( ).t t t tW p | p g= y θ θ θ   

  

Additional information on other bridge sampling estimates and discussion over 

efficiency issues can be found in Meng and Wong (1996). 

 

4.6 Candidate’s estimator 

 

The candidate’s approach is based on a simple identity following from Bayes 

theorem that is  

( | ) ( )( )
( | )

p pp
p

=
y θ θy
θ y

. 

This alternative formula for calculating the marginal density of y  was first 

mentioned in Besag (1989). The advantage of this formula is that it holds for any 

value *θ of θ , thus an estimate of the marginal density on logarithmic scale is 

 

l l* * *log ( ) log ( | ) log ( ) log ( | ).p p p p= + −y y θ θ θ y  
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We can notice that this expression requires only the evaluation of the log-

likelihood function and the prior along with an estimate of the posterior density 

at point *θ . According to Chib (1995) this estimate does not suffer from any 

instability problem since it is actually a density value that is averaged. In 

addition, the entire estimation error arises from the estimation of the posterior 

ordinate l *( | )p θ y . Estimation of the posterior ordinate from a Gibbs output was 

fully analyzed by Chib (1995). Later, Chib and Jeliazkov (2001) presented a 

method for estimating the posterior ordinate from a Metropolis-Hastings output. 

These two methods are being reviewed next. 

 Regarding the selection of the point *θ , Chib (1995) recommends 

choosing a high density value such as the posterior mode or the maximum 

likelihood estimate or even the posterior mean provided that it is not located in a 

low density region.  

  

4.6.1 Marginal likelihood from the Gibbs output 

 

The presentation of this method in Chib (1995) includes parameter blocks along 

with a latent data block. We will present the three vector blocks example of Chib 

(1995) by replacing the latent data block with a parameter block. 

 Suppose that 1 2 3( , , )=θ θ θ θ , then the Gibbs sampler is defined through the 

full conditional densities 

1 2 3 2 1 3 3 1 2( | , , ),   ( | , , ),   ( | , , ).p p pθ y θ θ θ y θ θ θ y θ θ  

The goal is to estimate *( | )p θ y  which can be expressed as  
* * * * * * *

3 2 1 2 1 1( | ) ( | , , ) ( | , ) ( | )p p p p=θ y θ θ θ y θ θ y θ y . 

The first ordinate * * *
3 2 1( | , , )p θ θ θ y  can be calculated directly, since the full 

conditional density of 3θ  is known when using a Gibbs sampler. The other two 

ordinates can be expressed as 
* *
1 1 2 3 2 3 2 3( | ) ( | , , ) ( , | )p p p d d= ∫θ y θ θ θ y θ θ y θ θ ,  

* * * * *
2 1 2 1 3 3 1 3( | , ) ( | , , ) ( | , )p p p d= ∫θ θ y θ θ θ y θ θ y θ . 
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The marginal ordinate *
1( | )p θ y  can be estimated by averaging the full 

conditional density of 1θ  with the posterior draws of 2 3( , )θ θ , this yields the 

estimate  

l * 1 * ( ) ( )
1 1 2 3

1

( | ) ( | , , )
N

t t

t

p N p−

=

= ∑θ y θ θ θ y . 

 

The reduced ordinate * *
2 1( | , )p θ θ y  can be estimated with a similar technique which 

requires draws from the distribution of  *
3 1| ,θ θ y . Therefore, we continue 

sampling for additional L iterations from the full conditional densities 
* *

2 1 3 3 1 2 ( | , , )  and   ( | , , )p pθ y θ θ θ y θ θ , 

where 1θ  is now constant, equal to *
1θ . According to Chib (1995) the draws ( )

3
lθ  

from this reduced Gibbs run follow the density *
3 1( | , )p θ θ y . Thus, we can now 

estimate the reduced ordinate * *
2 1( | , )p θ θ y  with 

 

l * * 1 * * ( )
2 1 2 1 3

1

( | , ) ( | , , )
L

l

l

p L p−

=

= ∑θ θ y θ θ θ y . 

 

So, the marginal density estimate, denoted as lChibp , is   

l
l l

* *

* * * * * *
3 2 1 2 1 1

( | ) ( )
( | , , ) ( | , ) ( | )Chib

p pp
p p p

=
y θ θ

θ θ θ y θ θ y θ y
 

and on logarithmic scale  

 

l l l* * * * * * * *
3 2 1 2 1 1log log ( | ) log ( ) log ( | , , ) log ( | , ) log ( | ).Gibbsp p p p p p= + − − −y θ θ θ θ θ y θ θ y θ y  

 

 Although this procedure leads to an increase in the number of iterations, it 

is rather straightforward since it does not require additional programming (Chib, 

1995). Further note that the reduced Gibbs run is not necessary for two blocks 
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parametric vectors 1 2( , )=θ θ θ . The general case for an arbitrary number of blocks 

1 2( , ,..., )B=θ θ θ θ  is treated accordingly; see Chib (1995).  

  

4.6.2 Marginal likelihood from the Metropolis-Hastings output 

 

Chib and Jeliazkov (2001) extended the previous method in order to be 

implemented in M-H output. They have illustrated the method for one parameter 

block, two parameter blocks along with multiple latent variable blocks and 

multiple parameter blocks. We will demonstrate the use of this method for the 

simple case of one block sampling. 

 Let  '( , | )q θ θ y  denote the proposal density for a transition from 'to θ θ , 

where q is allowed to depend on the data y , then the M-H transition probability 

is  
' '

'
'

( | ) ( , | )( , ) min 1,
( | ) ( , | )MH

p qa
p q

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

θ y θ θ yθ θ
θ y θ θ y

. 

 

In addition, let '( , | )p θ θ y  denote the sub-kernel of the M-H algorithm that is 
' ' '( , | ) ( , ) ( , | )MHp a q=θ θ y θ θ θ θ y , 

then from the reversibility of this sub-kernel the equation  
* * *( | ) ( , | ) ( | ) ( , | )p p p p=θ y θ θ y θ y θ θ y , 

holds for any *θ . By integrating both sides of this expression with respect to θ  

we obtain that the posterior ordinate equals 

 
*

*
*

* *
*

* *

( | ) ( , | )
( | )

( , | )

( | ) ( , ) ( , | )
( | ) .

( , ) ( , | )
MH

MH

p p d
p

p d

p a q d
p

a q d

= ⇔

=

∫
∫

∫
∫

θ y θ θ y θ
θ y

θ θ y θ

θ y θ θ θ θ y θ
θ y

θ θ θ θ y θ

 

 

This yields the estimator  
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l
1 ( ) * ( ) *

* 1

1 * ( )

1

( , ) ( , | )
( | )

( , )

N
t t

MH
t

J
j

MH
j

N a q
p

J a

−

=

−

=

=
∑

∑

θ θ θ θ y
θ y

θ θ
, 

where ( )tθ  are draws from the M-H output and ( )jθ  are draws from the 

distribution *( , | )q θ θ y , given the fixed value *θ . 

 According to Chib and Jeliazkov (2001) values ( )jθ  that do not lie in the 

support of ( | )p θ y  are included in the average of the denominator with the value 
* ( )( , ) 0j

MHa =θ θ . The authors also comment that although the sample sizes of the 

numerator and denominator are let to be different, in practice they are set to be 

equal and that sampling from *( , | )q θ θ y  usually consumes a small amount of 

time.    

 Thus, we acquire a marginal likelihood estimate, denoted as lC Jp − , which 

is given on logarithmic scale by    

 

l l* * *log log ( | ) log ( ) log ( | ).C Jp p p p− = + −y θ θ θ y  

 

4.7 Chen’s estimator 

 

The method presented by Chen (2005) is in fact a generalization of the 

Candidate’s estimator method. Unlike the two previous methods, Chen’s method 

does not require the specific form of the MCMC sampling process to be known. 

Although the presentation of the method by Chen (2005) includes treatment of a 

latent data block, we restrict ourselves to the simple case (without latent data). 

