

<text><text><text><text><text>

2. An Idea:
Avoiding (?) the paradox
The idea - Step 1 [rewrite the prior variance]
Any prior variance matrix
$$V_m$$
 can be rewritten as

$$\mathcal{V}_m = \mathcal{C}_m^2 \Sigma_m \text{ so that } [\Sigma_m] = [i(\beta_m)]^{-1}$$
resulting in
 $\log f(m|y) \approx C + \log f(y|m, \hat{\beta}_m) - \frac{1}{2\mathcal{C}_m^2}(\hat{\beta}_m - \mu_{\beta_m})^T \Sigma_m^{-1}(\hat{\beta}_m - \mu_{\beta_m}) + \log f(m) - d_m \log c_m - \frac{d_m}{2} \log n$
where c_m defined as
 $\mathcal{C}_m^{-2} - (|V_m||i(\beta_m)|)^{-1/d_m}$

rn	rmation						
ģ	Parameter prior	Model space prior	Posterior model probabilities				
			O + H + A	OH + A	O + HA	OH + HA	
1.	DF	uniform	0.657	0.336	0.004	0.002	
2.	KS	uniform	0.075	0.000	0.923	0.002	
3.	KS/DF	uniform	0.059	0.023	0.638	0.280	
4.	DF	adjusted	0.677	0.317	0.004	0.002	
5.	KS	adjusted	0.665	0.335	0.000	0.000	
6.	KS/DF	adjusted	0.690	0.310	0.000	0.000	
7	IND	adjusted	0.690	0.303	0.004	0.003	

