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APPENDIX 
 

 

 

PART 1 
A. Generalized Inverse 
Definition 1: Let A be an nm×  matrix. Then a matrix −A : mn×  is said to be a 

generalized inverse of A if  

AAAA =−  

holds (see Rao and Toutenburg (1999), p.372). 

 

A generalized inverse always exists although it is not unique in general. 

 

Definition 2: (Moore-Penrose) A matrix +A  satisfying the following conditions is called 

the Moore-Penrose inverse of A: 

(i) AAAA =+ , 

(ii) +++ = AAAA , 

(iii) ( ) AAAA ++ =
′ , 

(iv) ( ) ++ =
′ AAAA . 

A is unique. 
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B. The Augmented Model 

Let the X matrix and the observation vector Y be augmented by pkI  and AY  

respectively (subscript “A” denoting augmentation). The model will then take the form, 
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where xY  is the same as original Y, AY  is a 1×p  observation vector corresponding to the 

augmented part, pI  is a pp ×  identity matrix, and U is ( ) 1×+ pn  error vector. In this 

augmented model, we have ( ) XβY =XE  and ( ) βY kE A = . The (unbiased) least squares 

estimates of β  in the augmented model are given by 

( ) ( )AA kk YYXIXXβ +′+′= −1ˆ  

                                                 ( ) Akk YIXXβ 1*ˆ −+′+= . 

One might say that we use, in fact, the biased estimator *β̂  in place of the unbiased 

estimator Aβ̂ , and not in place of β̂ , and that in using *β̂ , the part, ( ) Akk YIXX 1−+′=∆ , 

is omitted from the estimation procedure. The bias in estimation will therefore come from 

this omitted part. Thus, if an unbiased estimator was to be used at all, it would be Aβ̂  and 

not β̂ . So if Aβ̂  is adopted as the unbiased estimator, the mean squared error of the biased 

estimator shall be compared with the variance of Aβ̂ . 

Hoerl and Kennard have shown that the wquared bias of *β̂  is given by  
                                                         ( ) βIXXβ 22 −+′′ kk .                                             (A.2) 

On the other hand we have 

( ) ( ) 



 +′= −

AkkEE YIXX∆ 1  

                                                       ( ) βIXX 1−+′= kk .                                                  (A.3) 

Squaring (A.3), we have ( ){ } ( ) βIXXβ∆ 222 −+′′= kkE , which is the same as (A.2). 

A more general model than (A.1) could also be considered. Thus, rather than considering 

the additional data ( )pA kIY , , we might consider the data ( )VY ,A , where KVV =′  is a 
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diagonal matrix with diagonal elements ik . However, we are considering model (A.1) in 

view of the following reasons: 

(i) Hoerl and Kennard ultimately thought in terms of one k, and not in terms of ik . 

(ii) Model (A.1) will show how little of the observed Y (if observable) is being 

discarded to obtain the biased estimator. 
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C. Influence Analysis 

The usual multiple regression model can be defined as 

εXβ1Y ++= 10β ,    where Y is an n vector of observable random variables, X is an 

rn×  centred and standardized matrix of known constants, 0β  is an unknown parameter, 

1β  is an r vector of unknown parameters and ε  is an n vector of unobservable 

disturbances. 

If ( )X1,Z =  then the LS estimator is ( ) YZZZb ′′= −1  and the vector of fitted 

responses ZbY =ˆ . The estimator of 2σ  is ( )pns −′= ee2 , where e is the vector of 

residuals. 

A particularly appealing perturbation scheme is case deletion. The influence of a case can 

be viewed as the product of two factors, the first a function of the residual and the second 

a function of the position of the point in the Z space. The position or leverage of the ith 

point is measured by ih , the ith diagonal element of the “hat” matrix ( ) ZZZZH ′′= −1 . 

Among the most popular single-case influence measures is the difference in fit 

standardized (DFFITS), which evaluated at the ith case is given by 

                                          ( ) ( )( ) ( )bbb ii zSEiziDFFITS −= ,                                      (A.4) 

where ( )ib  is the LS estimator of β  without the ith case and ( )bizSE  is an estimator of 

the standard error (SE) of the fitted value. 

DFFITS is the standardized change in the fitted value of a case when it is deleted. Thus it 

can be considered a measure of influence on individual fitted values. DFFITS can be 

written as the product of two factors, one depending on the residual and the other 

depending on leverage, 

                                               ( ) ( ) ( )
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,                                      (A.5) 

where ( )is  is the LS estimator of σ  when the ith case has been deleted, ie  is the ith 

residual, and ih  is the leverage of the point. 

 Another useful measure of influence is Cook’s D, which evaluated at the ith case 

is given by 
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                                                 ( )( ) ( )( )
2ps

iiDi
bbZZbb −′′−

= .                                      (A.6) 

iD  is a measure of the change in all of the fitted values when a case is deleted. It can also 

be written as 

                                                                ( )22

2

1 i

ii
i h

h
ps
e

D
−

= .                                        (A.7) 

To determine influential cases, Cook and Weisberg suggested that iD  to be compared 

with an ( )pnpF −,  distribution. 