 Let ( )g θ  be a proper density function, then for any point *θ  the likelihood 

function ( | )p y θ  evaluated at *θ  can be expressed as     

* *( | ) ( | ) ( )p p g d= ∫y θ y θ θ θ , 

since ( ) 1.g d =∫ θ θ  This equality can be re-expressed as 
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*
* ( ) ( | ) ( | ) ( )( | ) ( | )

( ) ( | ) ( | )
g p p pp p d
p p p

= ∫
θ y θ y θ θy θ θ y θ
θ y θ θ y

. 

Then, from the identity ( ) ( | ) ( ) ( | )p p p p=y y θ θ θ y  we have that 

*
* ( ) ( | )( | ) ( ) ( | )

( ) ( | )
g pp p p d
p p

= ∫
θ y θy θ y θ y θ
θ y θ

. 

Solving this equation with respect to ( )p y  yields on logarithmic scale 

 
*

* ( ) ( | )log ( ) log ( | ) log
( ) ( | )

g pp p E
p p

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

θ y θy y θ
θ y θ

, 

 

where the expectation is with respect to the posterior distribution ( | )p θ y . Thus, 

we obtain an estimate of the marginal likelihood, denoted as lChenp , which is 

given by  

l
( ) *

* 1
( ) ( )

1

( ) ( | )log log ( | ) log
( ) ( | )

tN

Chen t t
t

g pp p N
p p

−

=

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ θ y θy θ

θ y θ
, 

where the ( )tθ  are the draws from the MCMC output. 

 According to Chen (2005) the density ( )g θ  corresponds to the weighted 

conditional density which is used in the Importance Weighted Marginal Density 

estimation method introduced by the same author (Chen, 1994). Therefore, the 

guidelines for choosing a satisfactory function g  can be found in Chen (1994). A 

usual approach is to facilitate a common distribution which mimics the 

conditional marginal density; in our context, the posterior distribution ( | )p θ y . 

This can be achieved by fitting posterior moments so that g will have a shape 

roughly similar to that of the posterior distribution. 

 An alternative option discussed in Chen (2005) is to choose ( ) ( )g p=θ θ  if 

( )p θ  is proper. This choice simplifies the estimate to  

l
*

* 1
( )

1

( | )log log ( | ) log
( | )

N

Chen t
t

pp p N
p

−

=

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
∑ y θy θ

y θ
, 

but this is not an optimal choice according to the author. 
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 The optimal choice of g  discussed in Chen (2005) is ( ) ( | )g p=θ θ y . In 

this case we have that  
*

*

*
*

*
*

( | ) ( | )log ( ) log ( | ) log
( ) ( | )

( | ) ( ) ( | )log ( ) log ( | ) log
( ) ( ) ( | )

( | )log ( ) log ( | ) log .
( )

p pp p E
p p

p p pp p E
p p p

pp p E
p

⎡ ⎤
= − ⇔⎢ ⎥

⎣ ⎦
⎡ ⎤

= − ⇔⎢ ⎥
⎣ ⎦
⎡ ⎤

= − ⎢ ⎥
⎣ ⎦

θ y y θy y θ
θ y θ

y θ θ y θy y θ
θ y y θ

y θy y θ
y

 

 

However, we know that * * *( | ) ( | ) ( ) ( )p p p p=y θ θ y y θ , therefore it easy to see that 

the optimal choice of Chen results to the familiar identity 

 
* * *log ( ) log ( | ) log ( ) log ( | ).p p p p= + −y y θ θ θ y  

 

Thus, Chen’s optimal choice of g  leads to the use of the Candidate’s estimator 

method of Chib (1995) or Chib and Jeliazkov (2001) if *( | )p θ y cannot be 

directly calculated.     
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Chapter 5: Illustration and Comparison of Methods in a 

Simple Regression Example  
 

5.1 Models and prior selection 

  

In this chapter we will evaluate the methods discussed in the previous chapter on 

four competing regression models. The data are the DC output and wind velocity 

observations presented in section 3.5. The four models we wish to compare are   

0 0 0

1 1 1 1

2 2 2 2

2
3 3 3 3 3

:   

:   ( )

:   ( )

:   ( ) ,

i i

i i i

i i i

i i i i

M y a

M y a b x x

M y a b z z

M y a b x x c x

ε

ε

ε

ε

= +

= + − +

= + − +

= + − + +

 

where iy  is the DC output, ix  is the wind velocity, iz  is the logarithm of wind velocity 

and 2(0, )
iid

ji jN σε ∼  with 1,..., 25  and  0,1,2,3i j= = . The parameter vector jθ  of each 

model is 2 2 2 2
0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3( , ),   ( , , ),   ( , , )  and  ( , , , )a a b a b a b cσ σ σ σ= = = =θ θ θ θ . The 

selected prior densities are 

( )
( )
( )

2 2 3 3
0 0 0 0 0

2 2 3 3
1 1 1 2 1 1 1

2 2 3 3
2 2 2 2 2 2 2

2 2 3 3
3 3 3 3 3 3 3 3

:   (0, ),   ~ (10 ,10 )

:   , ( , ),   ~ (10 ,10 )

:   , ( , ),   ~ (10 ,10 )

:   , , ( , ),   ~ (10 ,10 ),

T

T

T

M a N IG

M a b N IG

M a b N IG

M a b c N IG

σ σ

σ σ

σ σ

σ σ

− −

− −

− −

− −

D

0 D

0 D

0 D

∼

∼

∼

∼

 

where ( ) 12 T
j j jn

−
=D X X , for 0,1, 2,3j = . With jX  we denote the corresponding 

design matrix of each model while n stands for sample size. 

  A more common choice for jD  would be 1 2( )T
j j jn σ−X X ; see Fernandez et 

al. (2001). Yet, preliminary MCMC runs revealed that the prior corresponding to 

the latter selection was informative; in the sense that provided posterior 

distributions away from the corresponding ones when an improper flat prior was 

adopted.      
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5.2 Simulating from the posterior 

 

Gibbs sampling and M-H simulation are required in order to implement the 

methods which were reviewed in Chapter 4. Therefore, we use each method in 

order to obtain samples from the distributions ( | , ),  for  0,1, 2,3j jp M j =θ y . 

  

5.2.1 Details of the Gibbs sampler implementation 

 

The full conditional distributions under each model are all of known form. For 

simplicity we denote 2
1 2 3,  , i i i i i ix x x x x x z z= − = = − . In addition, j

mnd  is considered 

as the ( )m n×  element of the matrix jD . Starting from the simple model we have 

Model 0: 

( )

2
2 0

0 0

2
0 0 0 0

| , , ,

| , , ,

o oa aa N w w
n

a IG A B

σ
σ

σ

⎛ ⎞
⎜ ⎟
⎝ ⎠

y y

y

∼

∼
 

where
0oa aw n C= , ( )

0

10
11aC n d

−
= + , 

3
0

110
2

nA − +
= +  and 

0

3 2 2
0 0 0

1 1

10 0.5 2
n n

i i a
i i

B y a y a C−

= =

⎧ ⎫= + − +⎨ ⎬
⎩ ⎭
∑ ∑ . 

Model 1: 

( )( )
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1 1

1 1

2 1 2 1
1 1 0 1 1 1
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1 1 0 1 1 1 1 1 1
1 1 1
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∑ ∑ ∑

y y

y

y

∼

∼

∼

 

where 
1 1

,a aw n C=  
1 1

2
1

1

,
n

b i b
i

w x C
=

= ∑  ( )1 1 1

11 2
11(1 )a a bC n d ρ

−
= + − , 

( )1 1 1

12 1 2
1 22

1

(1 )
n

b i a b
i

C x d ρ
−

=

= + −∑ , 
1 1

1
12

1 1 1 1 2
1 11 22 (1 )

n
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i a b

dC x
d d ρ=
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210

2
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1 1

3 2 2 2
1 1 1 1 1 1 1 1 1

1 1 1
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Model 2: 
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We utilize five parallel chains of size 11.000 and discard the 1000 first iterations 

of each chain for the ‘burn-in’ period. Point estimates, posterior quantiles and 

the R-root measure for each model are summarized in Tables 5.1 to 5.4 below. 

 
Model 0 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

0a  1.608 0.134 0.919 1.520 1.608 1.695 2.250 1.0001 

0σ  0.663 0.098 0.408 0.593 0.652 0.719 1.356 0.9999 

Table 5.1 Model 0 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Gibbs sample of 50000 draws.  
 
