
Control charts are one of the main tools of statistical process control. The literature

on control charts is huge. In this chapter we try to present the main univariate and

multivariate control charts along with their basic properties. We have to emphasize

that the control charts presented in this chapter and their properties are by no means a

detailed review of all charts.

In Section 2.2, we present the main characteristics of a control chart and a discussion

of its evaluation using the most known measures. Univariate Shewhart Control Charts for

data in subgroups and individual data for the mean and the variance are given in Section

2.3 for both variables and attributes. Cumulative Sum (CUSUM) charts for the mean

and variance and their properties are described in Section 2.4. Exponentially Weighted

Moving Average (EWMA) Control Charts are summarized in Section 2.5. Section 2.6

presents the multivariate Shewhart control charts for the process mean and dispersion for

variables and attributes. Finally, Section 2.7 gives the multivariate CUSUM and EWMA

control charts.

5



When we have a production process there is usually a target value. We want our

process to achieve this target for every product. However, in every process there is

an inherent random variability. Therefore, no matter how good we design the whole

procedure or how accurate our engines are, we expect to be close to the target value but

not always on this value. The existence of this variability affects our process.

There are two different “versions” of this variability. The common cause (chance

cause) variability is the natural variability every process experiences. Its existence is due

to randomness as we can find purely random variability from one product to another.

A process that operates with only common cause variability is said to be in-control.

The special cause (assignable cause) variability is a result of factors that are not purely

random. These factors cause heterogeneity in the process and as a result they affect it,

leading to low quality product. A process that operates in the presence of special causes

of variability is said to be out-of-control. This type of variability can be detected with

control charts giving us the ability to remove its effect and therefore reduce the overall

variability. As a result, removing special causes leads to an improvement of the quality

of the product.

Common cause variability is the remainder of the variability after every component

of special cause has been removed. In order to remove common cause variability we have

to alter the process itself. However, a goal in today’s industrial and technological world

must be the continuous quality improvement. Under this perspective we have to stress

that today’s common cause can be a tomorrow’s special cause. As the inspection process

improves and the target for quality is constant we may be able to identify as special

cause, a up to now identified common cause.

Special causes of variability can be divided in two different groups; transient special

causes and persistent special causes. Transient special causes are those causes that affect

a process for a short time until their reappearance in a future point in time. Persistent

special causes are those causes that when they occur they stay in the process until they
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are detected and removed.

A control chart is a graphical representation of a characteristic of the process under

investigation. It is used as the main tool to identify special causes of variability in a

process. On the horizontal axis we have the number of the sample drawn from the process

or the time that the sample was inspected. On the vertical axis we have the value of the

characteristic measured for each sample or for the time of the horizontal axis. A straight

line connects the successive points indicating the level of the characteristic in time or in

successive samples. There are also three usually straight lines that stand for the upper

control limit (UCL) the center line (CL) and the lower control limit (LCL). An example

of a control chart is given in Figure 2.1.

Figure 2.1. A typical control chart
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We assume that a process operates under control when the line connecting the se-

quence of points does not cross UCL or LCL. When a point is plotted outside these limits

we assume that the process is in an out-of-control state and corrective actions must be

taken in order to remove the assignable cause that led to this problem. The values of

UCL and LCL are chosen usually in such a way that when the process is in-control the
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probability of a point plotting outside these limits is very small. However, there are some

cases that even when all the points plot inside the control limits we characterize the pro-

cess as being in an out-of-control state. Such cases are for example when we see a series

of nine successive points plotting all above (below) the center line or when we see six

successive points in a row steadily increasing or decreasing. We have to state here that

the removal of any cause is not the objective of a control chart. A control chart simply

indicates that an assignable cause may exist. It is the management’s or the operator’s

job to act in order to get rid of the problem, if it exists.

In the literature, two distinct phases of control charting practice have been discussed

(see, e.g. Woodall (2000)). In Phase I, charts are used for retrospectively testing whether

the process was in-control when the first subgroups were being drawn. In this phase, the

charts are used as aids to the practitioner, in bringing a process into a state of statistical

control. Once this is accomplished, the control chart is used to define what is meant by

statistical control. This is referred as the retrospective use of control charts. In general,

there is a lot more going on in this phase than just charting some data. During this

phase the practitioner is studying the process very intensively. The data collected are

then analyzed in an attempt to answer the question “were the data collected from an

in-control process?”.

In Phase II, control charts are used for testing whether the process remains in-control

when future subgroups are drawn. In this phase, the charts are used for monitoring the

process for any change from an in-control state. At each sampling stage, the practitioner

asks the question “has the state of process changed?”. The meaning of in-control, in this

phase, is usually determined by the values of the process parameters e.g., the mean and

standard deviation for univariate continuously distributed variables. The values of the

parameters are either given to the practitioner or they are estimated from the historical

data known to be under control from Phase I. Note that in this phase the data is not taken

as being from an in-control process unless the data provide evidence against no change

in the process. Using these data to define what is meant by the process being in-control

8



might lead to use an out-of-control process to define a state of statistical in-control.

Woodall (2000) states that much work, process understanding and process improvement

is often required in the transition from Phase I to Phase II.

In a control chart we have two objectives. Firstly, when a process is in-control, we

want our chart to signal (false alarm) infrequently. In statistical terms we want the chart

to operate with the planned probability of the statistic computed to plot outside the

control limits if we are in-control. Secondly, when a process is out-of-control, we want

the chart to signal as soon as possible. In statistical terms we want the probability of the

statistic computed to plot in-control if we are out-of-control to be as small as possible.

Different measures for evaluating the performance of a chart, concerning the previous

two objectives, have been proposed. The most known measure is the average run length

(ARL), which is based on the run length (RL) distribution. The number of observations

(individual data), or samples (data in subgroups), needed for a control chart to signal is

a run length or alternatively one observation of the RL distribution. The mean of the RL

distribution is the ARL, which is actually the average number of observations needed for

a control chart to signal. Page (1954) defined the average run length as follows: When

the quality remains constant the average run length of a process inspection scheme is

the expected number of articles sampled before action is taken. Ewan and Kemp (1960)

gave a somewhat different definition; When the quality remains constant the average run

length of an inspection scheme is the expected number of samples obtained before action

is taken. Usually, along with the ARL, the standard deviation of the run length (SDRL)

is computed. Alternatively, the ARL is expressed as the average number of observations

to signal (ANOS). A measure similar to the ARL is the average time to signal (ATS),

which is the average time needed for a control chart to signal and it is actually a product

of the ARL and the sampling interval used in the case of fixed sampling.

From the preceding discussion we see that all these measures are related to the ARL.

However the sole use of the ARL has been criticized (see, e.g. Barnard (1959), Bissell

(1969), Woodall (1983) and Gan (1993b, 1994)).The disadvantage of the ARL is the
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skewness of the run length distribution in the out-of-control case and in non-normality

and as a result the misleading conclusions one can draw based on the ARL. An alternative

measure is the median run length (MRL), which is more credible since it is less affected

by the skewness (see, e.g. Gan (1993b, 1994)).

A typical method of comparing control charts is based on the calculation of their

average run length (ARL) (Woodall (1985)). Assume that independent random samples

of size � are drawn successively from a process that measure the quality of a character-

istic. Assume also that the sample means �1� �2� ��� are normally distributed with known

variance �2��. Consider as the objective of the control chart to keep the in-control mean

equal to the target value �0. If �(��) = �� 	 = 1� 2� ��� the parameter 
 = � � �0 ��

denotes the shift in the mean measured in units of the standard error of the sample mean.

We assume that any shift in the mean away from the target value occurs prior to the

implementation of the control chart.

Let �0��1 denote the in-control and out-of-control regions respectively. The in-

control region�0 contains all values of 
 that correspond to acceptable shifts. Although

“acceptable shifts” is an oxymoron, there is a meaningful explanation. When the shift in

a process is very slight the attempt to adjust the process can lead to over-correction and

introduce extra variability into the process. Duncan (1974) and Wetherill (1977) observe

that low ARL values for small deviations from the target value is a drawback when some

slack in the process is acceptable. The out-of-control region �1 contains all values of 


for which a control procedure should give an out-of-control signal.

A control chart has an ARL value of at least �0, when 
 �0, and at most �1, when


 �1. Consider two procedures A, B that are to be compared. If the ARL profile of

A is above that of B for 
 �0 and below that of B for 
 �1, then procedure A is

considered to be uniformly better than procedure B.
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The most known control charts are the Shewhart type control charts. They owe their

name to Walter Shewhart who established them in his pioneering work in 1931. They

are used to detect transient special causes in a process. This property is the result of

the fact that Shewhart Control Charts are memoryless. In the following we present the

Shewhart control charts for variables and attributes.

