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1 Motivation

Health care quality measurements

Indirect method: input-output approach.

• Construct a model on hospital outcomes (e.g., mortality within 30 days of

admission) after adjusting for differences in inputs (sickness at admission).

• Compare observed and expected outcomes to infer for the health care quality.

• Data collection costs are available for each variable (measured in minutes or

monetary units).

• We wish to incorporate cost in our analysis in order to reduce data collection

costs but also have a well-fitted model.
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Available data

• Data come form a major U.S. study constructed by RAND Corporation, with

n = 2, 532 pneumonia patients (Keeler, et al. , 1990).

• Response variable: mortality within 30 days of admission

• Covariates: p = 83 sickness indicators

• Construct a sickness scale using a logistic regression model.

• Benefit - Only Analysis (no costs): Classical variable selection techniques to

find an “optimal” subset of 10-20 indicators. The initial list of p = 83 sickness

indicators was reduced to 14 “significant” predictors (Keeler, et al. , 1990).



September 25, 2009: Heriot-Watt University 5

The 14-Variable Rand Pneumonia Scale

The RAND admission sickness scale for pneumonia (p = 14 variables), with the marginal data collection

costs per patient for each variable (in minutes of abstraction time).

Variable Cost Variable Cost

(Minutes) (Minutes)

1 Systolic Blood Pressure Score

(2-point scale)

0.5 8 Septic Complications

(yes, no)

3.0

2 Age 0.5 9 Prior Respiratory Failure

(yes, no)

2.0

3 Blood Urea Nitrogen 1.5 10 Recently Hospitalized (yes, no) 2.0

4 APACHE II Coma Score

(3-point scale)

2.5 12 Initial Temperature 0.5

5 Shortness of Breath Day 1

(yes, no)

1.0 17 Chest X-ray Congestive Heart

Failure Score (3-point scale)

2.5

6 Serum Albumin Score

(3-point scale)

1.5 18 Ambulatory Score

(3-point scale)

2.5

7 Respiratory Distress

(yes, no)

1.0 48 Total APACHE II Score

(36-point scale)

10.0
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Two different approaches for incorporating cost

into the analysis

Two desirable but opposite criteria must be accounted in our analysis:

1. the fit of the model

2. the cost of the model

Thus, we wish to find a model with the lower possible cost but having an

“acceptable fit” to the observed data.

So two different cases for handling cost may appear

Case 1: Decrease the cost as much as possible but without losing much from the

predictive ability of the model. No overall budgetary restrictions exist.

Case 2: An overall budgetary bound is implemented. We select the “best” model

under the restricted model space.
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Three methods for solving this problem

(1) Bayesian decision theoretic solution proposed by Draper and Fouskakis (2000)

and Fouskakis and Draper (2002, 2008).

They used stochastic optimization methods to find (near-) optimal subsets of

predictor variables that maximize an expected utility function which trades off data

collection cost against predictive accuracy [case 1].

(2) Model specification using a cost–adjusted prior. As an alternative to (1), we

propose a prior distribution that accounts for the cost of each variable and results in

a set of posterior model probabilities. This approach leads to a generalized

cost-adjusted version of the Bayesian Information Criterion (Fouskakis,

Ntzoufras and Draper, 2009a) [case 1].

(3) Cost–restriction benefit analysis. The model search is conducted only among

models whose cost does not exceed a budgetary restriction (Fouskakis, Ntzoufras

and Draper, 2009b), by the usage of a population–based trans–dimensional

RJMCMC method [case 2].
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Cost–restriction benefit analysis

• Select between models whose cost does not exceed a budgetary restriction

(Fouskakis, Ntzoufras and Draper, 2009b)

• The new truncated model space is more complicated with areas of local

maximum (i.e. neighborhoods of “good” models).

• A sophisticated model search algorithm must be adopted.

• We use a population–based trans–dimensional RJMCMC method
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2 Model Specification

• Logistic regression model with Yi = 1 if patient i dies after 30 days of

admission.

• Xij : j sickness predictor variable for the i patient.

