Iliopoulos, Kateri & Ntzoufras: Bayesian Model Comparison for the Ordered RC Model 3

Bayesian Model Comparison

for the Order Restricted RC Association Model

George Iliopoulos, Maria Kateri & Ioannis Ntzoufras

Department of Statistics and Insurance Science — Department of Statistics
University of Piracus  Athens University of E and B
Piraeus, Greece; — Athens, Greece;
e-mails: {geh; mkateri}@unipi.gr  e-mail: ntzoufrasGaueb.gr

6th June 2008, 1st Athens-Pavia Meeting on Statistics, Mati, Attica, Greece
The presentation and the paper are available at: http://stat-athens.aueb.gr/" jbn/papers/paper18.htm.

1 Introduction

e Let y = (yi;) be the frequencies and
e II = (m;;) be the probabilities
of an I x J contingency table of two ordinal variables X and Y with I and J levels
respectively.
Saturated log-linear model:
logm; = A+ AX +AV+ A% i=1,...,0, j=1,...,J
1

logmij = A+ AX + AV + (Goodman, 1979, 1985) 1)

where p = (p1, po, ... 1) and v = (v1,vs,...1v7) be the scores assigned to the
levels of X (rows) and Y (columns) respectively.
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Synopsis

1. Introduction.

2. Modeling Details.

[niereiaion o]

e ¢ is an intrinsic association parameter.

e The above formulation reveals the analogies to the classical correspondence

3. RIMCMC Algorithm. . . .
g analysis (CA) or canonical correlation model.
4. Tlustration using simulated and actual data. q q q N
g e Interpretation of ¢: Log odds ratio of successive categories if the score
5. Discussion and further work. distances are equal to one since log (%) = d(pit1 — i) Wi — vj).
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JUSUAL CONS TRANTS]

o Sum-to-zero constraints on row and column main effects (A and )\}')

e They are not approximate and can be implemented even for samples with
small size or with sparse contingency tables.

e Sum-to-zero constraints on row and column scores (j; and v;). e Score merging in classical methods can be done using stepwise like methods
o Two additional constraints on the row and column scores are needed in order and sequential implementation of significance tests (significance level is higher
to achieve the identifiability of the model (this due to the fact that (1) is than the specified one, different model may selected if different starting points
o . . are selected).
multiplicative and not linear to its parameters).
I J I J e Using RIMCMC (or other varying dimension MCMC method) we
Z””" = z v; =0 and Z l/,% = z y]? =1. (2) automatically search the model space and estimate posterior model
i=1 J=1 i=1 j=1 probabilities.
e Bayesian model averaging can be used in straightforward manner.
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Aim of this work I

e Work with the order restricted RC model.

o Use the Bayesian approach to identify which scores i, j1;41 and v;, v, can be
merged.

e Use Reversible jump MCMC to estimate posterior model probabilities (and
odds) of each model

e Implement Bayesian model averaging

2 Modeling Details

e We focus on the order restricted version of the RC association model.

e X and Y ordinal = natural to assume that the ordinal structure for scores
pr < pp < <pp and vy <y <<y

e Which successive scores (y;, pir1) and (v;, vj11) are equal?

o In all models we assume that at least two row and two column scores are
different.
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e We propose to use an alternative set of constraints:

M1 = Hmin < I = fimax a0d V1 = Vmin < VJ = Vmax

e Row and column scores take values in the intervals [fmin, fimax] and

[Vmins Vmax] respectively.

e Sensible choices:

Let
i J
Li=) % and 4;=)" 6
k=1 k=1
be the distinct scores under estimation until row i or column j respectively.

Moreover the actual distinct unequal row and column scores will be denoted by the
vectors p., and v of dimension I't and A respectively given by

= (s =1i=12, .1} ) = (1), 10 2) iy (1))

© fmin = Vmin = —1 and fimax = Vmax = 1 [range similar to the parameters and
under constraints (2)] . ) @
vs = ({uj 0 =1 = 1,2,.4.,1}) = (1), v5(2), -, w5(A)))
o We use: fimin = Vmin = 0 and fimax = Vmax = 1
* simplifi m) ion: o0 .
EreTrpliies) @RI iAo Then the original scores are given by
— oo ( ™amLs
* ¢ 10g T1JTI1
T . . pi = py(I3) and vj = vs(4;)
e Posterior distributions of scores under (2) can be obtained by transforming
MCMC output of the proposed parametrization.
Tliopoulos, Kateri & Ntzoufras: Bayesian Model Comparison for the Ordered RC Model 10 Tliopoulos, Kateri & Ntzoufras: Bayesian Model Comparison for the Ordered RC Model 12

