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This presentation is based on Chapter 8 of
Ntzoufras (2009): Bayesian Modeling Using WinBUGS, Wiley.

Synopsis

1. Models with nonstandard distributions

• Specification of arbitrary likelihood

using the zeros–ones trick

• The inverse Gaussian model

2. Models for positive continuous response

variables

• The gamma model

• Other models

• An example

3. Additional models for count data

• The negative binomial model

• The generalized Poisson model

• Zero inflated models

• The bivariate Poisson model

• The Poisson difference model

4. Further GLM-based models and extensions

• Survival analysis models

• Multinomial models

• Additional models and further reading
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8.1 Models with nonstandard distributions

• WinBUGSallows for modeling of nonstandard distributions (i.e., for a
distribution that is not listed in WinBUGS ’ prespecified distributions) using
the zero–ones trick.

• Here we provide general guidelines and then illustrate this approach using an
example by fitting the inverse Gaussian model.
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8.1.1 Specification of arbitrary likelihood using the

zeros–ones trick

• We can use either the Bernoulli or the Poisson distribution to indirectly specify
any arbitrary model likelihood.

• Denote the log-likelihood by li = log f(yi|θ).

• The model likelihood can be written as

f(y|θ) =
n∏

i=1

eli =
n∏

i=1

e−(−li)(−li)0

0!
=

n∏
i=1

fP (0;−li)

• fP (x; λ): Poisson probability function evaluated at x with mean λ.

• fP (0;−li): Poisson probability function evaluated at x = 0 with mean −li.

• Hence, the model likelihood can be written as
– The product of the densities of new pseudorandom variables Ξi (i = 1, . . . , n),

– with Ξi ∼ Poisson(−li) and

– all observed values of Ξi are zero
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The zeros trick

Ensuring that the mean of the Poisson is positive

• To ensure the positivity of the mean (−kli) of each Ξi, we add a positive
constant term C to the mean.

• This is equivalent to multiplying each likelihood term by e−C .

• This action does not affect the likelihood and the posterior inference since it is
equivalent to multiplying the resulting (unnormalized) posterior distribution
by a constant term equal to e−nC .

• With this approach, the likelihood becomes equal to

f(y|θ) =
n∏

i=1

e−(−li+C)(−li + C)0

0!
=

n∏
i=1

fP (0;−li + C) ;

C must be selected in such way that −li + C > 0 for all i = 1, 2, . . . , n.
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The zeros trick - WinBUGSCode

C = 10000

for i = 1, . . . , n

ξi = 0

ξi ∼ Poisson(μξi
)

μξi
= −li + C

li = log f(yi|θ)

C <- 10000

for (i in 1:n) {

zeros[i] <- 0

zeros[i] ~ dpois ( zeros.mean[i])

zeros.mean[i] <- -l[i] + C

# write here the expression of the log -

likelihood for i observation

l[i] <- ...

}

l[i] must be specified accordingly for each model.

e.g. for Normal model:

li = −0.5 log(2Π)− 0.5 log(σ2)− (yi − μi)2

2σ2

l[i] <- -0.5* log (2*3.14) -0.5* log(s2) -0.5* pow( y[i]-mu[i], 2 )/s2
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The Ones trick

• Instead of the Poisson–zeros strategy, the Bernoulli distribution can be also
used for the same purpose.

• With this approach

f(y|θ) =
n∏

i=1

eli =
n∏

i=1

(
eli

)1 (
1− eli

)0
=

n∏
i=1

fB(1; eli , 1),

where fB(1; eli , 1) is the binomial probability function with success probability
eli and N = 1.

• Hence, the model likelihood can be expressed as

– the product of the densities of new pseudorandom variables Ξi,

– with Ξi ∼ Bernoulli(eli)

– with all observed values of Ξi equal to one.
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The Ones trick (2)

• Success probability should be lower than one ⇒ multiply each likelihood term by e−C .

• Now the likelihood is given by

f(y|θ) =

n∏
i=1

(
eli−C

)1 (
1− eli−C

)0

=

n∏
i=1

fB(1; eli−C , 1) .

C = 100

for i = 1, . . . , n

ξi = 1

ξi ∼ Bernoulli(πξi
)

πξi
= e−li+C

li = log f(yi|θ)

C <- 100

for (i in 1:n) {

ones[i] <- 1

ones[i] ~ dbern ( ones.p[i])

ones.p[i] <- exp( l[i] - C )

# log -likelihood for i

observation

l[i] <- ...

}

l[i] must be specified accordingly for each model (as in the Poisson–zeros trick).
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Some Comments

• Both approaches have the same effect.

• Use the Poisson–zeros approach because it avoids overflow problems due to the
simpler likelihood expression.