• m → γ = (γ1, . . . , γp)
T .

• γj : Binary indicators of the inclusion of the variable Xj in the model.

• Model space M = {0, 1}p; p = total number of variables considered.

Hence the model formulation can be summarized as

(Yi | γ)
indep
∼ Bernoulli(pi(γ)),

ηi(γ) = log

(

pi(γ)

1 − pi(γ)

)

=

p
∑

j=0

βjγjXij ,

η(γ) = X diag(γ) β = Xγ βγ .
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3 Reversible Jump MCMC

• Introduced by Green (1995, Bka).

• Generalizes simple Metropolis-Hastings algorithms for ‘jumping’ between

models of different parameter dimension.

• Estimates posterior model probabilities.

• Can be used for variable selection.

• Extremely flexible and fashionable.

• Complicated in some cases.
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The general RJMCMC

• Propose a new model m′ with probability j(m, m′).

• Generate u from a specified proposal density q(u|βm, m, m′).

• Set (β′
m′ , u′) = hm,m′(βm, u), where hm,m′ is a specified invertible function for

which hm′,m = h−1
m,m′ . This equation implies that dm + d(u) = dm′ + d(u′),

where dm and d(u) are the dimensions for the parameters of model m and

vector u, respectively.

• Accept the proposed move to model m′ with probability

α = min

(

1,
f(y|β′

m′ , m′)f(β′
m′ |m′)f(m′)j(m′, m)q(u′|β′

m′ , m′, m)

f(y|βm, m)f(βm|m)f(m)j(m, m′)q(u|βm, m, m′)

∣

∣

∣

∣

∂h(βm, u)

∂(βm, u)

∣

∣

∣

∣

)

.

(1)
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RJMCMC for Variable Selection

In variable selection m can be substituted by γ.

• Select randomly a variable j and propose it to change.

• If γj = 0 → γ′
j = 1 (include a new covariate Xj in the model)

– Propose β′
j = βj ∼ q(βj |βγ)

– Set β′
k = βk for all k with γk = 1 (k 6= j).

– Accept the proposed move with probability

α = min(1, Oj) with Oj =
f(y|β′

γ′ , γ′)f(β′
γ′ |γ′)f(γ′)

f(y|βγ , γ)f(βγ |γ)f(γ)q(βj |βγ)
.

• If γj = 1 → γ′
j = 0 (exclude a covariate Xj from the model)

– Set β′
k = βk for all k with γ′

k = 1 (k 6= j).

– Accept the proposed move with probability

α = min(1, O−1
j ).
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RJMCMC for Variable Selection

• u = βj .

• h(β′
γ′) = (βγ , βj) (identity function).

• The Jacobian is equal to one.

• Proposal for each βj can be a N(µj , σ
2
βj

) with the mean and variance taken

from the posterior of the full model.

• More complicated proposals can be used.

• More complicated model moves can be also used.
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4 Cost Restriction - Benefit Analysis

• Implement a Cost-restriction benefit analysis, in which the practical

relevance of the selected variable subsets is ensured by enforcing an overall

limit on the total data collection cost of each subset: the search is conducted

only among models whose cost does not exceed this budgetary restriction C.

• Therefore, we should a-priori exclude models γ with total cost larger than C,

resulting to a significantly reduced model space,

M =







γ ∈ {0, 1}p :

p
∑

j=1

cjγj ≤ C







.

• AIM: Estimate posterior model probabilities in the cost restricted model

space.
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PROBLEM

• Due to the cost limit, model space areas of local maximum exist.

• RJMCMC and other Gibbs based samplers for variable selection, move to local

model neighborhoods usually by adding or deleting one variable at a time.

• Thus, we need to construct more advanced proposed jumps possibly between

models of the same cost in order to avoid getting trapped into local maxima.
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Example: Variables X1, X2, X3 and X4 with costs 1, 2, 3.5, 2.5 and total cost limit

C = 5.
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SOLUTION

Intelligent trans-dimension MCMC methods that allow to move across areas of

local maximum even if these are distinct.

