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CHAPTER 4 
 

 

FURTHER RIDGE THEORY 
 

4.1 Other Interpretations of Ridge Regression 
 

 In this section we will present three interpretations for the use of ridge regression. 

The first one is analogous to Hoerl and Kennard reasoning while the second one is based 

on a Bayesian approach. In addition, in recent literature one new characterization for 

ridge regression is presented based on an optimization problem. 
 

4.1.1 Restricted Least Squares Interpretation 
 

 Ridge regression may be viewed as least squares subject to a spherical restriction 

on the parameters. Suppose that the regression problem under study is in correlation form 

and that we perform least squares subject to the spherical restriction 

                                                                2c≤′ββ ,                                                     (4.1.1) 

where 2c  is a specified value. A restricted least squares estimator can be estimated by 

minimizing ( ) ( )XβYXβY −′−  subject to the constraint (4.1.1). Using the method of 

Lagrange multipliers, we can form 

                                              ( ) ( ) ( )2ckF −′+−′−= ββXβYXβY ,                          (4.1.2) 

Setting 0=∂∂ βF  gives the equations 

                                                          ( ) YXβIXX ′=+′ k ,                                          (4.1.3) 

which is the ridge solution. (Vinod and Ullah, 1981).  
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4.1.2 Bayesian Interpretation 
 

 The Bayesian approach to ridge regression is based on the assumption that we 

have a regression situation where 

                                                       ( )2,~ σIXβY N .                                                  (4.1.4) 

Consider the case where the individual regression coefficients in ( )pββ ,...,1=′β  are 

exchangeable (“an assumption that may not be appropriate” as emphasized by Lindley 

and Smith, 1972) i.e. they are unaltered by a permutation of the suffixes (i = 1,2,…, p). 

Suppose further that 

                                                         ( )2,~ βσξβ Nj .                                                   (4.1.5) 

If we suppose vague prior knowledge for ξ , then the Bayes estimate is 

                                       ( ) ( ){ } βJIXXIβ ˆ111* −−− −′+= ppp pk ,                                 (4.1.6) 

where βσσ 22=k  and J is a matrix of ones. If we assume ξ = 0, and thus imply 

that iβ ’s are small then the Bayes estimate is given by 

                                                 ( ){ } βXXIβ ˆ11* −−′+= kp .                                           (4.1.7) 

When 2σ , the residual regression variance, and βσ 2 , the variance of the regression 

coefficients are both unknown we can estimate them and calculate *k  as follows: 
22*
βssk = . 

In the estimates above k is a variance ratio and is estimated from the data while in Hoerl 

and Kennard’s argument k is the constant where the regression estimates stabilize. Like 

ridge method the Bayesian method attempts to avoid some of the problems caused by 

non-orthogonality in the data but in addition it has the advantage “of dispensing with the 

rather arbitrary choice of k and allows data to estimate it” (Lindley and Smith, 1972). 
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4.1.3 An Optimization Problem 
 

 Consider linear estimators that can be written as 

0BJRB X= , 

where J is a pp ×  matrix, 0B  is the ordinary LS estimator and XXR ′=X  (the 

correlation matrix). Since B is a linear transform of 0B , it is a biased estimator unless      

J = 1−
XR . We have ( ) βJRB XE = . From (3.5.2) it can be shown that  

( ) ( ) ( )JJRBB ′+= XtrDMSE 2σ , 

where ( )BD  is the squared bias term of B and is equal to ( ) 2βIJR −X . 

Ridge regression is a biased estimation method based on linear estimators. Qannari et al. 

(1997) present an optimization problem, which leads to the ridge estimator but from 

another viewpoint. They suggest keeping the total variance of the parameter estimates at 

an “acceptable level”, whiling allowing the smallest possible bias. 