 

 Model 1 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

1a  1.607 0.049 1.381 1.574 1.607 1.639 1.833 0.9999 

1b  0.241 0.019 0.152 0.228 0.241 0.254 0.341 1.0000 

1σ  0.244 0.036 0.149 0.218 0.240 0.265 0.496 0.9999 

Table 5.2 Model 1 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Gibbs sample of 50000 draws. 
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Model 2 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

2a  1.607 0.031 1.432 1.586 1.607 1.627 1.782 0.9999 

2b  1.415 0.070 1.051 1.368 1.415 1.461 1.816 1.0001 

2σ  0.153 0.023 0.092 0.138 0.151 0.167 0.373 0.9999 

Table 5.3 Model 2 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Gibbs sample of 50000 draws. 
 
 

Model 3 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

3a  1.841 0.043 1.649 1.812 1.841 1.869 2.028 1.0001 

3b  0.255 0.011 0.176 0.247 0.255 0.263 0.337 0.9999 

3c  -0.038 0.005 -0.063 -0.042 -0.038 -0.035 -0.013 1.0000 

3σ  0.139 0.021 0.084 0.124 0.136 0.151 0.287 1.0000 

Table 5.4 Model 3 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Gibbs sample of 50000 draws. 
 

  

5.2.2 Details of the Metropolis-Hastings implementation 

 

The joint posterior distribution for each model on logarithmic scale is  
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An independence chain which is allowed to depend on the data 
1( , | ) ( | )t t t

j j jq q− =θ θ y θ y  for 0,1,2,3j =  is utilized for each M-H simulation. The 

proposal distribution under each model is 
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The upper script (M) stands for the mode of the log-target density while jV  is the 

inverse of the negative Hessian of the log- target evaluated at the mode. The 

covariance matrices jV  are 
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 The posterior means from the Gibbs sampling are used as estimates of the mode. 

Although, the posterior mean is a rough estimate of the mode, preliminary M-H 

simulations revealed that the use of the posterior median or of the ML estimate 

instead results to lower acceptance ratios. The M-H probability of transition for 

each model is   
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Five parallel chains of size 11.000 are used again from starting points that are 

located within the posterior space of each model. The first 1000 iterations of 

each chain are discarded. Acceptance ratios average to approximately 82% for 

model 0, 80% for models 1 and 2 and 56% for model 3. Parameters point 

estimates, posterior quantiles and the R-root measure are presented in Tables 5.5 

to 5.8 below.             

     
Model 0 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

0a  1.608 0.130 1.116 1.522 1.607 1.694 2.188 0.9999 

0σ  0.648 0.094 0.395 0.522 0.638 0.703 1.218 0.9999 

Table 5.5 Model 0 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws. 
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 Model 1 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

1a  1.607 0.048 1.423 1.575 1.607 1.638 1.801 0.9999 

1b  0.241 0.019 0.156 0.228 0.241 0.254 0.318 1.0001 

1σ  0.239 0.035 0.137 0.215 0.235 0.260 0.434 0.9999 

Table 5.6 Model 1 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws. 
 
 
 

Model 2 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

2a  1.607 0.030 1.483 1.587 1.607 1.627 1.731 1.0000 

2b  1.414 0.069 1.111 1.369 1.414 1.460 1.696 1.0001 

2σ  0.151 0.022 0.091 0.135 0.148 0.163 0.282 1.0001 

Table 5.7 Model 2 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws. 
 
 
 

Model 3 

 Posterior Quantiles 

Parameter Mean St.dev 0% 25% Median 75% 100% R-root 

3a  1.840 0.043 1.649 1.812 1.840 1.868 2.039 1.0001 

3b  0.255 0.011 0.205 0.248 0.255 0.262 0.301 1.0001 

3c  -0.038 0.005 -0.060 -0.042 -0.038 -0.034 -0.016 0.9999 

3σ  0.135 0.019 0.084 0.121 0.133 0.146 0.268 1.0001 

Table 5.8 Model 3 parameters posterior estimates of mean, standard deviation, quantiles and the 
R root reduction measure resulting from a Metropolis-Hastings sample of 50000 draws.  
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5.3 Implementation of the methods 

 

In this section we demonstrate the implementation of the marginal likelihood 

estimation methods presented in Chapter 4. The G draws from the Gibbs sampler 

are denoted as { }( )gθ , with 1,...,g G= , while the M Metropolis-Hastings draws 

are denoted as { }( )mθ , with 1,...,m M= .  

  

5.3.1 Harmonic Mean Estimator 

 

The Harmonic Mean estimator is given by l
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M
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H
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method is relatively easy to implement. We simply calculate the likelihood of the 

data under model jM  for all Gibbs iterations 
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where 1,...,  and 1,...,i n g G= = .    

 

From the likelihood values we obtain the marginal likelihood estimates by 

summing over the Gibbs draws under each separate model   
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5.3.2 Laplace-Metropolis Estimator 

 

As discussed in section 4.3 the Laplace-Metropolis estimator is given by  

l 1/2/2 max max(2 ) ( | ) ( )d
LMp p pπ= S y θ θ , 

where maxθ  is the point that maximizes ( ) ( )( | ) ( )g gp py θ θ among the G posterior draws and 

S  is the sample covariance matrix of the output. The prior densities ( | )j jp Mθ  have the 

form 
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where 2
j j jσ=P D  . 

We calculate ( ) ( )( | , ) ( | )g g
j j j jp M p My θ θ  for 1,...,g G=  and locate the point max

jθ  

which maximizes this quantity. The marginal likelihoods are then obtained from   

 

l 1/2/2 max max( | ) (2 ) ( | , ) ( | )jd
j LM j j j j jp M p M p Mπ=y S y θ θ , 

 

where jd  is the dimension of the parameter vector jθ .  
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We also evaluate the marginal likelihoods for alternative choices of max
jθ  such as 

the posterior medians  Med
jθ  and the posterior means  jθ . These choices do not 

require further calculations, we simply compute the quantities      
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5.3.3 Newton and Raftery Estimator 

 

We implement the first method mentioned in section 4.4. The marginal 

likelihood estimates are given by   
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with (0,1)δ ∈ . The ( )l
jθ  are draws from the mixture distribution    

 

( | ) ( | ) (1 ) ( | , )j j j j j jf M p M p Mδ δ= + −θ θ θ y , 

 

for 1,...,l G=  and 0,1,2,3j = . In order to acquire the draws ( )l
jθ   we first generate 

Gδ ×  independent draws from the prior distributions ( | )j jp Mθ . Then, we 

randomly replace Gδ ×  values of the posterior Gibbs samples with these draws. 

A problem that arises is that some draws from the distributions 
2 3 3( | ) (10 ,10 )j jp M IGσ − −∼  take an infinite value. Therefore, we substitute these 

values with the maximum value observed among the draws 2( )k
jσ < ∞ , with k l< . 
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We use as initial values the marginal likelihood estimates of the Harmonic Mean 

method and the Laplace-Metropolis method evaluated at the posterior mean and 

compare the resulting estimates after 1000, 5000 and 10000 iterations for a 

choice of δ  equal to 0.05. 

 

5.3.4 Bridge Sampling Estimators 

 

In order to implement the bridge sampling techniques we must initially generate 

draws { }Apr
jθ  from a density ( | )Apr

j jg Mθ , which must be an accurate 

approximation of the corresponding posterior distribution ( | , )j jp Mθ y . This is 

achieved by appropriately fitting posterior moments.  

 We generate the parameters 2 Apr
jσ  from an Inverse Gamma distribution, 

that is 2 ( , )Apr
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obtained by the posterior Gibbs samples and solving with respect to  and  j je f  we 

have that  
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The rest of the parameters are sampled similarly from normal distributions: 
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In total we sample 50000L =  draws of { }Apr
jθ , for 0,1,2,3j = . Thus, the densities 

( | )jg M⋅  are  
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We then calculate the marginal likelihoods for the three types of bridge 

estimators reviewed in section 4.5 from  
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For the optimum estimator we have that  

1 2 0.5s s= = , 
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We set as initial values the estimates l( | )j GBp My  and iterate the equation 1000 

times. 