Assume that we have a variable that is normally distributed with mean � and standard

deviation �. We assume that � and � are both known. Let �1� �2� ���� �� be a sample of �

independent and identically distributed observations drawn from our production process.

Then the average of this sample � is distributed as a normal variable with mean � and

standard deviation �� �. Therefore, we can use as control limits for each sample

�� = �+ ���2�� �

��� = � ���2�� � (2.1)

where �� and ��� are the upper and lower control limits respectively, ���2 is the

inverse of the normal cumulative distribution function for probability ��2 and � is the

probability that an in-control sample will plot outside these limits. If all the points

(samples) plot inside the control limits we claim that we have an in-control process. This

plot is a Phase II Shewhart chart for the mean.

However, in real world we usually do not know the values of � and �. Consequently,

we have to estimate them. Therefore, the control limits in such a case will not be

fixed numbers, but rather random variables. The control limits in this case for Phase I
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Shewhart chart for the mean are

�� = �+ ��� �

��� = � ��� �

where � and � are the estimates for the mean and the standard deviation, respectively

and � is a constant used to specify the width of the control limits usually taken to be

equal to 3. If a point plots above �� or below ��� we have an indication that this

point (sample) is from an out-of-control process. Let �1, �2, ..., �� be the sample means

from samples each with � observations. Then, an estimate for the mean is � = �, the

average of all the sample means. If the process is in-control this estimator is normally

distributed with mean � and variance �2�(��). For the standard deviation three different

estimators have been proposed. The first one is based on the range. Let �1� �2� ���� ��

denote the range for each of the � samples and � the average of these ranges. Then, a

control charts’ unbiased estimator is given by ���2. The estimated control limits for the

� chart are given by

�� = �+ ���(�2 �)

��� = � ���(�2 �) (2.2)

where �2 is the mean of the random variable ��� and is a function of the sample size

�. Details on the derivation of �2 along with its values for different sample sizes can be

found in textbooks, see e.g. Montgomery (2001).

A second version of the estimated control limits for the mean is based on a different

unbiased estimator for the standard deviation. Let �1� �2� ���� �� denote the standard

deviation for each of the � samples and
_

� = 1
�

�
�=1 �� their average. An unbiased
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estimator for � is ���4 (see e.g. Ryan(2000)) where

�4 =
2

� 1

1�2
Γ (��2)

Γ ((� 1)�2)

and Γ( ) stands for the gamma function, where the gamma function is defined as

Γ(�) =
∞

0

��−1�−���� � � 0.

The control limits will be

�� = �+ ���(�4 �)

��� = � ���(�4 �) (2.3)

A third version for such type of limits is based on  = 1
�

�
�=1 �

2
� , where ��4�� is

an unbiased estimator of � and

�4�� =
2Γ((�(� 1) + 1)�2)

�(� 1)Γ(�(� 1)�2
�

The control limits using this estimator will be

�� = �+ ��(�4�� �)

��� = � ��(�4�� �)

It can be proved for the three different unbiased estimators that � �� ��4��

� �� ���4 � �� ���2 (Derman and Ross (1995)). Therefore, a preferable estimator

for � is ��4��.

Yang and Hillier (1970) proposed a somewhat different Phase I control charts. The

control limits for the statistic plotted at time 	 are not functions of the 	�� sample. One

or more of the other � 1 samples are used to estimate �0 and �0. If �(�) and �(�) are

13



the estimators for the mean and standard deviation respectively when only the 	 sample

is removed the control limits will be

�� = �(�) + ��(�)� �

��� = �(�) ��(�)� �

Champ and Chou (2003) compared the performance of the two Phase I control charts

the one using the � samples and the other using � 1 samples and concluded that the

one using all samples gives better results.

The ARL for Shewhart charts is given by

 �� = 1�Pr(a point plots outside the control limits)� (2.4)

It has to be stressed though that this relationship holds in the case of known parameters.

If the parameters are unknown and as a result they have to be estimated a different

relationship holds. This matter is studied in detail in chapter 3.

Several authors have dealt with the Shewhart chart for the mean and have proposed

improvements or modifications. For instance see Champ and Woodall (1987), Reynolds

et al. (1988) and Quesenberry (1995a).

Assume that we have again a variable from a stable process that is normally dis-

tributed with mean � and standard deviation � comprising � samples of size � each.

We assume that � is known. In this process we want to keep the variability in-control.

Then, it can be proved that the mean and standard deviation of the range of a sample

from this process are �(�) = �2� and �!(�) = �3� where �2 and �3 are functions of

the sample size �. Computation of �2 and �3 and values for different sample sizes can be

found in textbooks, see e.g. Montgomery (2001). Then the Phase II control limits for
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the variability using the range will be

�� = �2� + ��3�

��� = �2� ��3� (2.5)

The value of � is selected in the same way as in the chart for the mean. The most

common value is 3. However, the selection in this case is actually approximating the

0�9973 probability limits for the mean when � = 0�0027.

The usual design of the R-chart involves control limits that have equal tail probabil-

ities (see, e.g. (2.5)). However, in such a case it is possible to have an interval (�1� �2)

with �1 " �2 and for each � in this interval  ��(�) �  ��(�0), where  ��(�0) is the

in control ARL. Such a chart is called a biased R chart. Champ (2001) showed how to

design an ARL unbiased R control chart.

Another way to compute Phase II control limits for the variability is through the

standard deviation. It can be proved that �(�) = �4� and �!(�) = � 1 �24. Then

the control limits will be

�� = �4 + 3 1 �24 �

��� = �4 3 1 �24 � (2.6)

Usually, we do not know the value of � and therefore we have to estimate it from past

data. As in the case of the mean let �1� �2� ���� �� denote the range for each of the �

samples and � the average of these ranges. An estimate based on the range as already

mentioned is

�	 =
�

�2
�

15



Then, the Phase I control limits are

�� = 1 +
3�3
�2

_

�

��� = 1
3�3
�2

_

�� (2.7)

A different estimate used is
_

� =
1

�

�

�=1

��

where � is the number of past samples used, �2� =
1

�−1
�

=1 �


_

��

2

is the unbiased

estimator of �2 and � is the sample size. However, we know that � is not an unbiased

estimator of �. It has been proved, as already mentioned, that an unbiased estimate of

� is
_

���4 and that the standard deviation of � equals � 1 �24. The upper and lower

control limits of the chart known as the Phase I � chart are

�� = 1 +
3

�4
1 �24

_

�

��� = 1
3

�4
1 �24

_

� (2.8)

Approaches making use of these limits are known as the three sigma approaches based

on the normal approximation proposed by Shewhart in the early thirties. However, it is

easy to prove that this approximation is not satisfactory since as is known

(� 1)�2

�2
�2

�−1 (2.9)

Although this approximation is not accurate, it is usually used as a first check (see e.g.

Ryan (2000), Klein (2000), Lowry, Champ and Woodall (1995)).

A modification of the control limits (2.6) and (2.8) based on property (2.9) uses

probability limits in place of the three sigma limits (see e.g. Ryan(2000)). If the value
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of the standard deviation � is known the Phase II control limits are

�� = �
#20�999
� 1

(2.10)

��� = �
#20�001
� 1

In these limits, if the process variability operates in-control, the probability that the

standard deviation of future subgroups will fall between them is 0�998, which is approx-

imately equal to the 0�9973, the probability assumed when using the 3 sigma ones. If

the true standard deviation is not known we use its unbiased estimate �̄��4. The Phase

I limits then become

�� =
�̄

�4

#20�999
� 1

(2.11)

��� =
�̄

�4

#20�001
� 1

�

Yang and Hillier (1970) proposed different Phase I control limits using the same

way of thinking as in the case of the mean by excluding sample 	 from the calculation.

Champ and Chou (2003) compared the performance of these different Phase I limits and

concluded that the standard limits and the ones proposed by Yang and Hillier can be

designed to be equivalent.

The ARL of the control charts for the variability of data in subgroups is given by

the relationship (2.4) as this relationship is valid for all Shewhart charts with known

parameters. More details on Shewhart charts for variability and related work can be

found in Lowry, Champ and Woodall (1995), Klein (2000) and Sim(2000).