Proposed Algorithm

We have developed a Population Based Trans-Dimensional Reversible-Jump

Markov Chain Monte Carlo algorithm (Population RJMCMC), combining ideas

from the population-based MCMC (Jasra, Stephens and Holmes, 2007) and

Simulated Tempering (Geyer and Thompson, 1995) algorithms.
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Population Based MCMC

• Use k parallel chains (usually around 10) with the posterior raised in a power

called (inverse) temperature.

• For temperature t1 = 1 we obtain the actual posterior.

• 0 < tk < 1 makes the posterior flatter ⇒ move easier between areas of local

maxima.

• tk > 1 makes the posterior steeper ⇒ move towards local maxima.

• Problem 1: How many chains?

• Problem 2: Large number of chains is computationally demanding.

• Problem 3: What temperatures shall we select?
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4.1 The proposed population based algorithm

Population RJMCMC (1)

• Use 3 chains: The actual one, plus two auxiliary ones.

– In the auxiliary chains the posterior distributions are raised in a power tk

(inverse temperature), k = 1, 2.

– 1st auxiliary chain: t1 > 1 → increasing differences between the posterior

probabilities (makes the distribution steeper ⇒ move closer to locally best

models).

– 2nd auxiliary chain: 0 < t2 < 1 → reducing differences between the

posterior probabilities (makes the distribution flatter ⇒ move easily across

different models).
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• Inverse temperatures tk change stochastically.

• By this way the extensive number of chains is avoided (usually from 5-10 in

population based samplers).

• The incorporation of stochastic temperatures can be done using pseudo

priors gk(tk).
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Population RJMCMC (2)

• The posterior distribution is expanded to

f(βγ , γ, βγ,(1), γ(1), βγ,(2), γ(2), t1, t2|y)

∝ f(y|βγ , γ)f(βγ |γ)f(γ)

×

2
∏

k=1

{

f
(

y|βγ,(k), γ(k)

)

f
(

βγ,(k)|γ(k)

)

f
(

γ(k)

)

}tk

gk(tk),

where γ(k) and βγ,(k) are the model indicator and parameter vector of chain k.

• Model indicators and parameters can be updated using RJMCMC steps.
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Population RJMCMC (2)

• In Gibbs sampling, the inverse temperature tk is generated by

f(tk|β, γ, βγ,(k), γ(k), t\k, y) ∝
{

f
(

y|βγ,(k), γ(k)

)

f
(

βγ,(k)|γ(k)

)

f
(

γ(k)

)

}tk

gk(tk).

PROBLEM: When flat (non informative prior) for inverse temperatures is

imposed then the conditional distribution above is an increasing function of tk.

SOLUTION: The temperatures are only used to expand the space and to

make possible jumps between models of different dimension and structure. So

gk(tk) are not actual priors but pseudo-priors.

• We propose to use directly the marginal posterior distribution of the inverse

temperatures tk f(tk|y) in the sampling scheme.

• The desired posterior marginal distribution for the inverse temperatures tk is
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given by

f(tk|y) ∝
∑

γ(k)∈M

∫

βγ,(k)

(

f(y|tk, βγ,(k), γ(k))f(βγ,(k)|γ(k))f(γ(k))
)tk

gk(tk)dβγ,(k)

∝ Zk(y, tk)gk(tk),

where Zk(y, tk) is the marginal likelihood over all possible models for chain k.

• Since gk(tk) are pseudo-priors, we can set

gk(tk) ∝
hk(tk)

Zk(y, tk)

where hk(tk) are convenient and easy to simulate from density functions

resulting to

f(tk|y) = hk(tk).

• For the selection of hk(tk) we propose to use

h1(t1) = Gamma(t1 − 1; a1, b1) and h2(t2) = Beta(t2; a2, b2).
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Population RJMCMC (3)

Our algorithm can be summarised as follows:

1. Select initial values for (βγ , βγ,(1), βγ,(2)) and (γ, γ(1), γ(2)).

2. For l = 1, . . . , L (where L is the number of iterations), repeat:

(a) Generate t1 and t2 from f(t1|y) = h1(t1) and f(t2|y) = h2(t2), respectively.