 

5.3.5 Candidate’s estimators 

 

As discussed in section 4.5 the Candidate’s estimators are based on the identity   
* *

*

( | ) ( )( )
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p pp
p

=
y θ θy
θ y

, 

which holds for any point *θ . The goal is to estimate the posterior 

ordinate *( | )p θ y at point *θ which is usually taken to be a high density point with 

respect to the posterior density. We select *
jθ , for 0,1,2,3j =  as the point that 

maximizes the corresponding log target density of each model jM . 
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5.3.5.1 The Chib Estimator 

 

The Gibbs sample is utilized again in order to implement the method of Chib. 

The calculation of the posterior ordinate depends on the dimension of θ , so we 

will demonstrate the use of this method for each model separately. 

 

Starting from model 0 we have that * * 2* 2* * *
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densities are of known form as we have seen earlier in this chapter. In addition, 
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Notice that a reduced Gibbs run was not necessary in order to estimate the 

marginal likelihood of model 0. 

 

For model 1 the posterior ordinate can be decomposed similarly  
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The ordinate 2* * *
1 1 1( | , , )p a bσ y  can be calculated directly. Thus, the reduced 

ordinates  * *
1 1( | , )p a b y   and *

1( | )p b y  remain to be estimated; we have that  

* * 2 2 2
1 1 1 1 1 1 1 1( | ) ( | , , ) ( , | )p b p b a p a da dσ σ σ= ∫y y y , 

which yields the estimator  

l * 1 * ( ) 2( )
1 1 1 1

1

( | ) ( | , , )
G

g g

g

p b G p b a σ−

=

= ∑y y . 
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 In addition, we have that 
* * * * 2 2 * 2
1 1 1 1 1 1 1 1( | , ) ( | , , ) ( | , )p a b p a b p b dσ σ σ= ∫y y y . 

In order to estimate this ordinate we continue sampling from the distributions 
2 *
1 1 1( | , , )p a bσ y  and * 2

1 1 1( | , , )p a b σ y  keeping 1b  fixed at point *
1b .  We iterate this 

Gibbs sampler 51.000 times and discard the first 1000 iterations acquiring in 

total a sample L=50.000. The draws  { }( ) 2( )
1 1,l la σ  for 1,...,l L= , follow the 

distribution of  2 *
1 1 1, | ,a bσ y . So, we acquire the estimate  

l * * 1 * * 2( )
1 1 1 1 1

1

( | , ) ( | , , )
L

l

l

p a b L p a b σ−

=

= ∑y y . 

The marginal likelihood on logarithmic scale is then estimated from  

l * * 2* * * 1 * * 2( )
1 1 1 1 1 1 1 1 1

1

1 * ( ) 2( )
1 1 1

1

log ( | ) log ( | ) log ( ) log ( | , , ) log ( | , , )

                      log ( | , , ) .

L
l

Chib
l

G
g g

g

p M p p p a b L p a b

G p b a

σ σ

σ

−

=

−

=

⎛ ⎞= + − − ⎜ ⎟
⎝ ⎠

⎛ ⎞
− ⎜ ⎟

⎝ ⎠

∑

∑

y y θ θ y y

y

 

The estimation of 2( | )p My  for model 2 is identical since the two models have 

equal number of parameters. The reduced Gibbs run is applied on the 

distributions 2 *
2 2 2( | , , )p a bσ y  and * 2

2 2 2( | , , )p a b σ y , resulting to L draws of { }( ) 2( )
2 2,l la σ   

from 2 *
2 2 2, | ,a bσ y . Thus, we have  

l * * 2* * * 1 * * 2( )
2 2 2 2 2 2 2 2 2

1

1 * ( ) 2( )
2 2 2

1

log ( | ) log ( | ) log ( ) log ( | , , ) log ( | , , )

                      log ( | , , ) .

L
l

Chib
l

G
g g

g

p M p p p a b L p a b

G p b a

σ σ

σ

−

=

−

=

⎛ ⎞
= + − − ⎜ ⎟

⎝ ⎠
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∑

∑

y y θ θ y y

y

 

Estimating the marginal likelihood of model 3 is more complicated. The 

posterior ordinate is decomposed as shown below 

 
* * * * 2* 2* * * * * * * * * *
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3( | ) ( , , , | ) ( | , , , ) ( | , , ) ( | , ) ( | ).p p a b c p a b c p a b c p b c p cσ σ= =θ y y y y y y  
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The first reduced ordinate can be again calculated directly. The last reduced 

ordinate can be expressed as * * 2 2 2
3 3 3 3 3 3 3 3 3 3 3( | ) ( | , , , ) ( , , | )p c p c a b p a b da db dσ σ σ= ∫y y y  

and therefore, estimated from  

l * 1 * ( ) ( ) 2( )
3 3 3 3 3

1

( | ) ( | , , , )
G

g g g

g

p c G p c a b σ−

=

= ∑y y . 

In addition, we have that * * * * 2 2 * 2
3 3 3 3 3 3 3 3 3 3 3( | , ) ( | , , , ) ( , | , )p b c p b a c p a c da dσ σ σ= ∫y y y . So, 

draws from the distribution 2 *
3 3 3, | ,a cσ y  are required in order to estimate this 

ordinate. Therefore, we sample from the distributions   
* 2

3 3 3 3

* 2
3 3 3 3
2 *
3 3 3 3

( | , , , ),

( | , , , ),

( | , , , ),

p a b c

p b a c

p a b c

σ

σ

σ

y

y

y

 

with 3c  remaining constant at *
3c . The draws { }( ) ( ) 2( )

3 3 3, ,l l la b σ  for 1,...,l L= , follow 

the distribution of 2 *
3 3, 3 3, | ,a b cσ y . Thus, we obtain the estimate 

l * * 1 * ( ) * 2( )
3 3 3 3 3 3

1

( | , ) ( | , , , )
L

l l

l

p b c L p b a c σ−

=

= ∑y y , 

again with L equal to 50.000.  

Finally, we have that * * * * * * 2 2 * * 2
3 3 3 3 3 3 3 3 3 3 3( | , , ) ( | , , , ) ( | , , )p a b c p a b c p b c dσ σ σ= ∫y y y . The 

estimation of this integral requires draws from the distribution 2 * *
3 3 3| , ,b cσ y . 

Therefore, we run a second reduced Gibbs run with the distributions 
* * 2

3 3 3 3( | , , , )p a b c σ y  and 2 * *
3 3 3 3( | , , , )p b c aσ y  keeping 3b  and 3c  fixed at points *

3b , *
3c . 

This reduced run provides draws of { }( ) 2( )
3 3,m ma σ , for 1,...,m M= , from the 

distribution 2 * *
3 3 3 3, | , ,a b cσ y  and yields the estimator  

l * * * 1 * * * 2( )
3 3 3 3 3 3 3

1
( | , , ) ( | , , , )

M
m

m
p a b c M p a b c σ−

=

= ∑y y , 

with 50.000M = . Thus, we can estimate the marginal likelihood of model 3 from    
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l * * 2* * * * 1 * * * 2( )
3 3 3 3 3 3 3 3 3 3 3

1

1 * ( ) * 2( ) 1 * ( ) ( ) 2
3 3 3 3 3 3 3 3

1

log ( | ) log ( | ) log ( ) log ( | , , , ) log ( | , , , )

                           log ( | , , , ) log ( | , ,

M
m

Chib
m

L
l l g g

l

p M p p p a b c M p a b c

L p b a c G p c a b

σ σ

σ σ

−

=

− −

=

⎛ ⎞= + − − ⎜ ⎟
⎝ ⎠

⎛ ⎞− −⎜ ⎟
⎝ ⎠

∑

∑

y y θ θ y y

y ( )

1

, ) .
G

g

g=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ y

 

In brief, the calculation of the posterior ordinate for each model required the 

following steps: 

 

Model 0:  

• Decompose the posterior ordinate as * 2* 2* * *
0 0 0 0 0( , | ) ( | , ) ( | )p a p a p aσ σ=y y y  

• Compute 2* *
0 0( | , )p aσ y  (known) 

• Estimate *
0( | )p a y  from l * 1 * 2( )