Let��� 	 = 1� ��� � represent independent and identically distributed observations from

a $(�� �2) process. If the parameters � and �2 are known, the Phase II � chart control
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limits are

�� = �+ 3�

��� = � 3�

Usually, these parameters are not known and they have to be estimated. In this case,

the variability is usually controlled using moving ranges. Nevertheless, Nelson (1982),

Roes et al. (1993) and Rigdon et al. (1994) have recommended either against the use of

the moving range chart or its use together with the classical � chart. Moreover, Sullivan

and Woodall (1996a) showed that a moving range control chart does not contribute

significantly to the identification of out-of-control situations. For these reasons we do

not present it here. Therefore, the use of the � control chart for monitoring both the

process mean and standard deviation is recommended. The Phase I control limits of the

� control chart are

�� = �̄ + 3�

��� = �̄ 3�

where �̄ is an unbiased estimate of the mean of the process and � is an estimate of

the standard deviation � of the process. Usually, the estimate of the standard deviation

used is ����2 where �� denotes the average of the moving ranges and �2 is the usual

function of the sample size � used to make the estimator unbiased. However, Cryer

and Ryan (1990) showed that a preferable estimate of � is %��4 where �4 is defined

the same way as in the case of rational subgroups and % is the standard deviation of

the observations. Sullivan and Woodall (1996a) proposed a Phase I control chart for

independent observations that uses the log-likelihood function and is used to detect shifts

in both the mean and the variance. This chart is shown to have better performance in

comparison to the � chart or the combined � and �� chart. Moreover, it performs

well for detecting sustained shifts in the distribution but not that well for outliers.
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When an item is produced or purchased it is inspected in order to identify if it

satisfies a number of specifications. An item that does not satisfies those specifications

is called a defective or a non-conforming item. These defectives lead to rework or they

are characterized as scrap or second quality product. In any case we have a loss of

money or working time or both. In order to avoid such products, control charts for the

characteristics (attributes) have been developed (see, e.g. Woodall (1997), Ryan (2000)

and Montgomery (2001)).

Assume that we have a random sample of � units and we inspect them for possible

nonconforming items. The fraction nonconforming is defined as the ratio of the number

of nonconforming items in a population to the total number of items in that population.

Suppose the production is operating in a stable manner, such that the probability that

any unit will not conform to specifications is &, and that successive units are produced

independently. If � is the number of units of products that are nonconforming, then �

has a binomial distribution with parameters � and &, that is

' (� = �) =
�

�
&�(1 &)�−�, � = 0� 1� 2� ���� �

where �(�) = �& and � (�) = �&(1 &).

The sample fraction nonconforming is defined as the ratio of the number of noncon-

forming items in a sample to the total number of items in that sample that is

& =
�

�

where �(&) = & and � (&) = &(1 &)��.

If the true fraction nonconforming & in the production process is known or is a stan-

dard value specified by management, then the Phase II control limits for the & chart are
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defined as

�� = &+ 3
&(1 &)

�

��� = & 3
&(1 &)

�

where the charting statistic is &�, for sample 	.

If the true fraction nonconforming & is not known, then it must be estimated from

observed data. The usual procedure is to select � preliminary samples, each of size �.

Then the average of these � individual sample fractions nonconforming is

& =

�

�=1

��

��
=

�

�=1

&�

�

and the Phase I control limits are defined as

�� = &+ 3 &(1 &)��

��� = & 3 &(1 &)��

where the charting statistic is again &�, for sample 	.

For a constant sample size it is also possible to plot on a control chart the number of

nonconforming units, rather than the fraction nonconforming. This chart is called the �&

control chart. If the true fraction nonconforming & in the production process is known or

is a standard value specified by management, then the Phase II control limits are defined

as

�� = �&+ 3 �&(1 &)

��� = �& 3 �&(1 &)

where the charting statistic is �&�, for each sample.
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If the true fraction nonconforming & in the production process is not known, then the

average of the � preliminary individual sample fractions nonconforming & is used and

the Phase I control limits are defined as

�� = �&+ 3 �&(1 &)

��� = �& 3 �&(1 &)

where the charting statistic is �&�, for each sample. If we have a signal on a & chart

we will have also one in an �& chart because of the relation between the two charted

statistics. Therefore, we may say that these charts are equivalent for a constant sample

size.

Borror and Champ (2001) proposed Phase I charts for & and �& charts based on the

recommendation of Yang and Hillier (1970). Borror and Champ (2001) compared the

false alarm rate performance of the standard and the new charts and concluded that the

new chart has a higher false alarm rate. Additionally, the performance of the standard

Phase I charts is not satisfactory. Therefore the practitioner should use such charts

carefully, keeping in mind the possibility of larger number of false alarms than what

should be expected from the design of the charts.

If we count the number of defects or nonconformities in a sampling unit then we

can plot them in a control chart. This chart is used to control the total number of

non-conformities in a unit. In such a chart we usually assume that the number of non-

conformities in sample of constant size follows a Poisson distribution. If � is the number

of nonconformities and ��0 is the parameter of the Poisson distribution, then

' (�) =
�−���

�!
� � = 0� 1� 2� ���

If the true value of � in the production process is known or is a standard value specified
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by management, then the Phase II control limits are defined as

�� = �+ 3 �

��� = � 3 �

where the charting statistic is �� the number of nonconformities in sample 	.

If the true value of � in the production process is not known, then the Phase I control

limits are defined as

�� = �+ 3 �

��� = � 3 �

where � is the average number of nonconformities in a preliminary sample of inspection

units and it is used as an estimate of �. The charting statistic in this case is ��, the

number of nonconformities in sample 	, again.

If we want to develop a control chart for a sample of � sampling units or for a

sampling unit that is � times larger than the standard sampling unit, we may set up

a control chart based on the average number of nonconformities per inspection unit.

Specifically, let ( = ���, then since � is distributed as a Poisson random variable the

Phase II control limits for this chart are

�� = (+ 3
(

�

��� = ( 3
(

�

in the case that ( is known or is a standard value specified by management. If the true
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value of ( is not known then the Phase I control limits will be

�� = (+ 3
(

�

��� = ( 3
(

�

where ( is the average number of nonconformities per inspection unit from a preliminary

sample and it is used as an estimate of (.

If )� is the number of conforming items between the (	 1)�� and the 	�� noncon-

forming item from a stable process with the in-control probability of a nonconforming

item be &0 then this process is a sequence of independent Bernoulli trials with the same

probability &0. Therefore, )�+1 is a geometric random variable with parameter &0. Then,

the Phase II control limits for this chart are

�� =
ln (��2)

ln(1 &0)
1

��� =
ln (1 ��2)

ln(1 &0)

If &0 is unknown the Phase I control limits are

�� =
ln (��2)

ln(1 $��)
1

��� =
ln (1 ��2)

ln(1 $��)

where &0 = $��, $ is the number of nonconforming items in a total of � items sampled.

In all the above control limits we can not accept a negative value. For this reason if

the lower control limit is negative we set it equal to zero.
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CUSUM control charts were introduced by Page in 1954. They are used to identify

persistent causes in a variable instead of Shewhart charts. This ability is attributed to the

fact that they have a memory as they are based on successive sums of the observations

minus a constant. Generally, we can say that CUSUM charts are able to detect small to

moderate shifts whereas Shewhart charts are able to detect large shifts.

Let �1� �2� ����� be � independent and identically distributed observations drawn from

our production process and � is the process mean target. Then, we define as the Phase

II CUSUM control chart, the function

�� =
�

�=1

(�� �)

plotted against the observation number. In the case of subgrouped data instead of each

observation we have the corresponding sample mean.

A more usual way of calculating the CUSUM for an upward shift in mean is by the

formulas

�+0 = 0

�+� = ���(0� �+�−1 + (�� �) �)

where � is a constant called reference value. The CUSUM chart gives a signal if �+� � �

where � is a value we choose to give the desired in-control ARL called decision interval.

The corresponding CUSUM scheme for detecting downward shifts is

�−0 = 0

�−� = min(0� �−�−1 + (�� �) + �)

and it signals if �−� " �. There is a certain way to compute the values of � and �,
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which is related to the distribution of ��’s. Hawkins and Olwell’s (1998) textbook is an

excellent reference on this subject. We have to state here that in the case of standard

normal data with � = 3 and � = 0 we end up with the classic Shewhart � chart for the

mean. Moreover, in the case of subgrouped data we modify the preceding schemes and

in place of each observation �� we have the sample mean.

Koning and Does (2000) presented Phase I CUSUM control charts using recursive

residuals. They showed that their chart has a better performance than the Likelihood

Ratio chart of Sullivan and Woodall (1996a) and Q chart of Quesenberry (1995a).

In the following subsections for CUSUM charts we focus in the case of continuous dis-

tributed variables. The case of discrete distributed observations has been also examined

see e.g., Lucas (1985), Gan (1993a) and Hawkins and Olwell (1998).

Assume that �1� �2� �� are independent and identically distributed random variables

that are observed sequentially. Let �1� �2� ��� ��−1 have (in-control) distribution func-

tion *0 and ��� ��+1� �� have (out-of-control) distribution function *1 = *0. The two

distributions are known but the time of change � is assumed unknown.

Many schemes can detect such a change (e.g. Shewhart charts). These schemes are

classified by the expected time until the process signals while it remains in-control (false

alarm rate). Among all procedures with the same false alarm rates, the optimal procedure

is the one that detects changes quicker. Or we could say that among all procedures with

the same in-control expected number of samples until signal, the optimal procedure has

the smallest expected time until it signals a change when the process shifts to the out-

of-control state.