Model Formulation

e We introduce latent binary indicators

¥ =(1,72,...,7) and 6 = (1,02,...,0;) and
which are equal to
~i =1 when p; > pi—1 (or 6; =1 when v; > v;_;)
~i = 0 when p; = p;—y (or 6; = 0 when v; = v;_)
e The vectors v and 4§ :
— specify which scores are equal
— are used instead of the usual model indicator m

e Estimate posterior model probabilities f (v, d|y).

i 1, 2, 3, 4, 5
i 1 =p2 =0 pz = pa = 0.6 ps =
Yi 1, 0, 1, 0, 1
r; 1, 1, 2, 2, 3
1, (€) 0 0.6 1

ti o () = py(1) =0, iy (I3) = py(2) =

6, py(I5) = py(3) = 1
by (D) = 11y (1) = 0, 1y (Ts) = p1y(2) = 0.6
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Differences and Variable Selection Representation I

Consider the row and column score differences
D, = pi — pi—1 and D,,] =V —Vj_1
instead or the original parameters. Then
i J
i = WDy, and v; =3 0Dy i=1,...,I, j=1,..,J.
k=1 k=1
For scores of range one (R, = fimax — fmin = 1) = ZLQ viDy,, =1 = we may use
D, = ({Dy % =1}) ~ D(1r,-1)

(Dirichlet prior of dimension I’y — 1 with all parameters equal to one )

as non informative prior for row score differences.

Similarly, for column scores — Djs = ({D,,y 10; = 0}) ~D(1a,-1).

3 RJMCMC algorithm

1. Update model structure: Sample (v, d) using successive RIMCMC moves:

For i =2,...,1I, propose ¥': v =1 —;, 7}, = v for k # i.

Split: (v =0) — (7, = 1)

(a) Propose (ui—1 = pi) — (uf_y < pf)-
(b) Generate u from q(u|p,~y,~)-
(c) Set pl, = g(py, ).

(d) Calculate p' by p;

Merge: (v = 1) — (7 = 0)
(8) Propose (i-1 < jis) — (_y = 1),
(b) (No generation is needed).
(c) Set (u,,u) =g~ (ks
= py(I7)

(e) Accept/reject the proposed move.

d is updated similarly.

2. Update model parameters (A, XY, &, u, /), given the model structure (v, &)
using a metropolis within Gibbs scheme.
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Prior Distributions on Scores I

Equivalently, the scores are a priori distributed as ordered iid uniform random

variables

(Iy — 2)!
-2

S T

T (pmin < ordered different 11’s < fimax)

Similarly, for the column scores

Ay =2)!
)72

fvs) =

I (Vmin < ordered different ’s < vpax)

(Vmax = Vmin

Prior Distributions on the rest of parameters I

Normal with large variances for the rest of the parameters.

Bernoulli for ; and §; with prior probabilities equal to 1/2.

The probability of acceptance of the proposed move (v, u) — (7, p’) in each
RIMCMC step equals @ = min(1, A), where

_ PN 6w v) F DY) atulpl )
FINS A o pmv) Fg ) F() glulpy, v, v) =

|.J| is the absolute value of the RIMCMC Jacobian used in the split move and is

i

given by
99(p, )

M= ‘ 35ty )

Remains to specify ...
o the linking function g(p.,, u)

e the proposal density g(u| )
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Merge Central Scores

(vi=1—>~=0, i:2<;=¢<1TIy)

(SmE=-D<  pl-1) < m) <mE+D<..)

o Set il (€) = piy(£) —wand pl, (£ + 1) = 1y () + u.

e Leave the rest of the scores unchanged, i.e. set

') piy (K) fork < ¢
ph (k) =
v v v v py(k—=1) fork > £+1
(..45;L;,(1z—2>< w6~ 1) <u;,(£)§...>
U From the above we have
— D)l (£
Usual transformation: 4!, (¢ — 1) = M o BERSIHHBYEMTS: |J| =2 and u = [ +12) 1 (€)
1 1
and leave the rest of the scores unchanged LW Hence in Merge Move EeSiBiES 5 and u = 5{ﬂ7([) — (L — 1)}
i (k) fork < £-1
IROERS
py(k+1) fork > -1
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Split Central Scores (inverse move)

(i=0—7i=1 i:2<I;=(<1I7y)

(co=me-1< 11 (€) <p+1< )
Y 4 y
—_—
(...gﬂg,(e71)< W) < pl(C+1) <u;,(z+2)s.“)
! !

by(O) = py(0) +u

o Generate u € (O,min{ py(€) — py(€ = 1), py(€+1) — py(£) })

PROBLEM]

The above transformation cannot be applied for merging/spliting the lowest or

the highest scores.