0 0 0
1

( | ) ( | , )
G

g

g

p a G p a σ−

=

= ∑y y  

Model 1: 

• Decompose the posterior ordinate as 
* * 2* 2* * * * * *
1 1 1 1 1 1 1 1 1( , , | ) ( | , , ) ( | , ) ( | )p a b p a b p a b p bσ σ=y y y y  

• Compute 2* * *
1 1 1( | , , )p a bσ y  (known) 

• Estimate *
1( | )p b y  from l * 1 * ( ) 2( )

1 1 1 1
1

( | ) ( | , , )
G

g g

g
p b G p b a σ−

=

= ∑y y  

• Acquire a sample L from 2 *
1 1 1, | ,a bσ y  through Gibbs sampling with the 

distributions 2 *
1 1 1( | , , )p a bσ y  and * 2

1 1 1( | , , )p a b σ y   

• Estimate * *
1 1( | , )p a b y  from l * * 1 * * 2( )

1 1 1 1 1
1

( | , ) ( | , , )
L

l

l
p a b L p a b σ−

=

= ∑y y  

 Model 2: 

• Decompose the posterior ordinate as 
* * 2* 2* * * * * *
2 2 2 2 2 2 2 2 2( , , | ) ( | , , ) ( | , ) ( | )p a b p a b p a b p bσ σ=y y y y  

• Compute 2* * *
2 2 2( | , , )p a bσ y  (known) 

• Estimate *
2( | )p b y  from l * 1 * ( ) 2( )

2 2 2 2
1

( | ) ( | , , )
G

g g

g
p b G p b a σ−

=

= ∑y y  
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• Acquire a sample L from 2 *
2 2 2, | ,a bσ y  through Gibbs sampling with the 

distributions 2 *
2 2 2( | , , )p a bσ y  and * 2

2 2 2( | , , )p a b σ y   

• Estimate * *
2 2( | , )p a b y  from l * * 1 * * 2( )

2 2 2 2 2
1

( | , ) ( | , , )
L

l

l

p a b L p a b σ−

=

= ∑y y  

Model 3: 

• Decompose the posterior ordinate as 
* * * 2* 2* * * * * * * * * *
3 3 3 3 3 3 3 3 3 3 3 3 3 3( , , , | ) ( | , , , ) ( | , , ) ( | , ) ( | )p a b c p a b c p a b c p b c p cσ σ=y y y y y  

• Compute 2* * * *
3 3 3 3( | , , , )p a b cσ y  (known) 

• Estimate *
3( | )p c y  from l * 1 * ( ) ( ) 2( )

3 3 3 3 3
1

( | ) ( | , , , )
G

g g g

g
p c G p c a b σ−

=

= ∑y y  

• Acquire a sample L from 2 *
3 3, 3 3, | ,a b cσ y  through Gibbs sampling with the 

distributions * 2
3 3 3 3( | , , , ),p a b c σ y  * 2

3 3 3 3( | , , , ),p b a c σ y  * 2
2 2 2( | , , )p a b σ y  and 

2 *
3 3 3 3( | , , , )p a b cσ y   

• Estimate * *
3 3( | , )p b c y  from l * * 1 * ( ) * 2( )

3 3 3 3 3 3
1

( | , ) ( | , , , )
L

l l

l

p b c L p b a c σ−

=

= ∑y y  

• Acquire a sample M from 2 * *
3, 3 3 3| , ,a b cσ y  through Gibbs sampling with the 

distributions * * 2
3 3 3 3( | , , , )p a b c σ y  and 2 * *

3 3 3 3( | , , , )p b c aσ y   

• Estimate * * *
3 3 3( | , , )p a b c y  from l * * * 1 * * * 2( )

3 3 3 3 3 3 3
1

( | , , ) ( | , , , )
M

m

m
p a b c M p a b c σ−

=

= ∑y y  

 

5.3.5.2 The Chib and Jeliazkov Estimator 

 

The posterior ordinate estimator of Chib and Jeliazkov reviewed in section 4.5.2 

is based on the equation    
* *

*
* *

( , ) ( , | ) ( | )
( | )

( , ) ( , | )
MH

MH

a q p d
p

a q d
= ∫

∫
θ θ θ θ y θ y θ

θ y
θ θ θ θ y θ

. 

 

As discussed earlier in this chapter we use an independence M-H chain which is  
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allowed to depend on the data y , that is 1( , | ) ( | )t t t
j j jq q− =θ θ y θ y ; see section 5.2.2. 

 Thus, the posterior ordinate under each model jM , for 0,1, 2,3j =  is given 

by  
* *

*
*

( , ) ( | ) ( | , )
( | )

( , ) ( | )
MH j j j j j

j
MH j j j

a q p M d
p

a q d
= ∫

∫
θ θ θ y θ y θ

θ y
θ θ θ y θ

. 

The probabilities of transition in the numerator and denominator are given by 

( ) ( )

( ) ( )

*

*

*
*

1| , |
( , ) min 1, 1| , |

j j j
j

MH j j

j j j
j

p M q
a

p M q

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

θ y θ y
θ θ

θ y θ y
 

and 

( ) ( )

( ) ( )

*
*

*

*

1| , |
( , ) min 1, 1| , |

j j j
j

MH j j

j j j
j

p M q
a

p M q

σ

σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

θ y θ y
θ θ

θ y θ y
. 

 

So, we estimate the posterior ordinates *( | )jp θ y , for 0,1, 2,3j = from   

l
( ) * *

* 1

* ( )

1

( , ) ( | )
( | )

( , )

M
m

MH j j j
m

j K
k

MH j j
k

a q
p

a

=

=

=
∑

∑

θ θ θ y
θ y

θ θ
. 

where ( )m
jθ  are draws from the M-H outputs and ( )k

jθ  are draws from the 

distributions ( | )jq θ y  presented in section 5.1.2. Thus, the marginal likelihood 

estimates on logarithmic scale are given by  

l
( ) * *

* * 1

* ( )

1

( , ) ( | )
log ( | ) log ( | , ) log ( | ) log

( , )

M
m

MH j j j
m

j C J j j j j K
k

MH j j
k

a q
p M p M p M

a

=
−

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= + −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

θ θ θ y
y y θ θ

θ θ
. 

An important remark is that new sampling from the distributions ( | )jq θ y  was not 

necessary for the implementation of the method. Due to the use of an 



 93

independence chain, we simply kept all the proposed draws from ( | )jq θ y  during 

the M-H runs. This also means that the sample sizes cancel out in the estimation 

of the posterior ordinates since 50.000K M= = . In addition, the quantities 
*( | )jq θ y  are in fact constant and need to be calculated only once.  

 

5.3.6 Chen estimator 

 

According to this method we estimate the marginal likelihoods ( | )jp My  from    

l
( ) *

* 1
( ) ( )

1

( | ) ( | , )
log ( | ) log ( | , ) log

( | ) ( | , )

gG
j j j j

j Chen j j g g
g j j j j

g M p M
p M p M G

p M p M
−

=

⎡ ⎤
= − ⎢ ⎥

⎢ ⎥⎣ ⎦
∑

θ y θ
y y θ

θ y θ
, 

where ( )g
jθ are the draws from the Gibbs simulations and *

jθ  is again the point 

which maximizes the log target density under each model jM , for 0,1, 2,3j = . 

 The distributions ( | )jg M⋅  are approximating densities of the posterior 

distributions ( | , )j jp Mθ y . We actually use the same approximating densities 

which were utilized for the Bridge sampling estimators; see section 5.3.4.  

 

5.4 Comparing the models 

 

In this example, we have used conjugate priors in order to be able to calculate 

the marginal likelihoods under each model ( | )jp My  analytically and compare 

them with the estimates obtained from each method. In Table 5.9 we present the 

true marginal likelihood values on physical scale and on natural logarithmic 

scale along with the posterior probabilities under the assumption that each model 

is equally probable a-priori, that is ( ) 0.25jp M =  for 0,1, 2,3j = . Model 2 and 

model 3 seem to be clearly preferable from model 0 and model 1. Between the 

former, model 2 yields the highest marginal likelihood value and posterior 

probability. 
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    Model 0 Model 1 Model 2 Model 3 

Marginal  167.111 10−×  61.959 10−×  0.2028  0.1078  

Log-Marginal -34.8797 -13.1429 -1.5953 -2.2270 

Posterior Probability 152.288 10−×  66.306 10−×  0.6528  0.3471 

Table 5.9 Marginal likelihood of the data under each regression model calculated in physical and 
logarithmic scale and the resulting posterior probabilities under the assumption that the 
competing models are equally probable a-priori. Model 2 yields the highest marginal likelihood 
and posterior probability. 
 