Moustakides (1986) proved that the CUSUM scheme was optimal in the above sense.

Specifically, among all tests with the same in-control expected number of samples until

signal, the CUSUM had the smallest out-of-control expected number of samples.

The optimality of the CUSUM is for detecting a shift to a single specific out-of-control
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distribution. The CUSUM that is optimal for detecting one particular shift is not optimal

for detecting a different shift. For a different shift a different CUSUM will be optimal.

However, while a CUSUM for detecting a shift of one standard deviation is optimal only

for this shift, it performs nearly as well as the optimal CUSUM for all shifts that are not

too far from one standard deviation.

Two different methods for the computation of the ARL have been developed; the

integral equation method and the Markov chain approach. Page (1954) used integral

equations for the computation of the ARL. Let the distribution function of a single score

� be * (�) and let �(�) be the ARL of the one sided case. �(0) stands for the ARL with

an initial value of zero. Then, for 0 � " �

�(�) = 1 + �(0)* ( �) +
�

0

+(� �)�(�)��

We may explain the above integral equation with the following description: the ex-

pected run length of a test which is now at � equals 1 (the next observation) plus the

probability that the next observation will return the CUSUM to zero multiplied by the

expected run length from � = 0 plus the integral over the probabilities that the CUSUM

lands somewhere between zero and � multiplied by the respective expected run lengths

from the new value of the CUSUM. Van Dobben de Bruyn (1968) gives a discussion on

the derivation of this equation. Additionally, Wetherill (1977) gave an almost identi-

cal relationship but from a somewhat different way of thinking. Others that have dealt

with the same problem are Ewan and Kemp (1960) and recently Champ, Rigdon and

Scharnagl (2001) that give a general method for obtaining integral equations used in the

evaluation of many control charts.

The Markov Chain approach begins by approximating the problem of obtaining the

average run length (ARL) and then obtains an exact solution to the approximate prob-
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lem. The integral equation approach begins with the exact problem and finds an approx-

imate solution to it. Champ and Rigdon (1991) compared integral and Markov chain

approaches. They propose the integral equation as a preferable method when an integral

equation can be found. On the other hand, there are situations, where only the Markov

chain approach seems appropriate.

Brook and Evans (1972) were the first to propose the new method for computing the

ARL based on a Markov chain. This method applies to both discrete and continuous

variables. In the case of continuous variables let � be the quality characteristic we

want in-control, which is continuously distributed. Consider the one-sided case where we

accumulate the deviations of � from a reference value � and this procedure stops if we

reach the upper decision boundary � or if the cumulative sum equals zero. A Markov

process with continuous state space can represent this scheme.

Suppose that the Markov chain has � + 1 states labeled �0� �1� ���� where � is the

absorbing state. The probability that the chain remains in the same state at the next

step should correspond to the case where the cumulative sum does not change in value

by more than a small amount say 0�5,, meaning that the next value of � does not differ

from the reference value � by more than 0�5,. The value of , determines the width of

the grouping interval that is used to discretize the probability distribution of �. This

value must be carefully chosen because properties like average run length and percentage

points are highly affected by the width of the decision interval. In order to avoid unwilling

behavior a further restriction is the following; the probability of a jump from �� to the

absorbing state � should be equal to the probability that the cumulative sum for (� �)

jumps beyond the point � from a position in (0� �) which corresponds approximately to

the state ��. Therefore

, = 2��(2� 1) (2.12)
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The transition probabilities for the Markov chain are for 	 = 0� 1� � � � � � 1 as follows

'�0 = &�(�� �0) = &�(� � 	, + 0�5,)

'�
 = &�(�� �
) = &�((- 	), 0�5, � � (- 	), + 0�5,)� 1 - � 1

'� = &�(�� �) = &�((� 	), 0�5, " � �)

Also, &�(�0 �) = &�(� � � �) for any , that satisfies relation (2.12). Let

&� = &�(�, 0�5, " � � �, + 0�5,) and *� = &�(� � �, + 0�5,) then the

transition probability matrix P has the following form

P =

*0 &1 &2 ��� &
 ��� &−1 1 *−1

*−1 &0 &1 ��� &
−1 ��� &−2 1 *−2
...

...
...

...
...

...

*−� &1−� &2−� ��� &
−� ��� &−1−� 1 *−1−�
...

...
...

...
...

...

*1− &2− &3− ��� &
−(−1) ��� &0 1 *0

0 0 0 ��� 0 ��� 0 1

�

A relation that holds is (I R)µ(�) = %Rµ(�)� %=2,3,. . . where � is the matrix

obtained from the transition probability matrix P by deleting the last row and column

(those referring to the absorbing state �), I is the identity matrix and µ(�) is the vector

of the %�� factorial moments for the random variables �0� �1� ���� �−1. For %=1 the

equation becomes (I R)µ = 1, where the vector 1 has each of its � elements equal

to unity. The first element of the vector µ gives the average run length for a CUSUM

chart starting from zero and in general the 	�� element gives the mean of the run-length

distribution when starting from state ��, 	=0,1,. . . ,�-1. We have to state here that

the above procedure, suitably modified (Brook and Evans (1972)), can be used for the

computation of the ARL of discrete distributed observations also.

The two different computations of the ARL presented are for a one-sided scheme. In
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the case that we have a two-sided scheme Van Dobben de Bruyn (1968) showed that

1

 ��
=

1

 ��+
+

1

 ��−
�

where  ��+ is the ARL of an upward scheme and  ��− is the ARL of a downward

scheme.

The evaluation of CUSUM charts is usually done by the computation of the ARL.

Two reasons for this are, firstly, that the computation of the run length distribution is

difficult in most situations (see Page (1954), Ewan and Kemp (1960), Brook and Evans

(1972), Woodall (1983,1984), Waldman (1986)) and secondly that the in-control run

length distribution is approximately geometric, therefore it can be characterized by the

ARL. On the contrary, the in-control run length distribution of a CUSUM chart is highly

skewed and accordingly conjectures on the ARL can be misleading because the form of

the run length distribution changes with a shift in the mean. Therefore the ARL is not

a sufficient measure for the performance of the chart. Barnard (1959) and Bissell (1969)

have criticized the use of the ARL only and they have proposed instead the simultaneous

use of percentage points.

On the other hand, the median run length (MRL) is a quantity that we can rely

on because it is more meaningful and more readily understood (see Gan (1994)). For

example when the out-of-control MRL is 50, this means that half of all the run lengths

are less than 50.

Lucas and Crosier (1982) extended the calculation of the average run length by using

a head start value �0 different than zero. The calculation of the ARL for several head

start values showed that for a moderate value the in-control ARL has a small percentage

decrease while the out-of-control ARL has a large percentage decrease. Therefore we

may design a FIR CUSUM, with an almost equivalent in-control ARL and a smaller

29



out-of-control ARL than a standard CUSUM, by increasing � (decision interval) slightly

to compensate for the small decrease in ARL caused by the head start.

Lucas and Crosier (1982) recommended a head-start of �0=��2. This recommenda-

tion is a result of the fact that a CUSUM scheme is a sequence of Wald tests (Page

(1954)) with null hypothesis that the mean is zero and alternative hypothesis that the

mean is 2�.

The ARL computation of one-sided schemes is easily done using the proposed pro-

cedures of section 2.4.2. However, in the case of a two-sided FIR CUSUM scheme the

computation is modified (Yashchin (1985)). Let .+ and .− denote the head starts

of an upward and a downward CUSUM scheme, respectively. Also, let  +(%) and  −(%)

denote the ARL of an upward and a downward CUSUM scheme with head starts % and

%, respectively. Then, the ARL of a two-sided FIR CUSUM is

 �� =
 +(.+) −(0) + −(.−) +(0)  +(0) −(0)

 +(0) + −(0)
�

This result holds if the following condition is satisfied

�+ + �− max .+ +.− min(�+� �− � �+ �− )

where �+� �− and �+� �− are the upward and downward reference values and decision

intervals, respectively. This condition ensures that if the upward CUSUM signals the

downward CUSUM will be at zero and vice-versa.

A method for keeping in-control the process dispersion was developed by Chang and

Gan (1995). Assume that the process mean is in-control and let %21� %
2
2� ��� be successive

sample variances observed from a process based on a sample of size �. The upper and
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lower CUSUM charts are obtained through the plotting of

�+� = ���(0� �
+
�−1 + /� �+� )

and

�−� = ���(0� �
−
�−1 + /� + �

−
� )

against 	 respectively, for 	 = 1� 2� � � �, where �+� � �
−
� are constants, /� = log(%

2
� ), �

+
0 = (

for 0 ( " �+ and �−0 = 0 for �− 0 " 0. The upper CUSUM chart is used to

detect increases in the variance and there is an out-of-control signal at the first 	 for

which �+� � �+. The lower CUSUM chart is used to detect decreases in the variance

and there is an out-of-control signal at the first 	 for which �−� " �−. In practice, we

usually have to estimate the in-control variance because it is not known and this is done

by taking samples from a process, which is assumed to be in-control.