Merge the Lowest Scores 1, (1) and p(2)

(vi=1—-7=0, i:[;=2)

fmin = py (1) < py(2) < py(3) <.
—_—

4 4
Hanin = (1) < pe(2) <...
3 U

min iy (2
Usual Transformation % <

uy(3) <.
Not Valid Since # Hmin
(VIOLATES THE CONSTRAINT 1, (1) = fimmin)
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Using similar logic we apply the following transformations
Split the Lowest Score fi,(1) (reverse move)
— e 5 . S
pmin = 1n (1) < p1y(2) < 14(3) << py(T) = s (i=0—~=1, i:[;=1)
| S
1 4 U
Fmin 1y (2) E
Bt < 1y (3) <o < py(I7) = prmax (#mm = (1) < w2 <. )
12 4 4 y y
0 < M(g)_%yw(_ﬂ <___<me_%ﬁ_)
—_——
v v v (ﬂmin:ug,u) <2< 1,0) <)
o (3)_)me+u1(2)
0 < e << 1
Hmax — —HHE Pl
12 4 4
min < min+M max — Hmin) < ... < max
& & Bisman—fomin—tiy @) (Hmax = imin) e e Generate u in the interval
! ! !
(15(2) = pmin) [Hmaz — 11(2)]
L1 L2 L (7 u e i 2) + 5
) ) ) See < i (D) F N s — Zhimin
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Merge the Lowest Scores yi,(1) and p1(2)

(i=1-f=0 i:[;=2)

Final transformation

Hmin, k=1,

!
why (k) = 241y (k + 1) — pimin — p1y(2 ®3)
7 fomin + (Nmax - Hmin) NFY( ) & NFY( )» k>1.
2ftmax — Hmin — fiy(2)

Finally obtain the new proposed scores by

Hmin k=1,
pk)=q " . SN
1 —1) = pmi
§{umin + % + (2fmax — fmin — u)u} k> 2.
Hmax — Hmin

(Inverse transformation of equation (3) - given in the corresponding merge move)
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;-2
Qnlit Mo 1 U—jimin
o PRESHBYMYS — |J| = (1 — iu:ﬂf}tmm) Pmin = fiy(1) <...< uy(I'r —2) < py(I't = 1) < py(I7) = fimax
[l In Merge Move [ETEgnM @Iyl
+(2) M v n
R | iy (L) (I =1
|J| = (1 1 U — fimin )Fl_z - (1 1#7(2)*Hmin>3_n Hmin = piy(1) <. < ny(I1 = 2) < i)
2 fimax = Hmin 2 fimax — Mmin ) 4 4 I
. I —92) — uy (L) +psy (1 =1)
Reminder: 0 < <y (I7 ) — fmin < FEES = — limin
. o 4 4 4
o [ is the number of scores of the current model (In split “smaller”, In merge: i (Ti=2)—p
« el 0 <. < ;W)+ I = _i)mm < 1
“larger” model) [EICVAESTELCVES Y
e 7 is the number of scores of the proposed model (In split “larger”, In merge: Y ¥ ¢
“ » Mo << iy A 9 max—tmin) iy (T =2) —pimin) )
smaller” model) {Pito oo S Hmin i (L) (T =D~ 2fimin Hrmasx
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Merge the Highest Scores pu (17 — 1) and - (I7)

(i=1—19,=0,45:T;=171)

Hmin = fiy (1) <o <oy (I =2) < py(Tr = 1) < py(I7) = fimax

Merge the Highest Scores 11, (I'7 — 1) and (1)

(v=1—7=0,i:L;=1I7)

Final transformation

¥ U ¥
=, (1) <..< p,(I1-2)< L (1 —1) = k) — fimi
o =00 wy (I =2) ety = ) = s , Hmin + 2(fmax — fmin) tr(k) = phain s k<Ip—-1=1I7-2
wh (k) = By (L' = 1) + fnax — 2tmin
Hmax, k=Ij=IT-1
; . . (5)
Note: I'7 = I'T — 1 since we merge two scores into one.
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Split the Highest Score yu, (1) (reverse move)
. In Split move
(o0 nf =1 i3 Ti— It} 5o e
;-2
— Determinant of the Jacobian: [J| = (1 - %#)
fimin = 11 (1) <. < py(ly—1) < fiy(I7) = framax — I is the number of scores in the smaller (current) model.
I I U LW [n the Merge move
— U = fimax — fy (L7 — 1) and
[rcfin = ,ufy/(l) <...< u;/(l} -1)< u;,(FI) < ;/7,(111 +1) = fmax )
— Det. of Jacobian: ,
e Generate u in the interval _ 1 u = 1 pman—pn (T =1) \ 31"
[JI=(1-3 , =(1-3 i
Hmax —Hmin 2 Pmax—Hmin
(Mmax - Nmin) (Mmax — (I — 1)) — Here:
u€|0,2 . 5 @La ®
(Nmax _ Mmin) + (Mmax — (I — 1)) « I is the number of scores in the “bigger” (current) model.
# I is the number of scores in the “smaller” (proposed) model.
LRENY st 1, (I — 1) =y
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Split the Highest Score 1, (1) (reverse move)