In Table 5.10 we compare the models considering twice the natural logarithm of 

the Bayes factor. 

ij2lnBF  

Model (j) 
Model (i)

0j =  1j =  2j =  3j =  

1i =  43.47 1 -23.1 -21.83 
2i =  66.57 23.1 1 1.26 

3i =  65.31 21.83 -1.26 1 

Table 5.10 Comparison of the models based on twice the natural logarithm of Bayes Factors. 
Evidence against model 0 is very strong when compared to models 1, 2 and 3. Model 2 is also 
very strongly supported in comparison to model 1 but not in comparison to model 3; between 
model 2 and model 3, evidence in favor of the former is “not worth than a bare mention”. 
 
     
Based on the interpretations discussed in section 2.7 we can say that evidence 

against the simple model is very strong when compared to models 1, 2 and 3. In 

addition, the comparisons of model 2 and model 3 versus model 1, respectively, 

indicate very strong evidence against the latter. This is not the case for models 2 

and 3; the value 1.26 is not adequate in order to make decisive statements against 

model 3 or in favor of model 2. 

 From the posterior sample acquired by the Gibbs sampler we also evaluate 

the AIC, BIC and DIC criteria. The variation of AIC and BIC evaluated at the 

posterior mean of the deviance is also computed. Results are summarized in 

Table 5.11. In contrast to the marginal likelihoods and Bayes factors which tend 

to support model 2, all information criteria conclude to model 3 as the best fitted 

model. 
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min( )AIC D AICD min( )BIC D BICD

DIC  

Model 0 52.56 52.63 55 55.06 52.54 
Model 1 2.68 2.95 6.34 6.61 2.65 
Model 2 -24.32 -23.24 -20.66 -19.59 -23.97 
Model 3 -29.15 -27.59 -24.27 -22.71 -28.46 

Table 5.11 The calculated AIC, BIC and DIC values for each model. AIC and BIC are evaluated 
at the minimum value and at the posterior mean of the deviance. All information criteria support 
Model 3 which yields the smallest values.    
 

5.5 Comparing results 

 

In this section we will compare results obtained from each method with respect 

to the true marginal likelihood values. All estimates except that of Chib and 

Jeliazkov were obtained from the Gibbs sampler. The Gibbs and M-H posterior 

samples are of size 50.000. The marginal likelihood estimates, calculated on 

logarithmic scale and rounded up to four decimal places, are summarized in 

Table 5.12. 

 As we can see the Harmonic Mean (HM) point estimates are more distant 

from the true marginal values than any other estimates. The Laplace-Metropolis 

method produces in general better results. Among the Laplace-Metropolis 

estimators the ones evaluated at the posterior mean ( LMMean ) are closer to the 

true marginal likelihoods. Newton and Raftery’s estimators are strongly affected 

from the selection of starting values and from the number of iterations. For the 

first estimator (NR1) we used the HM results as initial values and iterated the 

equation 5000 times. These estimates are substantially better than the HM 

estimates but still distanced from the true marginal likelihood values. Using the 

LMMean  estimates as initial values resulted to the estimators NR2 and NR3 after 

1000 and 10000 iterations respectively; we can notice that the increase in the 

number of iterations resulted to point estimates which are a little closer to the 

target values, yet convergence is extremely slow. The Bridge sampling 

estimators are among the most accurate; the Geometric (GB) and Optimum 

(OptB) point estimates converge to the true marginal values with an accuracy of 

two decimal places. Chib’s estimator also produces satisfactory results; its point 

estimates for models 1 and 2 are closest to the true marginal likelihood values 
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than any other estimates. This is not the case for the Chib-Jeliazkov’s (C-J) 

estimates which are actually similar to the Laplace-Metropolis estimates. Finally, 

Chen’s estimates are also very close to the target values, especially the point 

estimates for models 0 and 3 which are more accurate than any other estimates.                             

 
 Model 

Method Estimators 0j =  1j =  2j =  3j =  

Harmonic Mean 

Estimator 
llog ( | )j HMp My  -27.0795 -2.3291 10.3757 12.3474 

llog ( | )j LMp My  -34.9255 -12.0834 -0.0748 -0.4867 

llog ( | )
MEDIANj LMp My  -35.0587 -12.2900 -0.2847 -0.7894 

 

Laplace-Metropolis 

Estimators llog ( | )
MEANj LMp My  -35.1299 -12.3835 -0.3738 -0.8947 

l
1log ( | )j NRp My  -35.4089  -10.8035 1.8898 3.8843 

l
2log ( | )j NRp My  -35.4137  -12.4280 -0.3968 -0.8966 

 

Newton and 

Raftery’s 

Estimator l
3log ( | )j NRp My  -34.1560 -12.7516 -0.5790 -0.9136 

llog ( | )j HBp My  -34.7110  -13.8097 -1.4798 -2.6405 

llog ( | )j GBp My  -34.8789  -13.1437 -1.5941 -2.2278 

 

Bridge Sampling 

Estimators llog ( | )j OptBp My  -34.8788  -13.1436 -1.5940 -2.2275 

llog ( | )j Chibp My  -34.8792  -13.1429 -1.5950 -2.2305 Candidate’s 

Estimators llog ( | )j C Jp M −y  -32.8172  -12.4058 -0.3959 -0.7456 

Chen’s Estimator llog ( | )j Chenp My  -34.8799 -13.1448 -1.5931 -2.2273 

TARGET -34.8797 -13.1429 -1.5953 -2.2270 

Table 5.12 Marginal likelihood estimates for the four competing regression models resulting from 
simulated posterior samples of 50000 draws. Gibbs sampling has been used for all estimators 
except that of Chib and Jeliazkov (C-J) which was calculated through the use of Metropolis-
Hastings simulation.    
  

In Table 5.13 we present the posterior probabilities estimates for model 2 and 

model 3 obtained from the corresponding marginal likelihood estimates - the 
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posterior probabilities of models 0 and 1 are not shown, since they are very close 

to zero. Concerning the Laplace-Metropolis and Newton and Raftery’s 

estimators, we restrict attention to the estimates LMMean  and NR3 respectively. 

As we can see, the HM method provides clearly the most inaccurate estimates, 

since it assigns greater posterior probability in model 3.       

   
 Model 

Method Estimators 2j =  3j =  

Harmonic Mean 

Estimator 
l( | )j HMp M y  0.1222 0.8778 

L-M Estimator l( | )
MEANj LMp M y  0.6274 0.3726 

N & R Estimator l
3( | )j NRp M y  0.5829 0.4171 

l( | )j HBp M y  0.7615 0.2385 

l( | )j GBp M y  0.6533 0.3467 

 

Bridge Sampling 

Estimators l( | )j OptBp M y  0.6533 0.3467 

l( | )j Chibp M y  0.6537 0.3463 Candidate’s 

Estimators l( | )j C Jp M −y  0.5866 0.4134 

Chen’s Estimator l( | )j Chenp M y  0.6534 0.3466 

TARGET 0.6528 0.3471 

Table 5.13 Posterior probabilities estimates for model 2 and model 3 (the corresponding 
estimates for models 0 and 4 are not presented since their posterior probabilities are very close 
to zero). 
  
In order to estimate the MC error of the marginal likelihood estimates we use the 

batch mean method utilizing 50 batches of size 1000. The batched marginal 

likelihood estimates and the corresponding batched MC error (batched standard 

deviations) estimates are presented in Table 5.14. The Geometric Bridge (GB) 

and Optimum Bridge (OptB) estimates have the smallest batched standard 

deviations among all estimators. Chib’s and Chen’s estimates follow; the former 

results to lower batched standard deviations for models 0, 1 and 2 while the latter 
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has a lower standard deviation for model 3. Among the rest, Chib-Jeliazkov’s  

(C-J) estimates have the smallest standard deviations. The methods that result to 

the highest deviations are the Harmonic Bridge (HB) and the Harmonic Mean 

(HM) methods. 