The probability density function of log(%2� ), when the measures of the quality charac-

teristic are independent, identically and normally distributed, is

+(/) =
exp [�/ exp (/) �1]

Γ (�)1�
� " / "

where �=(� 1)�2, 1 = 2�2�(� 1) and Γ(�) is the gamma function. Let .(() be the

ARL function of an upper CUSUM chart given that �+0 = ( where 0 ( �+. Then,

an approach similar to Page (1954) for the computation of the ARL is the following

.(() = 1 +.(0) Pr log %2 �+� ( +
�+

0

+(�+ �+� ().(�)���

In practice, most of the processes are out-of-control at the beginning and a FIR CUSUM

is recommended for a faster detection of this situation. As we have already said Lucas

and Crosier (1982) have recommended using ��2 as the head start value for monitoring

normal means. The distribution of log(%2� ) is approximately normal, so �
+�2 and �−�2

are recommended here as head start values for the upper and lower CUSUM charts.
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In order to design a CUSUM chart we have to determine the values of � and �.

Chang and Gan (1995) provided tables for various values of sample sizes and for the

out-of-control standard deviation which we want to detect quickly.

A CUSUM chart based on a larger sample size will be more sensitive than a CUSUM

chart based on a smaller sample size for detecting changes in �. For the two-sided case,

the two one-sided CUSUM charts that are optimal for detecting a specific shift in either

direction can be run simultaneously so as to detect changes in standard deviation in both

directions.

The CUSUM chart described here is based on the assumption that the measures

of the quality characteristic are independent, identically and normally distributed. For

non-normally distributed observations the ARL values are different and especially for

distributions with a tail larger than the normal one, the ARL tends to be small, so the

false alarm rate is higher. When observations are positively serially correlated, then the

CUSUM is less effective in detecting increases in �, because the sample variance decreases

as the serial correlation increases.

For other CUSUM charts developed for monitoring process variance see Yashchin

(1994) and Srivastava (1997).

The EWMA chart was introduced by Roberts (1959) and it is used as the CUSUM

chart to detect persistent shifts in a variable. Its ability is to signal faster than the

Shewhart charts for small and moderate shifts but not that fast for large shifts. Generally,

we can say that its performance is similar to the performance of the CUSUM chart.

In the following subsections we present the EWMA chart for continuous variables.

The case of discrete variables has been studied by Gan (1990), Borror et al. (1998),

Quesenberry (1995b) and Quesenberry (1995c).
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Let the mean � and standard deviation � of a process to be known. The EWMA

chart for individual observations is defined as

�� = 2�� + (1 2)��−1� �0 = �

where �� is the observation at time 	 = 1� 2� ���, 2 is a smoothing parameter that takes

values between 0 and 1 and �0 is the initial value. When the value of 2 is close to 0, the

EWMA chart can detect small to moderate shifts in the process mean, when 2 is close

to unity the EWMA can detect large shifts in the process mean and when 2 = 1 it is

actually the � chart. As a starting value, instead of the in-control process mean, we can

use the target value. The control limits of this chart are

�� = �+ �
�

�

2

2 2
1 (1 2)2�

��� = � �
�

�

2

2 2
1 (1 2)2� � (2.13)

where � is a constant used to specify the width of the control limits, � is the mean of

the process and �√
�

�
2−� 1 (1 2)2� the standard deviation of �� when the process

is in-control. In case the EWMA chart is used for some time, instead of control limits

(2.13), we may use their limiting values

�� = �+ �
�

�

2

2 2

��� = � �
�

�

2

2 2
(2.14)

since lim
�→∞

�2

�
�
2−� 1 (1 2)2� = ��2

(2−�)� (see e.g., Lucas and Saccucci (1990)). In

this case, �√
�

2�(2 2) is the asymptotic standard deviation of ��. In the case of sub-
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grouped data instead of a single observation we have the sample mean of the observations

at time 	. The control limits are correspondingly modified.

The main features of the EWMA chart are the same as the ones for the CUSUM

except of the optimality. The computation of its run length distribution and the ARL

can be done by the exact way using integral equations (Crowder(1987)). The ARL �(()

of a two-sided EWMA chart for the mean given that the EWMA starts at ( is computed

through the relation

�(() = 1 +
1

2

�

−�
+

/ (1 2)(

2
�(/)�/

where /�’s are assumed to be independent, identically distributed observations with prob-

ability density function +( ), � is the upper control limit and � the lower control

limit. This can be explained as follows; if for the first observation /1, we have that

(1 2() + 2/1 � � then we have a signal. On the other hand, if this relation does not

hold, the run length continues to move from (1 2()+2/1 and �((1 2()+2/1) stands

for the additional run length.

The approximation method of the Markov chain is the other alternative (Lucas and

Saccucci (1990)). The ARL in this case is computed by

 �� = (I R)−1 1�

where I is the identity matrix, 1 is a vector of unities and R is a submatrix of the

transition probability matrix P, where

P =
R (I R)1

0� 1
�

If &
� is the probability that the control statistic goes from state - to state � then

&
� = Pr 2
−1 (�� 3) (1 2)�
 " )� 2−1 (�� + 3) (1 2)�
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where �� is the midpoint of the ��� interval, - = �� ����� and� is the number of states

we will use. The larger the number of states the more accurate the computation will be.

The median run length and the fast initial response are properties that have been

implemented and in the context of EWMA charts (see Lucas and Saccucci (1990) and

Gan (1993b)). For further discussion of the EWMA charts and other modifications see

Robinson and Ho (1978), Hunter (1986), Saccucci and Lucas (1990), Domangue and

Patch (1991), Ingolfson and Sachs (1993), Steiner (1999).

Several publications dealing with the subject of keeping in-control the process variance

using an EWMA chart have appeared in the literature like Wortham and Ringer (1971),

Wortham (1972), Sweet (1986), Ng and Case (1989), Domangue and Patch (1991), Crow-

der and Hamilton (1992), Hamilton and Crowder (1992), MacGregor and Harris (1993),

Acosta-Mejia and Pignatiello (2000). In this subsection we present schemes for sample

size larger than unity. The schemes for � = 1 are investigated in Chapter 4.

The EWMA chart of squared deviations from target (EWMAS) was proposed by

Wortham and Ringer (1971) for detecting a shift in the process standard deviation. The

statistic of this chart is given by

�� = 2(�� �0)
2 + (1 2)��−1� �0 = �20�

where 2 is a smoothing parameter that takes values between 0 and 1 and �0 is the initial

estimated value of the mean squared error. It can be proved (MacGregor and Harris

(1993)) that under normality the quantity ����2 is approximately distributed as #2(4)�4

where the degrees of freedom 4 depend on the parameter 2, the correlation of the ��’s

and the degrees of freedom associated with the initial value. If we assume that the

process mean is on target and the variance is �20 then the control limits of �� are the ��2

and 1 ��2 percentiles of �20#
2(4)�4 distribution. In case of independent and normally
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distributed observations we may plot �� and the corresponding control limits are

�� = �0
#21−��2(4)

4

��� = �0
#2��2(4)

4

However, the above statistic has the property to respond both to changes in mean

and in variance. Therefore, a statistic that would plot out of the control limits only in

the case of variance shifts is desirable. Sweet (1986) proposed the use of an estimate

of the process mean in each step in time. Specifically, let �� denote an estimate of the

process mean at time 	. Then

�� = 2(�� ��)
2 + (1 2)��−1� �0 = �20�

A usually used estimate for the mean is the EWMA statistic for the mean (��). MacGre-

gor and Harris (1993) computed control limits for this statistic which is usually addressed

as the Exponentially Weighted Moving Variance (EWMV).

Crowder and Hamilton (1992) proposed a different control chart based on ln �2� .

The scheme is

�� = max (1 2)��−1 + 2/�� ln �20 �

where �0 = ln (�20), 2 is the usual constant taking values between 0 and 1 and /� = ln �2� .

This statistic can be used to identify only upward shifts in the variance. The UCL of

this chart in case of independent observations is given by

�� = 5
2

2 2

2

� 1
+

2

(� 1)2
+

4

3 (� 1)3
16

15 (� 1)5
�

where 5 is a constant chosen together with 2 so as to achieve the desired ARL. If �(()
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is the ARL of this chart with ( the starting value then

�(() = 1 + �(0)*
(1 2)(

2
+
1

2

���

0

+
/ (1 2)(

2
�(/)�/�

where * (�) and +(�) are the cumulative distribution function and the probability distri-

bution function of the log-gamma distribution respectively.