(q;:O—)’yZ{:l, i:[}:F])

Final transformation

(k) — Y talBtimin Py g =Ty -1
(k) = 9 fimax — 1, k=I}—1=1I; (6)
Hmax, k=I}=I7r+1.

Additional Details

In practice we have used fimin = Vmin = 0 and fimax = Vmax = 1.

e When I'7 = 2 then only two scores are different and set equal to fimin and
[max- No further splitting is allowed. Similar is the case for column scores v;.

Rescaled Beta proposals can be used for proposing values for u.

In practice we have used Uniform proposal which has been proved sufficient
for datasets we have implemented the methodology.

e Further investigation is needed in order to construct proposals leading to more
efficient RIMCMC schemes.
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. Monte Carlo Means of Posterior probabilities
4 Tllustrative Examples. True Flv = 1ly) £6; = 1lw)
Model n | 72 3 Y4 5 d2 93
. my 100 1 58 57 56 57 71 71
4.1 Simulated data. All scores 2| 64 66 65 63 | 81 82
Different 3 68 73 73 68 92 92
e Monte Carlo study following Galindo-Garre and Vermunt (2004, 1000 [ 1| 74 79 78 73| 97 97
Psychometrika). 2| ™ 19 78 78| 97 97
3 99 99 99 100
e 1000 simulated datasets for a 5 x 3 contingency table with m;; = exp(¢*p;v}). ma 100 | 1 56 59 61 | 71
For the three models we have HL =2 2 65 72 68 | 81
) o 3 73 8 75 | 89
1. Model my: Different but equidistant Row 4+ Column scores. 1000 | 1 s 81 80 | 97
2. Model ma: pj = p3; vest of the scores are equidistant. 2 99 98 98 | 100
Model . . A v . £ th di 3 100 100 100 | 100
3. Model m3: p} = p3 and v3 = v3; rest of the scores are equidistant. s 00 | 1 =7 59 60 | 86
Furthermore we have 1= p2 2 69 71 65 99
— &*. u*.v* satis straints vy =3 3 78 7 70 100
®*, uy,v; satisfy SSTO constraints. To0RIB @ T
— Three different values of ¢* = 1,2, 3. 2 99 98 92 | 100
3 3 100 100 97 100
— Two sample sizes n = 100, 1000
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True n = 1000 n=100 4.2 Application to Data
Model Mean Rel. Freq. (%) Mean Rel. Freq. (%) Median
(me) ¢ | Rank Ry=1 R¢<3 Rank Ri=1 Re<3 logPOy The method is also implemented in three datasets
my 1 2.04 0.442 0.866 10.50 0.025 0.092 0.955
All scores | 2 1.08 0.930 1.000 5.17 0.107 0.378 0.722 1.
Different | 3 | 1.00  0.997  1.000 305 0238  0.691 0.436 5 x 4 table; n = 223 children
Agresti et al., 1987, Ritov and Gilula, 1993).
ma 1 1.85 0.560 0.902 11.01 0.035 0.124 0.953 ( g ? ’ v )
M1 = p2 2 1.13 0.885 0.999 4.78 0.186 0.508 0.624 o C
3 1.09 0.910 1.000 2.90 0.341 0.732 0.329 7Tx6 tablc; 202 students.
. 5
m3 1 2.09 0.519 0.859 10.16 0.053 0.242 0.777 3. anily o —— happi Tt
= 2 1.20 0.847 0.989 4.37 0.184 0.566 0.543 e
S i ? 5 X 4 table; n = 1517 families
vy = v 3 1.11 0.897 0.999 2.86 0.329 0.766 0.345 .
. 2= (see Clogg, 1982, Table 2, Galindo-Garre and Vermunt, 2004).
my: True model
H¢: Ranking of posterior probability of model m; in descending order, see for more details in http://stat-athens.aueb.gr/~ jbn/papers/paper18.htm.
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4.3 Dreams Disturbance Data.
: Results: Marginal P
Disturbance g
(from low to high)
Age Group 1 2 3 4 Total Posterior Posterior
Row Scores  Probability | Column Scores Probabilit;
- rre T 2! 1 0.285 . 5 =1 0.996 :
8 9 10 15 11 13 49 fe=1ly) = - f(02=1ly) = .
10-11 23 9 11 7 50 flyz=1ly)= 0.940 f(03=1ly) = 0.286
12-13 28 9 12 10 59 flya=1ly)= 0391 fa=1ly)= 0484
14-15 32 5 4 3 44 flys=1ly)= 0.964
Total 100 42 41 40 223 Single RIMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.
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k Model (scores) Post. prob. PO,;;, AIC BIC DIC p, dn