(b) For k = 0, 1, 2:

i. Sample βγ,(k) using Gibbs steps.

ii. Sample γ(k) using RJMCMC steps by proposing to change each

component sequentially; thus, for every j ∈ {1, . . . , p} (in a random scan):

A. With probability 1 propose γ′
(k): γ′

j,(k) = 1 − γj,(k) and γ′
ℓ,(k) = γℓ,(k)

for all ℓ 6= j.

B. If γj,(k) = 1 then propose β′
j,(k) from qj,k(β′

j,(k)) and set β′
ℓ,(k) = βℓ,(k)

for ℓ 6= j.
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C. Accept the proposed move with probability α = min{1, O}, where

O =

[

f
(

y|β′
γ,(k), γ

′
(k)

)

f
(

β′
γ,(k)|γ

′
(k)

)

f
(

γ′
(k)

)

f
(

y|βγ,(k), γ(k)

)

f
(

βγ,(k)|γ(k)

)

f
(

γ(k)

)

]tk

qj,k(βj,(k))
γj,(k)

qj,k(β′
j,(k))

1−γj,(k)
.

(2)

In the above steps, βγ,(0) and γ(0) correspond to the parameters βγ and

γ of the original chain, and t0 = 1 is the (inverse) temperature of the

original chain.

(c) For k = 1, 2:

i. Propose with probability 1 to swap (βγ , γ) ↔ (β(k), γ(k)).

ii. Accept the proposed move with probability α = min{1, O}, where

O =

[

f
(

y|βγ,(k), γ(k)

)

f
(

βγ,(k)|γ
′
(k)

)

f
(

γ′
(k)

)

f
(

y|βγ , γ)f
(

βγ |γ
)

f(γ)

]1−tk

. (3)

The above sampling scheme can be enriched with additional moves used in

population MCMC (such as mutation and crossover).

In our problem: the moves described above were sufficient to achieve good mixing.
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Proposal Specification

We use Gaussian independent proposals of the form

qj,k(βj,(k)) ∼ Normal
[

β̄j,(k), σ̄
2
j,(k)

]

. (4)

Proposal parameters β̄j,(0) and σ̄2
j,(0) for the original chain (as in RJMCMC)

• From posterior summaries of the full chain using a pilot run

• MLEs of the full model

• Conditional maximization estimates.

• more sophisticated techniques (Brooks et al. , 2003)
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For the other two chains we set

β̄j,(k) = β̄j,(0) and σ̄2
j,(k) =

σ̄2
j,(0)

tk
for k = 1, 2. (5)

Why?

Let us consider the following approximation to the posterior distribution:

f(β(k)|y) ∼= Normal

{

β̃(k),
[

−Hk

(

β̃(k)

)]−1
}

, (6)

• Λk(β(k)) = constant + tk log f(y|β(k), γ(k)) + tk log f(β(k)|γ(k)) + tk log f(γ(k))

is the heated/cooled log-posterior density under tk.

• β̃(k) is the value maximizing Λk(β(k)).

• Hk(β̃(k)) is the Hessian of Λk(β(k)) evaluated at its maximum.

⇒ The heated/cooled posterior mode β̃(k) is equal to the mode β̃ of the actual

posterior density (with temperature 1).

⇒ Hk(β̃(k)) = tk H(β̃); ⇒ V ar
(

β̃(k)

)

= t−1
k V ar(β̃);
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⇒ thus the proposal variance of the chain with inveres temperature tk can be

defined as the variance of the chain with temperature 1 divided by tk, as in the

second part of (5).
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4.2 Prior Distributions

Prior on model parameters

βγ |γ ∼ Normal

(

0, 4n
(

XT
γXγ

)−1
)

• Low information prior defined by Ntzoufras, Delaportas and Forster (2003).

• Can be derived using the power prior of Chen et al. (2000) and imaginary

data supporting the simplest model included in our model space.