Multivariate Shewhart Control Charts are analogous to the univariate ones but they

involve in the computations several variables instead of one. The Phase I and II charts

discussion does not change in this case. Sparks (1992), Wierda (1994), Lowry and Mont-

gomery (1995), Fuchs and Kenett (1998), Ryan (2000) and other statisticians and engi-

neers agree with the definition of the Phases given in Section 2.2. However, Alt (1985)

gives a somewhat different definition for the two distinct phases of control charting prac-

tice. In the following the definition of Section 2.2 is followed.

A crucial matter in Multivariate Shewhart Control Charts is the sample size � of each

rational subgroup. As Lowry and Montgomery (1995) suggest, the appropriate use of a

test statistic (�2 or 6 2) can be broken into four categories: 1) Phase I and � = 1, working

with individual observations; 2) Phase I and � � 1, working with rational subgroups;

3) Phase II and � = 1, working with individual observations; 4) Phase II and � � 1,

working with rational subgroups.

Mason and Young (2002) recently published a textbook for the implementation of

multivariate statistical process control in the case of Shewhart charts that discusses in

detail several subjects.
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� � 1

Assume that the vector x follows a &-dimensional normal distribution, denoted as

$�(µ0�Σ0), and that there are � samples of size � � 1 available from the process. A

control chart can be based on the sequence of the following statistic

!2
� = �(x� ϑ0)

Z−10 (x� ϑ0)�

where x� is the vector of the sample means of the 	�� rational subgroup, ϑ0 and Z0 are

the appropriate vector of means and the appropriate variance-covariance matrix in either

Phase I or Phase II, respectively. The superscript � is used to define the transpose of

a matrix. The !2
� statistic represents the Mahalanobis distance of any point from the

target ϑ0. Thus, if the value of the test statistic !2
� plots above the control limit (��),

the chart signals a potential out-of-control process. Generally, control charts have both

upper (��) and lower control limits (��). However, in this case only an upper control

limit is meaningful, because extreme values of the !2
� statistic correspond to a point far

away from the target ϑ0, whereas small or zero values of the !2
� statistic correspond to

points close to the target ϑ0.

If ϑ0 = x0, Z0 = S, � � 1 and x� is the mean of the 	�� observation then the

!2
� ��0(&��� �) statistic follows an * distribution with & and (�� � &+1) degrees of

freedom. Here �0(&��� �) = [&(� 1)(� 1)] (�� � &+ 1)−1, the parameter x is

the overall sample mean vector and S is the pooled sample variance-covariance matrix.

Consequently, a multivariate Shewhart control chart for the process mean, with unknown

parameters, has the following control limit

�� = �0(&��� �)*1−������−�−�+1�

This control chart is called a Phase I 6 2-chart. Wemust note that, for a Phase I 6 2-chart

the statement “if the process is in-control the probability of at least one of the !2
� ’s being

outside the control limits is �” does not hold. It does not hold because in this Phase the
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!2
� ’s are not independent (this is valid only for 	 = 1). In practical problems 6

2-chart

is typically recommended for the preliminary analysis of multivariate observations in

process monitoring applications. Nedumaran and Pignatiello (2000) consider the issue of

constructing retrospective 6 2 control chart limits so as to control the overall probability

of a false alarm at a specified value. Furthermore, Mason et. al. (2001) use the 6 2-chart

for monitoring batch processes in both Phase I and Phase II operations.

If ϑ0 = x0, Z0 = S, � � 1 and x� is the mean of a future observation then the

!2
� ��1(&��� �) statistic follows an * Distribution with & and (�� � &+ 1) degrees

of freedom, where �1(&��� �) = [&(�+ 1)(� 1)] (�� � &+ 1)−1. Thus, a multi-

variate Shewhart control chart for the process mean, with unknown parameters, has the

following control limit

�� = �1(&��� �)*1−������−�−�+1�

This control chart is called a Phase II 6 2-Chart.

If ϑ0 = µ0, Z0 = Σ0, � � 1 and x� is the mean of the 	�� observation then the !2
�

statistic follows a �2-distribution with & degrees of freedom. Therefore, a multivariate

Shewhart control chart for the process mean, with known mean vector µ0 and known

variance-covariance matrix Σ0 has the upper control limit �� = �2
��1−�. This control

chart is called a Phase II �2-Chart.

The in-control  ��0 of the multivariate Shewhart chart, when µ0 and Σ0 are known,

can be calculated as  ��0 = 1�� where � is the probability that !2
� exceeds ��. Fur-

thermore, the out-of-control  ��1 of the multivariate Shewhart chart depends on the

mean vector and variance-covariance matrix only through the noncentrality parameter

22(µ1),

22(µ1) = �(µ1 µ0)
Σ−10 (µ1 µ0) = �δ

Σ−10 δ�

where µ1 = µ0 + δ is a specific out-of-control mean vector. Hence, it is possible to

consider the  ��1 as a function of 2(µ1), the square root of 2
2(µ1), and construct an

 ��1 curve by using the equation  ��1 = 1� (1 1) � where 1 is the probability of the
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event “Procedure fails to diagnose an out-of-control situation”. We have to note that

the result that the ARL depends only on the noncentrality parameter is based on the

assumptions that Σ0 is the known variance-covariance matrix and that random sampling

is being done independently from a multivariate normal distribution.

The theory presented up to now considers the case of a pre-defined and fixed sample

of size �. Jolayemi (1995) presented a power function model for determining sample sizes

for the operation of a multivariate process control chart. Moreover, Aparisi (1996), gives

a procedure for the construction of a control chart with adaptive sample sizes.

� = 1

For charts constructed using individual observations (� = 1), the test statistic for the

	�� individual observation has the form

!2
� = (x� ϑ0)

Z−10 (x� ϑ0) �

where x� is the 	�� observation, 	 = 1� 2� ����� following $�(µ0�Σ0), ϑ0 and Z0 are the

appropriate vector of means and the variance-covariance matrix in either Phase I or Phase

II, respectively.

If ϑ0 = x�, Z0 = S� and x� is the 	�� individual observation then the !2
� ��0(�)

statistic follows a Beta distribution with &�2 and (� & 1) degrees of freedom, where

�0(�) = (� 1)2�−1. Thus, a multivariate Shewhart control chart for the process

mean, with unknown parameters, has the following control limit (Tracy et al. (1992))

�� = �0(�)71−��2���2�(�−�−1)�2�

where x� is the overall sample mean and S� is the sample variance-covariance matrix.

This control chart is called a Phase I 6 2-Chart. Alternative estimators of the variance-

covariance matrix has been proposed by Sullivan and Woodall (1996b) and Chou et al.

(1999).
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If ϑ0 = x�, Z0 = S� and x� is a future individual observation then the !2
� ��1(�� &)

statistic follows an * distribution with & and (� &) degrees of freedom, where �1(�� &) =

&(�+ 1)(� 1) [�(� &)]−1. Therefore, a multivariate Shewhart control chart for the

process mean, with unknown parameters, has the following control limits (Tracy et al.

(1992))

�� = �1(�� &)*1−�����−��

This control chart is called a Phase II 6 2-Chart.

If ϑ0 = µ0, Z0 = Σ0 and x� is the 	�� observation then the !2
� statistic follows a

�2-distribution with & degrees of freedom (Seber (1984)). Consequently, a multivariate

Shewhart control chart for the process mean, with known mean vector µ0 and known

variance-covariance matrix Σ0� has upper control limit �� = �
2
��1−�. This control chart

is called a Phase II �2-Chart.

In the following, multivariate control charts for controlling process dispersion are pre-

sented. In the previous two subsections, it was assumed that process dispersion remained

constant and equal to Σ. This assumption, is generally not true, and must be validated

in practice. Process variability is summarized in the & & variance-covariance matrix

Σ which contains & (&+ 1)�2 parameters. There are two single-number quantities for

measuring the overall variability of a set of multivariate data. The first one is the deter-

minant of the variance-covariance matrix, S , which is called the generalized variance.

The square root of this quantity is proportional to the area or volume generated by a set

of data. The second one is the trace of the variance-covariance matrix, ��S, the sum of the

variances of the variables. In this subsection, two different control charts for the process

dispersion are presented since different statistics can be used to describe variability.

Assume that the vector x follows a $�(µ0�Σ0), and that there are � samples of size

� � 1 available from the process. The first multivariate chart for the process dispersion
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can be based on the sequence of the following statistic

8� = &�+ &� ln� � ln A� Σ0
−1 + ����� Σ−10 A�

for the 	�� sample, 	 = 1� 2� �����, where A� = (� 1)S�. The 8� statistic follows an

asymptotic �2-distribution with & (&+1)�2 degrees of freedom. Hence, a multivariate

Shewhart control chart for process dispersion, with known mean vector µ0 and known

variance-covariance matrix Σ0 has the upper control limit �� = �
2
�(�+1)�2�1−�. Therefore,

if the value of the test statistic 8� plots above ��, the chart signals a potential out-of-

control process. This control chart is called a Phase II 8 chart.