• The same approach can be followed to specify a prior distribution of
nonstandard form (Spiegelhalter et al., 2003).
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8.1.2 The inverse Gaussian model

The inverse Gaussian distribution

The density of the inverse Gaussian distribution Y ∼ IGaussian(μ, λ) is given by

f(y|μ, λ) =
(

λ

2πy3

)1/2

exp
(
−λ(y − μ)2

2μ2y

)
for y > 0.

• E(Y ) = μ and V (Y ) = μ3/λ.

• In GLMs, the parametrization μ, σ2 = λ−1 is frequently encountered.

• For λ→∞ (or σ2 → 0) ⇒ the inverse Gaussian distribution becomes similar
to a normal (Gaussian) distribution.

• Y > 0 ⇒ the inverse Gaussian does not result in the inverse of a normal
(Gaussian) distribution (Seshadri, 1993).
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Model formulation

Yi ∼ IGaussian(μi, λ),

Canonical (squared reciprocal) link: μ−2
i = ηi ⇔ μi =

√
1/|ηi|

Log-link: log μi = ηi ⇔ μi = eηi .

The log-link is preferred because of its the easier interpretation (similar to the
Poisson log-linear models).
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WinBUGSSyntax

The log-likelihood for the original parametrization is given by

l[i] <- 0.5*( log( lambda ) - log (2*3.14) - 3*log(y[i]) )

- 0.5* lambda * pow( (y[i]-mu[i])/mu[i], 2 )/y[i]

Canonical link: μi =
√

1/|ηi| mu[i] <- sqrt ( 1/ abs(eta[i]) )

or by
Log link: μi = eηi log(mu[i]) <- eta[i]

σ2 = 1/λ s2 <- 1/lambda

• σ2 ⇒ logical node (i.e. deterministic function)

• Normal priors for βj

• Gamma prior (similar to the precision of the normal regression model) for λ
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Example 8.1. An inverse Gaussian simulated dataset.

• Simulated dataset with n = 100 random values from

IGaussian(log μ = 3 + 2X1 − 1X2, λ = 10).

• Four standardized normal variables Xj, j = 1,2,3,4 were generated as
possible covariates.

• Data are available at the Website of Ntzoufras (2009).
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Table 8.1: Posterior summaries of inverse Gaussian model parameters for simulated
data of Example 8.1

node mean sd MC error 2.5% median 97.5% start sample

beta[1] 3.220 0.156 0.014 2.936 3.215 3.539 4001 5000

beta[2] 2.151 0.083 0.007 1.998 2.151 2.324 4001 5000

beta[3] -0.950 0.111 0.006 -1.183 -0.945 -0.745 4001 5000

beta[4] -0.081 0.083 0.004 -0.242 -0.083 0.096 4001 5000

beta[5] 0.013 0.122 0.004 -0.242 0.020 0.247 4001 5000

lambda 12.140 1.779 0.033 8.913 12.070 15.82 4001 5000

s2 0.084 0.013 0.0002 0.063 0.083 0.112 4001 5000
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Results

• Both the Poisson–zeros and the Bernoulli–ones approaches worked
satisfactorily with similar results.

• 4000 burnin and an additional 5000 iterations finally kept are presented in
Table 8.1.

• The constant C was set equal to 10, 000 (Poisson) and 100 (Bernoulli).

• The log-link was used in both cases.

Estimated model (based on the posterior means):

Yi ∼ IGaussian(μ = e3.22+2.15X1−0.95X2+0.08X3+0.01X4 , λ = 12.14),

Actual model:

Yi ∼ IGaussian(μ = e3.00+2.00X1−1.00X2+0.00X3+0.00X3 , λ = 10.00)
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Table 8.2: WinBUGS code for inverse Gaussian model used for simulated data of
Example 8.1

model{

C <- 10000

for (i in 1:n) {

zeros[i] <- 0

zeros[i] ~ dpois ( zeros.mean[i])

zeros.mean[i] <- -l[i] + C

l[i] <- 0.5*( log( lambda ) - log (2*3.14) - 3*log(y[i]) )

- 0.5* lambda * pow( (y[i]-mu[i])/mu[i], 2 )/y[i]

log(mu[i]) <- beta [1] + beta [2]*x1[i] + beta [3]*x2[i]

+ beta [4]*x3[i] + beta [5]*x4[i]

}

# priors

for (j in 1:5) { beta[j] ~ dnorm ( 0.0 , 0.001 ) }

lambda ~ dgamma ( 0.01 , 0.01)

s2 <- 1/ lambda

}

Poisson–zeros trick; code for the ones trick is available at the Website of Ntzoufras (2009)
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