 
 Model 

Method Estimators 0j =  1j =  2j =  3j =  

Harmonic Mean 

Estimator 
llog ( | )j HMp My  

-26.7117   

(0.1011) 

-1.8917 

(0.1077) 

10.7979 

(0.1083) 

12.9799 

(0.1338) 

Laplace-Metropolis 

Estimator (at mean) 
llog ( | )

MEANj LMp My  
-35.1311 

(0.0032) 

-12.3849 

(0.0042) 

-0.3751 

(0.0035) 

-0.8976 

(0.0048) 

Newton & Raftery’s 

Estimator 
l

3log ( | )j NRp My  
-36.1431 

(0.1885)   

-12.6974 

(0.0439) 

-0.5580 

(0.0290) 

-0.9161 

(0.0066)  

llog ( | )j HBp My  
-35.0194 

(0.1719) 

-13.5857 

(0.1489) 

-1.9113 

(0.2001) 

-2.7294 

(0.2022) 

llog ( | )j GBp My  
-34.8789 

(0.0006) 

-13.1437 

(0.0010) 

-1.5941 

(0.0010) 

-2.2278 

(0.0010) 

 

Bridge Sampling 

Estimators 
llog ( | )j OptBp My  

-34.8788 

(0.0006) 

-13.1436 

(0.0010) 

-1.5940 

(0.0010) 

-2.2275 

(0.0009) 

llog ( | )j Chibp My  
-34.8792 

(0.0007) 

-13.1429 

(0.0010) 

-1.5950 

(0.0009) 

-2.2302 

(0.0036) Candidate’s 

Estimators llog ( | )j C Jp M −y  
-32.8172 

(0.0015) 

-12.4058 

(0.0017) 

-0.3959 

(0.0024) 

-0.7456 

(0.0037) 

Chen’s Estimator llog ( | )j Chenp My  
-34.8799 

(0.0013) 

-13.1447 

(0.0021) 

-1.5930 

(0.0016) 

-2.2272 

(0.0017) 

TARGET -34.8797 -13.1429 -1.5953 -2.2270 

Table 5.14 Batched marginal likelihood estimates and MC error estimates (in brackets) resulting 
from 50 batches of size 1000.   
 
 In conclusion, we could say that the Geometric and the Optimum Bridge 

sampling estimators, Chib’s candidate’s estimator and Chen’s estimator are the 

methods which perform substantially better according to the aforementioned 

results. The ergodic means plots of these estimates for all four competing models 

are presented in Figures 5.1 to 5.4. One can notice the slightly higher batched 
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MC error resulting from Chen’s method for models 0, 1 and 2 and from Chib’s 

method for model 3.                     

Model 0
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Figure 5.1 Ergodic mean plots for the four marginal likelihood estimates of model 0 which 
perform better; the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s 
estimators. The black dashed line represents the true marginal density of model 0.  
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Figure 5.2 Ergodic mean plots for the four marginal likelihood estimates of model 1 which 
perform better; the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s 
estimators. The black dashed line represents the true marginal density of model 1.     
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Model 2
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Figure 5.3 Ergodic mean plots for the four marginal likelihood estimates of model 2 which 
perform better; the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s 
estimators. The black dashed line represents the true marginal density of model 2. 
 

Model 3
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Figure 5.4 Ergodic mean plots for the four marginal likelihood estimates of model 3 which 
perform better; the Geometric and Optimum Bridge sampling estimators and Chib’s and Chen’s 
estimators. The black dashed line represents the true marginal density of model 3.   
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 Despite that not all of the methods result to accurate marginal likelihood 

estimates some may still produce results that are accurate enough for 

interpretation of Bayes factors on logarithmic scale. Point estimates of twice the 

natural logarithm of the Bayes Factor of model 2 versus model 3 are shown in 

Table 5.15.  

 Method Point Estimates of 232 ln BF  

Harmonic Mean 

Estimator 
n

23 ( )2 ln HMBF  -3.9432 

Laplace-Metropolis 

Estimator (at mean) 
n

23 ( )2 ln
MEANLMBF  1.0418 

Newton & Raftery’s 

Estimator 
n

23 ( 3)2 ln NRBF  0.6669 

n
23 ( )2 ln HBBF  2.3214 

n
23 ( )2 ln GBBF  1.2675 

 

Bridge Sampling 

Estimators 
n

23 ( )2 ln OptBBF  1.2670 

n
23 ( )2 ln ChibBF  1.2711 Candidate’s 

Estimators n
23 ( )2 ln C JBF −  0.6442 

Chen’s Estimator n
23 ( )2 ln ChenBF  1.2684 

TARGET 1.2635 

Table 5.15 Point estimates of twice the natural logarithm of the Bayes Factor of model 2 versus 
model 3; the Optimum and Geometric bridge sampling estimates (OptB and GB) along with 
Chib’s and Chen’s estimates are closer to the true value.  
          

The methods which perform well in the estimation of the marginal likelihoods 

produce of course satisfactory points estimates; the Optimum Bridge (OptB) 

estimate is closer to the true target value than any other estimate while the 

Geometric Bridge (GB), Chen’s and Chib’s estimates follow. The Laplace-

Metropolis approximation also results to a fairly satisfactory estimate ( LMMean ). 

Chib-Jeliazkov’s (C-J) and Newton and Raftery’s (NR3) estimates are more 

distant from the target value, yet these estimates do not affect the interpretation 
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of 232 ln BF . Unlikely, the Harmonic Bridge estimate (HB) indicates stronger 

evidence in favor of model 2 and therefore affects the interpretation. The 

Harmonic Mean (HM) estimate changes the interpretation totally from “weak 

evidence in favor of model 2” to “positive evidence against model 2”. 

 Batched estimates of 232 ln BF  and the corresponding MC errors along with 

95% confidence intervals resulting from the percentiles of the 50 batches are presented in 

Table 5.16.   

 
Method Estimator Batched point estimates 95% Percentiles C.I. 

Harmonic Mean 

Estimator 
n

23 ( )2 ln HMBF  -4.3640 (0.3409) (-9.1272,-0.1488) 

Laplace-Metropolis 

Estimator (at mean) 
n

23 ( )2 ln
MEANLMBF  1.0449 (0.0121) (0.8850,1.2286) 

Newton & Raftery’s 

Estimator 
n

23 ( 3)2 ln NRBF  0.7194 (0.0618) (-0.0922 ,1.0168) 

n
23 ( )2 ln HBBF  1.6361 (0.5543) (-6.3735, 8.3093) 

n
23 ( )2 ln GBBF  1.2675 (0.0026) (1.2388,1.2983) 

 

Bridge Sampling 

Estimators 
n

23 ( )2 ln OptBBF  1.2669 (0.0026) (1.2340,1.2977) 

n
23 ( )2 ln ChibBF  1.2705 (0.0072) (1.1683,1.3715) Candidate’s 

Estimators n
23 ( )2 ln C JBF −  0.6445 (0.0069) (0.5525,0.7282) 

Chen’s Estimator n
23 ( )2 ln ChenBF  1.2684 (0.0046) (1.2096,1.3276) 

TARGET 1.2635 

Table 5.16 Batched estimates of twice the natural logarithm of the Bayes factor of model 2 versus 
model 3 and the corresponding MC errors (in brackets), derived from 50 batches of size 1000. 
The 95% confidence intervals resulting from the percentiles of the 50 batches are shown in the 
last column to the right .The Optimum (OptB) and the Geometric (GB) bridge sampling 
estimators produce the smallest batched standard deviation.  
 
The Geometric (GB) and Optimum Bridge (OptB) sampling methods result again 

to accurate point estimation and to the lowest batched MC errors. Chen’s and 

Chib’s estimates follow with the latter resulting to a slightly higher batched 

standard deviation. Chib-Jeliazkov’s (C-J) estimate is far from the target value 



 103

but results to a small batched standard deviation, while the Laplace-Metropolis 

estimate ( LMMean ) is closer to the target value but yields a higher batched 

standard deviation. Nevertheless, none of the latter two estimates affect the 

interpretation of the Bayes Factor. This is not the case for the rest of the 

estimates especially for the Harmonic Bridge (HB) and Harmonic Mean (HM) 

estimates which result to the highest batched MC errors. 