The second chart is based on the sample generalized variance S , where S is the & &

sample variance-covariance matrix. One approach in developing an S -Chart is to utilize

its distributional properties. Alt (1985) and Alt and Smith (1988) state that if there are

two quality characteristics, then

2(� 1) S 1�2 Σ0
−1�2 is distributed as a �2

2�−4�

Thus, the control limits for an S -Chart are

�� = Σ0 �2
2�−4�1−��2

2
[2(� 1)]−2

�� = Σ0 �2
2�−4���2

2
[2(� 1)]−2 �

where �� is the upper control limit and �� is the lower control limit.

In a recent paper by Aparisi et al. (2001), the distribution of the S -Chart is studied

and suitable control limits are obtained for the case when there are more than two

variables. Aparisi et al. (2001) propose the design of the S Chart with adaptive sample

size to control process defined by two quality characteristics. Alt (1985) proposes a second

approach in developing an S -Chart by using only the first two moments of S and the
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property that most of the probability distribution of S is contained in the interval

� [ S ] 3 � [ S ]�

Additionally, Alt and Smith (1988) propose a modification, the S 1�2 Chart. Further-

more, Alt (1985) gives a proper unbiased estimator for Σ0 , in order to define a Phase I

control chart for controlling the process dispersion.

Although S is a widely used measure of multivariate variability, it is a relative

simplistic scalar representation of a complex multivariate structure. Therefore, it can be

misleading in some cases. Lowry and Montgomery (1995) present three sample covariance

matrices for bivariate data that all have the same generalized variance and yet have

distinctly different correlations. As a result, it is often desirable to provide more than

the single number S as a summary of S. The use of univariate dispersion charts as

supplementary to a control chart for S is proposed by Alt (1985).

Patel (1973) was the first to deal with methods of quality control, when the &-

dimensional observations are coming from a multivariate binomial or multivariate Poisson

population. Specifically, Patel proposed a �2 chart using an approximation to normal-

ity. Lu et al. (1998) developed a multivariate attribute control chart, called the MNP

chart. The name of this chart stems from the fact that it is a straightforward extension

of the univariate �& chart. Let p = (&1� &2� ���� &�) be the fraction nonconforming vec-

tor, P0 = [3�
]�×� the correlation matrix and c = (�1� �2� ���� ��) the vector of counts of

nonconforming units. Define

� =

�

�=1

��

&�
�

which is the weighted sum of the nonconforming units of all the quality characteristics in

the sample. Since the nonconformance of a quality characteristic in one dimension may

be more serious than in another dimension we want to take into account that information
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in the calculations. Montgomery (2001) suggested a statistic that uses this information.

Let d = (�1� �2� ���� ��) denote the vector of the numbers of demerits, which indicates

the severity of nonconformance in quality characteristics. Then the above statistic � can

be extended as follows

�� =

�

�=1

����

&�
�

For �� Lu et al. (1998) proposed the following multivariate attribute chart

�� = �

�


=1

�
 &
 + 3 �

�


=1

�2
(1 &
) + 2

�

��


(���
3�
 (1 &�)(1 &
))

��� = �

�


=1

�
 &
 3 �

�


=1

�2
(1 &
) + 2

�

��


(���
3�
 (1 &�)(1 &
)) �

Given the values of the parameters, the control limits can be computed and the MNP

chart can then be established using the above equation. If the real values are unknown,

then they must be estimated. Furthermore, Lu et al. (1998) introduced a formula that

can be used to calculate the appropriate sample size � of each rational subgroup and

gave a procedure for the interpretation of an out-of-control signal.

Jolayemi (1999) proposed a multivariate attribute control chart (MACC), which is

based on an approximation of the convolution of independent binomial variables and on

an extension of the univariate �& chart. When a process is monitored with respect to

many independent attributes �1� �2� ���� ��, each of which follows a binomial distribu-

tion, the distribution of the sum or the convolution of the number of defective items found

in a sample of size � from the process, with respect to all � attributes, is well approxi-

mated by a binomial distribution with parameters �� and &0 (the mean of &1� &2� ���� &�).

Therefore, instead of plotting� different �& charts we use a single one using the preceding
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approximation. The control limits of this chart are

�� = ��&0 + � ��&0(1 &0)

��� = ��&0 � ��&0(1 &0)�

where � (usually � = 3) is the constant that determines the width of the control limits

and &0�, 	= 1, 2,...,� is the expected fraction defective produced with respect to attribute

�� when the process is in-control.

Therefore, a corrective action will be taken whenever the sum of the numbers of

defective items found in a sample of size �, with respect to & attributes, exceeds an

acceptance number ��, where �� is the largest integer less than or equal to the upper limit.

The acceptance number �� and the sample size � are given by the following equations

��

�=0

(��� ) &�1(1 &1)
��−� = 1

��

�=0

(��� ) &�0(1 &0)
��−� = 1 ��

where &1 is the mean of &1�, for 	 = 1� 2� ���� &, &1� is the expected fraction defective

produced with respect to attribute �� when the process is out-of-control. The design of

the MACC presupposes to solve the above equations with specified � and 1 values, to

find the proper acceptance number �� and the sample size �. Finally, Jolayemi (1999)

gives a proper statistical procedure for the interpretation of an out-of-control signal.

Multivariate Shewhart control charts use the information only from the current sam-

ple and they are relative insensitive to small and moderate shifts in the mean vector.

Multivariate Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average

(EWMA) control charts are developed to overcome this problem.
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The multivariate CUSUM and EWMA charts presented in the following subsections

are Phase II control charts. Sullivan andWoodall (1998), recommend the use of multivari-

ate CUSUM and EWMA charts for the preliminary analysis of multivariate observations.

The multivariate CUSUM control charts are distinguished in two major categories.

In the first case, the direction of the shift (or shifts) is considered to be known whereas in

the second the direction of the shift is considered to be unknown (directionally invariant

schemes).

We first present the CUSUM control charts for which we assume that the direction of

the shift (or shifts) is known. Woodall and Ncube (1985) described how a &-dimensional

multivariate normal process, can be monitored by using & two or one-sided univariate

CUSUM charts for the & original variables or using & two or one sided univariate CUSUM

charts for the & principal components. This multiple univariate CUSUM scheme is called

the MCUSUM. The MCUSUM gives an out-of-control signal whenever any of the univari-

ate CUSUM charts gives an out-of-control signal. The �� performance in a multivariate

process, is studied in the cases of independent and dependent quality characteristics.

Healy (1987) uses the fact that CUSUM charts can be viewed as a series of sequential

probability ratio tests, in order to develop a multivariate CUSUM chart. Let x� be the

	�� observation, which comes from a $�(µ0�Σ0) with an in-control & 1 mean vector µ0

and a known & & common variance-covariance matrix Σ0. Denote µ1 an out-of-control

& 1 vector of means. The CUSUM for detecting a shift in µ0 towards µ1 may be written

as

91� = max 91�−1 + a
(x� µ0) 0�52(µ1) � 0 �

where 2(µ1) is the square root of the noncentrality parameter and a
 =  �2(µ1) and

 = (µ1 µ0)
Σ−10 . This CUSUM scheme signals when 91� .. For detecting a shift

in the mean of a multivariate normal random variable, the CUSUM procedure reduces to
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a univariate normal procedure. That is, all the available theory for calculating  ��, .,

910 for a univariate normal CUSUM can also be used for multivariate normal CUSUM.

A similar procedure is proposed for controlling the process dispersion. The CUSUM

for detecting a change in the variance-covariance matrix may be written as

92� = max 92� +!
2
� 5 � 0 �

where Σ1 = �Σ0 (� is a real constant), 5 = & log� (��(� 1)) and

!2
� = (x� µ0)

Σ−10 (x� µ0) �

This CUSUM scheme signals when 92� .. We could not find in the literature any

proposal for an analogous charting procedure in the case that the mean vector and the

variance-covariance matrix have to be estimated.

Hawkins (1991) introduced CUSUMs for regression adjusted variables based on the

idea that the most common situation in practice is that departures from control have

some known structure. In particular, it is assumed that the mean shifts with magnitude

3 in only one variable.