 These measures are useful for detecting single cases having an unduly high 

influence. However, they suffer from the problem of masking- that is, the presence of 

cases that can disguise or mask the potential influence of other cases (Walker and Birch, 

1988). 
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PART 2 
 

Table 1 Longley data 

PEOPLE 

EMPLOYED 

GNP 
DEFLATOR 

GNP 

 

UNEMPLOYED 

 

ARMED 

FORCES 

 

POPULATION 

 

YEAR 

 

60,323 83.0 234,289 2,356 1,590 107,608 1947 

61,122 88.5 259,426 2,325 1,456 108,632 1948 

60,171 88.2 258,054 3,682 1,616 109,773 1949 

61,187 89.5 284,599 3,351 1,650 110,929 1950 

63,221 96.2 328,975 2,099 3,099 112,075 1951 

63,639 98.1 346,999 1,932 3,594 113,270 1952 

64,989 99.0 365,385 1,870 3,547 115,094 1953 

63,761 100.0 363,112 3,578 3,350 116,219 1954 

66,019 101.2 397,469 2,904 3,048 117,388 1955 

67,857 104.6 419,180 2,822 2,857 118,734 1956 

68,169 108.4 442,769 2,936 2,798 120,445 1957 

66,513 110.8 444,546 4,681 2,637 121,950 1958 

68,655 112.6 482,704 3,813 2,552 123,366 1959 

69,564 114.2 502,601 3,931 2,514 125,368 1960 

69,331 115.7 518,173 4,806 2,572 127,852 1961 

70,551 116.9 554,894 4,007 2,827 130,081 1962 

Source: J. Longley (1967) "An Appraisal of Least Squares Programs for the Electronic 
Computer from the Point of View of the User", Journal of the American Statistical 
Association, vol. 62. September, pp. 819-841
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TABLE 2: R E S U L T S  O F  T H E  S I M U L A T I O N 

 

CASE 1 α  and *α  equal to 0.99 
 Sββ =  Lββ =  

Signal-to-noise ratio, ρ  100 4 1 0.04 100 4 1 0.04 
HK         

Ratio of total mean 
square errors 0.999 0.991 0.973 0.916 0.866 1.069 0.976 0.916 
k values 0.0004 0.0070 0.0108 0.0146 0.0004 0.0160 0.0132 0.0146 
St.deviation of k (0.0001) (0.0033) (0.0106) (0.0212) (0.0002) (0.0533) (0.0287) (0.0212) 

HKB         
Ratio of total mean 
square errors 0.999 0.987 0.958 0.859 0.599 1.163 0.990 0.860 
k values 0.0016 0.0180 0.0270 0.0423 0.0019 0.0410 0.0366 0.0438 
St.deviation of k (0.0005) (0.0095) (0.0277) (0.0556) (0.0012) (0.1140) (0.0735) (0.0593) 

LW         
Ratio of total mean 
square errors 0.999 0.987 0.946 0.804 3.472 1.444 1.110 0.796 
k values 0.0004 0.0098 0.0368 0.7048 0.1816 1.869 1.4367 1.5727 
St.deviation of k (0.0011) (0.0027) (0.0142) (0.6996) (0.0811) (5.7995) (2.3857) (1.9047) 
 
 
 
CASE 2 α  equal to 0.99, *α  equal to 0.10 

 Sββ =  Lββ =  
Signal-to-noise ratio, ρ  100 4 1 0.04 100 4 1 0.04 

HK         
Ratio of total mean 
square errors 1.000 0.997 0.986 0.953 0.939 1.202 1.053 1.002 
k values 0.0003 0.0074 0.0191 0.0408 0.0003 0.0199 0.0358 0.0416 
St.deviation of k (0.0001) (0.0027) (0.0134) (0.0656) (0.0001) (0.0495) (0.0721) (0.0799) 
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HKB         
Ratio of total mean 
square errors 1.000 0.996 0.979 0.923 0.941 1.481 1.126 1.013 
k values 0.0015 0.0263 0.0584 0.1278 0.0017 0.0731 0.1224 0.1332 
St.deviation of k (0.0004) (0.0116) (0.0446) (0.1731) (0.0007) (0.1758) (0.2127) (0.1909) 

LW         
Ratio of total mean 
square errors 1.000 0.996 0.9741 0.908 22.316 2.078 1.282 1.025 
k values 0.0005 0.0127 0.0527 0.9082 0.0851 1.0525 1.5282 1.5738 
St.deviation of k (0.0001) (0.0041) (0.0194) (0.7026) (0.0363) (0.9687) (2.0644) (1.5073) 

 
 
 

CASE 3 α  equal to 0.70, *α  equal to 0.30 
 Sββ =  Lββ =  

Signal-to-noise ratio, ρ  100 4 1 0.04 100 4 1 0.04 
HK         

Ratio of total mean 
square errors 1.000 1.000 1.002 1.004 1.000 1.020 1.040 1.013 
k values 0.0003 0.0073 0.0278 0.3219 0.0003 0.0081 0.0503 0.4112 
St.deviation of k (0.0001) (0.0022) (0.0098) (0.2878) (0.0001) (0.0033) (0.1256) (0.5522) 

HKB         
Ratio of total mean 
square errors 1.000 1.004 1.011 1.010 1.000 1.088 1.125 1.026 
k values 0.0014 0.0348 0.1149 0.8411 0.0014 0.0388 0.1892 1.0878 
St.deviation of k (0.0004) (0.0104) (0.0412) (0.7317) (0.0004) (0.0158) (0.3746) (1.3966) 

LW         
Ratio of total mean 
square errors 1.000 1.002 1.006 1.010 1.022 1.242 1.236 1.035 
k values 0.0007 0.0180 0.0655 0.9934 0.0057 0.1420 0.4779 1.4743 
St.deviation of k (0.0002) (0.0053) (0.0229) (1.2711) (0.0016) (0.0555) (0.5317) (1.5955) 
 