• It gives weight to the prior equal to one data-point.

• It is equivalent to the Zellner’s g-prior (with g = 4n) used for normal

regression models.
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Prior on model parameters - details

Assume imaginary data y∗
i = (y∗

i1 = 1, y∗
i2 = 0), i = 1, . . . , n with the same design

matrix Xγ as the actually observed data.

Prior generated using the likelihood of these imaginary data,

f(βγ |γ, y∗) ∝

{

n
∏

i=1

pi(γ)[1 − pi(γ)]

}1/(2n)

, (7)

where y∗ = (y∗
1, . . . ,y

∗
n).

Based on the power prior of Chen et al. (2000, JSPI).
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Using the above prior, the posterior becomes

f(βγ |γ, y) ∝

n
∏

i=1

pi(γ)yi+
1
2n [1 − pi(γ)](1+

1
n

)−(yi+
1
2n

); (8)

Equivalent to information from
∑n

i=1(1 + 1
n ) = (n + 1) data points.

⇒ The prior introduces additional information equivalent to adding one data point

to the likelihood

⇒ Support a priori the simplest model with a weight of one data point.
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Using a Laplace approximation we obtain

f(βγ |γ, y∗)
·
∼ N

[

β̂γ , 2n I(β̂γ)−1
]

, (9)

• β̂γ is the MLE if the imaginary data y∗
i were observed

• I(β̂γ) is the observed information matrix given by

I(β̂γ) = XT
γ diag {2 p̂∗i (γ)[1 − p̂∗i (γ)]}Xγ , (10)

• p̂∗i (γ) =
[

1 + exp(−Xiβ̂γ)
]−1

is the fitted success probability for all i under

model γ when observing data y∗.

Under the imaginary data y∗
i = (y∗

i1 = 1, y∗
i2 = 0), i = 1, . . . , n

• β̂γ = 0.

• p̂i(γ) = 1/2 for all i,

⇒ I(β̂γ) = 1
2

(

XT
γXγ

)

⇒ leading to the proposed prior.
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This approach is also sensible in terms of the parsimony principle.

Posterior model odds (and Bayes factors) penalize the model likelihood for

deviations of the actual data from the prior distribution (see Raftery, 1996,

equation 12).

Since the above prior can be generated using a set of minimally-weighted

imaginary data that fully support the constant model, it will provide sensible

minimal a priori support for more parsimonious models.
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Prior on model space

Uniform prior on cost restricted model space, i.e.

f(γ) ∝ I



γ ∈ M : c(γ) =

p
∑

j=1

γjcj ≤ C



 ,

where cj is the differential cost per observation for variable Xj and C is the

budgetary restriction.
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4.3 Implementation and Results

Implementation details

• COST LIMIT: C = 10 minutes of abstraction time.

• The Procedure:

1. Run Population RJMCMC for 100K iterations in the full model space,

twice, starting each time from a different model.

2. Eliminate non-important variables (with marginal probabilities < 0.30 in

both runs) forming a new reduced model space.

3. Run population RJMCMC in the reduced space, twice.

• The pseudo-parameters were tuned to achieved acceptance rates around 20%

for swapping values between chains of different temperatures, resulting in

h1(t1) = Gamma(t1 − 1; 2, 4) and h2(t2) = Beta(t2; 7, 3)

• Population vs. simple RJMCMC: Comparison of results and performance.
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Preliminary Results: Marginal Probabilities f(γj = 1|y)

Variables with marginal posterior probabilities f(γj = 1|y) above 0.30 in at least

one run.