Consider the multiple regression of �
, the -�� variable of x on all other variables

of x. Let �
 be the regression residual when the -�� variable is regressed on all other

variables, rescaled to unit variance. This may be used to test the hypothesis that there

is not a shift in the �
 against the alternative that there is. The regression residual �
 is

given by

Z = [�	�:(Σ−1)]−1�2Σ−1(x µ0)

whose null distribution is $ (0� 1) � Hawkins (1991, 1993) proposes to chart each �
 using

a CUSUM procedure because in general it is not known which of the & variables is out-of-

control. For studying the & individual charts simultaneously, Hawkins (1991) proposed
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the following control charts

��� = max(�+��
� �−��
) and �$; =
�


=1

(�+��
 + �
−
��
)

2�

where

�+��
 = max 0� �+�−1�
 + ���
 � and �−��
 = min 0� �−�−1�
 + ���
 + �

and �+0�
 = �
−
0�
 	 = 1� 2� ������ ��� is the MCUSUM statistic introduced byWoodall and

Ncube (1985) applied to the CUSUM for Z. �$; is the squared Euclidean norm of the

resultant vectors of the CUSUM for upward and downward shifts in mean. The CUSUMs

�+� �− test for shifts in location in the upward and downward directions, respectively.

The plot of these CUSUMs on a common chart gives a powerful CUSUM control chart

for location. An out-of-control signal occurs when any of these four CUSUMs exceeds the

decision interval �. The values of � and � are selected as in any other CUSUM because

this chart consists of separate random variables each following the $ (0� 1) distribution.

An out-of-control signal is indicated when ��� and �$; exceed a threshold value set

to fix the in-control  ��. Hauck et al. (1999) applied multivariate statistical process

monitoring and diagnosis with grouped regression-adjusted variables.

In the sequel, we present the directionally invariant CUSUM schemes. Crosier (1988)

proposes two multivariate CUSUM schemes. The first CUSUM proposed by Crosier

(1988) is a CUSUM of the scalars !�, the square root of !2
� statistic, and is given by

93� = max 93�−1 +!� 5 � 0

where 930 0 and 5 0. This scheme signals when 93� ., which is determined

using the Markov chain approach. Crosier (1988) notes that a search for the optimal 5

produced a sequence that closely resemble the square root of the number of variables.
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A similar CUSUM is proposed by Pignatiello and Runger (1990) defined as

94� = max 0� 9
4
�−1 +!

2
� �

with 940 = 0, and � chosen to be 0�52
2(µ1) + &, where & is the number of the variables.

The process is out-of-control if 94� exceeds an upper control limit ., which is determined

using the Markov chain approach.

Crosier (1988) and Pignatiello and Runger (1990) found that ordinary one sided

univariate CUSUMs based on successive values of !2
� or !� statistic, respectively, do not

have good ARL properties.

The second CUSUM proposed by Crosier (1988) is a CUSUM of vectors. A vector-

valued scheme can be derived by replacing the scalar quantities of a univariate CUSUM

scheme by vectors and is given by

95� = g�Σ
−1
0 g�

1�2
�

where

g� =
(g�−1 + x� µ0)(1 5�−1� ) if �� � 5

0 otherwise

and

�� = (g�−1 + x� µ0)
Σ−10 (g�−1 + x� µ0)

1�2
�

This scheme signals when 95� � ., where . is chosen to provide a predefined in-control

 ��, using simulation. Because of the fact that the  �� performance of this chart

depends on the noncentrality parameter, Crosier (1988) recommends that 5 = 2(µ1)�2

and g0 = 0. Both CUSUMs, as proposed by Crosier (1988) allow the use of recent

enhancements in CUSUM schemes. Among the CUSUM schemes proposed by Crosier

(1988) the vector-valued scheme has a better ARL performance than the scalar scheme.

The second CUSUM proposed by Pignatiello and Runger (1990) can be constructed
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by defining 96� as

96� = max C
�Σ

−1
0 C�

1�2
���� 0 �

where 960 = 0, � is chosen to be 0�52(µ1), µ1 is a specified out-of-control mean, C� equals

C� =
�

�=�−��+1

(x� µ0)

and �� is the number of subgroups since the most recent renewal (i.e. zero value) of the

CUSUM chart, formally defined as

�� =
��−1 + 1� if 96�−1 � 0

1� otherwise
�

This chart operates by plotting 96� on a control chart with an upper control limit .

which is again computed through simulation. If 96� exceeds . then the process is out-

of-control. Pignatiello and Runger (1990), proved that the  �� performance of the 96�

chart depends only on the square root of the noncentrality parameter and it is better in

relation to 95� .

Ngai and Zhang (2001) gave a natural multivariate extension of the two-sided cumu-

lative sum chart for controlling the process mean. Additionally, Chan and Zhang (2001)

propose cumulative sum charts for controlling the covariance matrix.

Let x� be the 	�� &-dimensional observation. Also, assume that x� follows a$�(µ0�Σ0)

with a known variance-covariance matrix Σ and a known &-dimensional mean vector µ0.

A multivariate EWMA control chart is proposed by Lowry et al. (1992) as follows

z� = R(x� µ0) + (I R) z�−1 =
�


=1

R (I R)�−
 (x
 µ0)� 	 = 1� 2� 3� ����
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where R = �	�:(�1� �2� ���� ��), 0 �� 1 for � = 1� 2� 3� ���� &, and I is the identity

matrix. If there is no a-priori reason to weight past observations differently for the &

quality characteristics being monitored, then �1 = �2 = ��� = �� = �. The initial value

z0 is usually obtained equal to the in-control mean vector of the process. It is obvious

that if R = I then the multivariate EWMA control chart is equivalent to the 6 2-Chart.

The multivariate EWMA chart gives an out-of-control signal if z�Σ
−1
z�
z� � � where Σz� is

the variance-covariance matrix of z�. The value � is calculated via simulation to achieve

a specified in-control  ��. The  �� performance of the multivariate EWMA control

chart depends only on the noncentrality parameter. This means that the multivariate

EWMA has the property of directional invariance. The variance-covariance matrix of z�

is calculated by the following formula

Σz� =
�


=1

� �� R (I R)�−
 (x
 µ0) =
�


=1

R (I R)�−
 Σ (I R)�−
R

or in case that �1 = �2 = ��� = �� = �

Σz� = 1 (1 �)2� �� (2 �)Σ�

An approximation of the variance-covariance matrix Σz� when 	 approaches infinity, is

the following

Σz� =
�

2 �
Σ�

However, the use of the exact variance-covariance matrix of the multivariate EWMA,

leads to a natural fast initial response for the multivariate EWMA chart.

In a univariate EWMA chart if the plotted statistic is on one side of the center line

and a shift occurs on the other side the result is that the EWMA chart will need more

observations until it signals. Such a problem is called inertia problem. Inertia problem

may occur with the multivariate EWMA chart and the simultaneous use of a Shewhart

type chart is proposed.
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Lowry et al. (1992) studied the  �� of the multivariate EWMA. The  �� perfor-

mance of the multivariate EWMA procedure depends only on µ0 and Σ0 through the

value of the noncentrality parameter. Since, the multivariate EWMA, the MCUSUM#1

and the vector CUSUM are all directionally invariant, these three charts can be compared

to each other and to Hotelling’s (1947) 6 2-Chart. The comparison of these charts shows

that the  �� performance of the multivariate EWMA is at least as good as those of

vector-valued CUSUM and MCUSUM#1.

Rigdon (1995a, 1995b) gives an integral and a double integral equation for the calcu-

lation of in-control and out-of-control ARLs respectively. Moreover, Bodden and Rigdon

(1999) developed a computer program for approximating the in-control  �� of the mul-

tivariate EWMA chart. Runger and Prabhu (1996) use a Markov chain approximation

to determine the run length performance of the multivariate EWMA chart. This kind of

analysis, can be applied whenever the multivariate control statistic can be modeled as a

Markov chain and has the property of directional invariance. In addition, Prabhu and

Runger (1997) provide recommendations for the selection of parameters for a multivari-

ate EWMA chart. Molnau et. al. (2001) present a program that calculates the ARL

for the multivariate EWMA when the values of the shift in the mean vector, the control

limit and the smoothing parameter are known.

Kramer and Schmid (1997), proposed a generalization of the multivariate EWMA

control scheme of Lowry et al. (1992) for multivariate time dependent observations. Sulli-

van andWoodall (1998) recommended the use of multivariate EWMA for the preliminary

analysis of multivariate observations. Fasso (1999) developed a one-sided multivariate

EWMA control chart, based on the restricted Maximum Likelihood Estimator.

Yumin (1996) proposed the construction of a multivariate EWMA using the principal

components of the original variables. Runger et al. (1999) show how the shift detection

capability of the multivariate EWMA can be significantly improved by transforming

the original process variables to a lower-dimensional subspace through the use of the 

transformation. The  transformation is similar to principal components transformation.
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Margavio and Conerly (1995) developed two alternatives for the multivariate EWMA

chart. The first of these alternatives is an arithmetic multivariate moving average while

the second alternative is a truncated version of the multivariate EWMA.
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