1 pr=p2 <pz=ps<ps 0.1620 1.00 1265.0 1295.7 1265.0 9.0 9
vi <v2=V3=v4

2 pr=pe < pz=pa < ps 0.1540 1.05 1265.9 1300.0 1265.1 9.6 10
v1 <vp=wv3 <vy

3 1 =p2 < pz < pa < ps 0.0877 1.85 1267.6 1301.6 1266.3 9.4 10
vy <V =V3=1V4

4 gy =po < pz < pa < ps 0.0725 223 1268.6 1306.1 1266.4 9.9 11
v <vp=v3 <V

5 o =p2 <pz=pa<ps 0.0609 2.66 1269.0 1306.5 1266.4 9.7 11
vi <va<wv3<uy

6 p1=p2 <pz=pa<ps 0.0579 2.80 1267.6 1301.7 1266.5 9.4 10
v1 <vp<vz =1y

Topr <pe <pz=pa < ps 0.0541 2.99 1269.0 1306.5 1266.7 9.9 11
v1 <vp=wv3 <y

8 1 <pe<pz=ps<ps 0.0522 3.10 1268.3 1302.4 1266.8 9.2 10

v <vp=v3 =14

Single RIMCMC (R RESULTS): 100,000 iterations + additional burn-in of 10,000 iterations.

Posterior Density plots of Phi

mu=12<34<5 nu=1<2

34
3<4

08
I

(7): mu=1<2<34<5 nu=1<23<4
(8): mu=1<2<34<5 nu=1<234
BMA

Density
04
.

02
L

phi

Posterior Distributions of ¢ over models with highest posterior probabilities .
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FUNl model 2nd BMA

12348 123 48 123 48
R Scores (mu) R Scorss () Row Scorss () Row Scorss () Row Soores ()
B ornt

FUNl model i ’ 2nd Hig it 2 ity Model BMA

viovz vs vs iz vs vs viovz vs ve iz vsove o2 e o

o Scoros 1) Golumn Sores ) ot Scoves 1) o Scros v o Seoros 1)
i itoont)

Boxplots of the row and column scores over three models with highest posterior probabilties.

RJMCMC indicated a more parsimonious model (according to highest
posterior probability) than the one (2nd in rank) indicated by our previous
analysis (see Iliopoulos et al. 2007).

Agresti et al. (1987) proposed an order restricted C model under which

0 < Uy =g < Iy

Ritov and Gilula (1993) suggested an order restriction model with

Dy <y =03 <Py and [y = fia < fi3 = fia < f15 which is the second highest
probability according to our method
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Some Comments on the Results I

e Negative association between age and severity of dreams’ distrurbance (¢ < 0).

o Age:
— Categories 2-3 (8-9, 10-11 years old) and 4-5 (12-13, 14-15 years old) =
different in terms of the association (marginal post.prob. = 0.94 and 0.96
respectively).

— Categories 1-2 (5-7, 8-9 years old) and 3-4 (10-11, 12-13years old) =
indistinguishable concerning the association (mild evidence with marginal
post.probab.= 0.715 and 0.609 respectively).

e Severity of dreams’ disturbance: More uncertainty is involved:

o Clear evidence that the first category differs than the rest [f(d2 = 1]y) = 0.996].

© Model with the highest posterior probability = all the other three scores equal
(v2a =vs =vs).

© Model with the 2nd highest posterior probability = 2 = v3 < v4.

e The algorithm was highly mobile visiting 69, 86 and all 105 models in 10, 100
iterations 400 thousand iterations respectively.

5

- W

)]

Work in progress and future work

. Comparison of the above models with the Uniform association, Independence

and Saturated models [use different prior for ¢].

. Incorporate selection between unrestricted RC, Row, Column association

models (can we use similar parametrization?)

. Use similar approach in unrestricted RC model for merging/grouping scores
. Expand methodology to high dimensional tables

. Use different priors for scores; for example power prior and imaginary data.
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