 

5.6 Summary 

 

In this chapter we implemented the marginal likelihood estimation methods 

reviewed in chapter 4 for four linear regression models. Metropolis-Hastings 

simulation and Gibbs sampling were utilized in order to acquire posterior 

samples from the four competing models. Posterior summaries for the 

corresponding parameters of each model resulting from both simulation methods 

were presented. 

 We then described the implementation process for each estimation method 

and finally compared the resulting marginal likelihood, Bayes Factor and 

posterior probability estimates with respect to the true values of the 

corresponding quantities. The main conclusions derived from the preceding 

analysis are the following: 

• The Optimum and Geometric Bridge sampling estimators performed overall 

better than the rest of the methods. They produced accurate point estimates 

and the lowest batched standard deviations for all models. 

• Chib’s and Chen’s estimates were also accurate with relatively low batched 

standard deviations but without displaying the same stability among the 

different models. 

• The Harmonic Bridge and Harmonic mean estimators - especially the latter 

- proved to be unstable; the resulting estimates were not accurate even for 

interpretations of Bayes Factors on logarithmic scale. 

• The rest of the methods produced results satisfactory enough for 

interpretations of Bayes Factors on logarithmic scale.       
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Chapter 6: Conclusions and Further Discussion  
 

6.1 Conclusions concerning the marginal likelihood estimators 

 

Based on the implementation process and on the results obtained and presented 

in the previous chapter certain final remarks can be made for each marginal 

likelihood estimation method reviewed in this thesis.  

 The Harmonic Mean method is easy to implement but it is clearly unstable 

and fails to estimate accurately the marginal likelihood. The resulting estimates 

were more distant from the true values than any other estimate. In addition, its 

results proved to be unsafe for interpretation of Bayes Factors on the logarithmic 

scale. 

 The Laplace-Metropolis method is based on an approximating result; 

hence the estimates derived from this method were not accurate. Despite this fact 

it is easily implemented and can it can produce results that are accurate enough 

for interpretation on logarithmic scale. 

 The Newton and Raftery’s method provided estimates which were closer 

to the true marginal likelihood values but still not accurate enough. In addition, 

its iterative process required substantial computer time since convergence proved 

to be slow. As discussed in section 4.4, this method requires sampling from the 

prior distribution therefore the results presented in this thesis may be affected 

from the extremely vague prior selection for the linear regression nuisance 

parameter 2
jσ , for models 0,1,2,3j = . 

 The Harmonic Bridge sampling estimates were in general close to the true 

marginal likelihood values but shared the instability of the Harmonic Mean 

estimates. These estimates resulted to the highest batched standard deviations 

and have proven to be unsafe for interpretation of Bayes Factors between models 

with similar marginal likelihoods. Contrary, the Geometric and Optimum 

estimators have proven to be more accurate and stable than all other estimates; 

the results were accurate to the second decimal place for all models and had the 

lowest standard errors observed. In addition, these methods were easier to 
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implement and less time consuming than other methods. As discussed in section 

4.5 Bridge sampling techniques are based on the existence of an approximating 

density. So, as long as a satisfactory approximating density can be found, Bridge 

sampling seems to be the most trustworthy method of marginal likelihood 

estimation. This implies that Bridge sampling may be difficult to implement in 

high dimensional problems; nevertheless, increased dimensionality is a setback 

for nearly all methods. 

 The Candidate’s method produced diverse results. The Gibbs sampling 

based method of Chib resulted to satisfactory estimates which were accurate and 

had relatively small standard errors. More specific, Chib’s method provided the 

most accurate marginal likelihood point estimates for two out of the four 

competing models. However, the method can be time consuming in terms of 

computer programming, especially for high dimensional cases, although radically 

new programming is not required and clever blocking of the parameter vector 

may facilitate the implementation process. Chib’s method has also received  

criticism; Neal (1999) argues that this method produces bias for marginal 

likelihood estimates of mixture models, hidden Markov models and other models 

with similar symmetries; see also Frühwirth-Schnatter (2004). The Metropolis-

Hastings based method of Chib and Jeliazkov did not perform as well as the 

method of Chib. Despite the small batched standard deviations, the resulting 

estimates were not as accurate as the estimates derived from the method of Chib. 

Nevertheless, they proved to be safe for interpretation of Bayes Factors on 

logarithmic scale. The method is rather computationally intense; as we have seen 

in section 4.6.2 it is based on the reversibility of the sub-kernel of the 

Metropolis-Hastings algorithm and therefore requires draws from the proposal 

distributions and calculation of probabilities from these densities. So, clever 

blocking is recommended before implementing this method in high dimensional 

problems. In addition, experimenting with alternative choices such as the  

multivariate t distribution instead of the multivariate normal distribution may 

result to more accurate estimates than those presented in this thesis. 
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 Finally, the method of Chen also resulted in satisfactory estimates and low 

standard errors. Two of the marginal likelihood point estimates were more 

accurate than the corresponding Optimal estimates of Bridge sampling but 

overall batched standard deviations were higher. Viewed as a generalization of 

the Candidate’s method, the method of Chen has certain advantages with respect 

to the former; first it does not depend on the specific form of the MCMC 

sampling process and second it is less time consuming and much easier to 

implement. As with Bridge sampling the method of Chen requires an 

approximating density, therefore, performance actually depends on the precision 

of the approximation. 

 

6.2 Further discussion 

 

As we have seen, all methods investigated in this thesis are “direct” methods 

which use existing MCMC posterior samples in order to estimate marginal 

likelihoods of separate models and then evaluate the corresponding Bayes 

Factors; this by itself implies much effort when the number of competing models 

is large. Alternatives to these “direct” methods are existing MCMC algorithms 

like the RJMCMC algorithm (Green, 1995), the Carlin and Chib algorithm 

(Carlin and Chib, 1995) and the Metropolised Carlin and Chib algorithm 

(Dellaportas et al., 2002). These methods sample simultaneously over parameter 

and model space and deliver posterior model probabilities. Yet, neither the 

implementation of such methods is effortless since they require careful 

specification of all competing models along with certain tuning constants in 

order to ensure successful mixing in model space. In addition, they do not 

perform always better; Han and Carlin (2001) compare some of the 

aforementioned methods and the method of Chib in linear regression models and 

conclude that Chib’s point estimate is more accurate than those of five of the 

other six methods. 

 Finally, Bayes Factors themselves have received some criticism for not 

always being the safest solution regarding model selection. The main argument 
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against Bayes Factors is their apparent sensitivity to the specification of the prior 

distribution. The sensitivity of Bayes Factors to prior selection can be observed 

for both proper and improper prior distributions, yet the latter case is more 

problematic since Bayes Factors are not interpretable under improper priors; see 

Kass and Raftery (1995) and Draper (1995) and the associated discussion. 

 Several authors proposed alternative versions of Bayes Factors in order to 

cope with this problem. Among them, Aitkin (1991) proposed the use of 

Posterior Bayes Factors which remain interpretable under improper priors, while 

O’Hagan (1995) introduced the Fractional Bayes Factors based in the use of a 

training sample in order to acquire prior information. 

  Alternative options to Bayes Factors regarding model selection are also 

available. As already mentioned, the simplest option is the use of Information 

Criteria. More elaborate approaches are mainly based on predictive schemes; 

Geisser and Eddy (1979) were among the first to propose the use of conditional 

predictive densities for model selection, Gelfand et al. (1992) argue that model 

selection remains closely linked to model assessment and proposed several cross-

validatory analyses of predicted residuals, Laud and Ibrahim (1995) introduced 

three model selection criteria based on the predictive density while Waller et al. 

(1997) extended their methods, Greenberg and Parks (1997) recommended the 

examination of changes in predicted means and general variance ratios. Finally, 

Gelfand and Ghosh (1998) introduced a more general approach, based on loss 

functions, which aims to minimize the posterior predictive loss.       
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