Marginal Posterior Probabilities
Variable Variable First Run Second Run
Index Variable Name Cost Analysis Analysis

1 Systolic Blood Pressure (SBP) Score 0.50 0.98 0.99
2 Age 0.50 0.97 0.95
3 Blood Urea Nitrogen 1.50 0.99 0.91
4 Apache II Coma Score 2.50 0.55 1.00
5 Shortness of Breath Day 1 1.00 0.92 0.80
6 Serum Albumin 1.50 0.40 0.55

12 Initial Temperature 0.50 0.91 0.93
37 Apache Respiratory Rate Score 1.00 0.72 0.79
46 Admission SBP 0.50 0.45 0.25
49 Respiratory Rate Day 1 0.50 0.35 0.25
51 Confusion Day 1 0.50 0.44 0.01
62 Body System Count 2.50 0.55 0.33
70 Apache pH Score 1.00 0.81 0.73
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Reduced Model Space: Posterior Model Probabilities/Odds

Common variables in both analyses: X2 + X4

Population RJMCMC - 500K iterations

1st Run 2nd Run

Common Additional Posterior Posterior

k m Variables Variables Prob. P O∗

1k
Prob. P O∗

1k

1 m1 X1 + X12 + X37 +X3+X5 +X62 0.4872 1.00 0.4879 1.00

2 m2 +X5 +X46 +X62 +X70 0.1202 4.05 0.1052 4.63

3 m3 +X3 +X62 +X70 0.0894 5.45 0.0982 4.97

4 m4 +X3+X5 +X6 +X70 0.0344 14.16 0.0498 9.80

Simple RJMCMC - 1500K iterations

1st Run 2nd Run

Common Additional Posterior Posterior

k m Variables Variables Prob. P O∗

1k
Prob. P O∗

1k

1 m1 X62 +X1+X3+X5+X12+X37 0.6159 1.00 0.5912 1.00

2 m3 +X1+X3 +X12+X37 +X70 0.1061 5.80 0.1525 3.88

3 m2 +X1 +X5+X12+X37+X46 +X70 0.0926 6.65 0.1041 5.68

4 m5 +X3+X5 +X46 +X49 +X70 0.0403 15.28 < 0.03 > 19.9

∗posterior odds of the best model within each analysis versus the current model k.

All models appearing in the table have total cost 10 min (cost limit).
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Reduced Model Space: Monte Carlo Errors

MCSEs (%)
RJMCMC

Type Run Iterations m1 m2 m3 m4

P 1 500K 1.2 0.5 0.9 0.7
P 2 500K 1.5 0.4 1.0 0.7
P 1 200K 1.9 0.8 1.1 1.2
P 2 200K 1.6 1.0 1.1 0.9
P 1 100K 2.5 1.2 1.7 1.5
P 2 100K 2.7 0.9 1.6 1.2
S 1 500K 4.2 1.3 3.2 0.0
S 2 500K 4.2 1.7 3.6 0.0
S 1 1,500K 2.9 1.1 2.1 1.0
S 2 1,500K 3.1 0.9 3.1 0.0

Relative
P Iterations Comparisons

First 1,500K 500K 2.4 2.2 2.3 1.4
S Run 200K 1.5 1.4 1.9 0.8

versus P 100K 1.2 0.9 1.2 0.7
Second 1,500K 500K 2.1 2.3 3.1 0.0

S Run 200K 1.9 0.9 2.8 0.0
versus P 100K 1.2 1.0 1.9 0.0
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Comparison of the best models and the RAND model

Minimum Total

Model Deviance Cost Dimension

m1 1610.0 10 8

m2 1606.7 10 9

m3 1612.8 10 8

m4 1608.6 10 9

m5 1616.5 10 8

RAND 1587.3 31 14

Bayesian Benefit 1553.2 22.5 13
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Figure 1: Density and time series plots of model dimension.

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)
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Figure 2: Density and time series plots of sequential change score (the number of

variables in the model at iteration (t + 1) that are different from those in the model

at iteration t)

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)
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Figure 3: Density and time series plots of model cost

Simple RJMCMC Population RJMCMC
1,500K runs 500K runs

(thinned by a factor of 3)
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5 Discussion

• Cost - Restriction - Benefit Analysis:

A modified Population RJMCMC algorithm is proposed to explore the

restricted model space when budgetary contstains are imposed.

The proposed algorithm explores the model space efficiently and converges

faster than simple RJMCMC (having lower Monte Carlo errors).
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