Consider the inequality that holds for the Euclidean norm of a matrix 

( ) 220 βIJRB −≤≤ XD , it seems that  

(i) ( )BD  is zero when 1−= XRJ ,  

(ii) or approaches zero when 2IJR −X  approaches zero.  

Therefore the authors, as explained earlier, suggest minimizing the bias, i.e. 
2min IJR −XJ
,  under the constraint that the total variance is fixed, i.e. ( ) ctr X =′JJR , 

where c is a fixed positive scalar. Solving the Lagrangian problem we obtain 

( ) 1−+= IRJ kX , 

which is the ridge estimator (Qannari et al., 1997).  

 

4.2 Application of Ridge Regression in Special Cases 
 

 In chapter 3 we only consider the use of ridge regression in the multivariate linear 

regression model. However, many authors have used ridge regression in different cases, 
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for example, in logistic regression. We will discuss some cases which we consider rather 

useful. 

4.2.1 Rank deficient model 
 

 Let us consider the case where our model is rank deficient. Brown (1978) 

examines the ridge estimator in the context of a linear model, which may be rank 

deficient (X is an ( )pT ×  given matrix of rank m ( p≤ )). In such a case the ridge 

estimator, ( ) YXIXX ′+′ −1k  is not defined at 0=k , so Brown (1978) suggests the 

following definition. Let 

( ) ( )
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where +X  denotes the Moore-Penrose pseudoinverse (Appendix A). 

 

4.2.2 Straight line regression with a small number of οbservations 
 

 Carmer and Hsieh (1978) try to apply biased techniques to straight line regression 

with a small number of observations.  

Having Y and X in standardized form leads to a LS estimate equal to the simple 

correlation r̂ , between X and Y; the regression sum of squares is equal to 2r̂  and the 

residual mean square is ( ) ( )2ˆ1ˆ 22 −−= Trσ , where T is the number of observations. 

The biased estimate of the standardized regression coefficient is ( )krr +== 1ˆ~~β . 

Farebrother (in Carmer and Hsieh, 1978) proposed for an estimate of k the following: 
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The results of the simulation study of the authors showed that none of the biased 

procedures are recommended for use in straight line regression problems with a small 

number of observations. According to the authors “all the procedures rather severely 
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reduced the estimate of the slope, relative to least squares, and none of the procedures 

produced dramatic improvements in the mean square error”. 

 

4.2.3 Models with lagged effects 
 

 In models with lagged effects we have 

                        ttttt UXβXβXβαY +++++= −− ll...110 ;   nt ,...,2,1=                    (4.2.1) 

where tY  is a dependent variable, tX  represents the matrix of regressors and tU  the 

random error. As we can notice from (4.2.1) the regressors involve time series which are 

often autocorrelated. So using ridge regression particularly for large values of l  is a way 

to tackle this problem. 

 However, a problem of lagged effects model is to select an appropriate number of 

lagged terms, i.e. the right l . Erickson (1981) deals with the topic of variable selection 

utilizing ridge regression. In order to select variables he minimizes a prediction error, or 

at least an estimate of the prediction error based on ridge regression- Ridge Regression 

Prediction criterion (RP). RP depends on which observations and regressors are used and 

on the value of k- the ridge constant. Using ridge regression on some data the author 

shows that in order to find the “right” estimates for the number of lagged terms one 

should first calculate a k that minimizes the RP criterion for each value of l and then find 

the overall minimum of l ’s. 

 

4.2.4 Subset selection 
 

 The ridge regression has also been used as a subset selection technique by Hoerl 

et al. (1986). They propose a ridge selection method that examines a full ridge solution 

and then deletes terms that are not significant. The deletion of the terms is based on a 

modified t-test, ( ) RiSkt β̂= , where 2
RiS  is the ith diagonal element of 

( ) ( ) 112 −− +′′+′ IXXXXIXX kkσ . This means that we are actually testing the hypothesis 

( )( ) 0ˆ:0 =kEH β . 
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4.2.5 Logistic regression 
 

 Consider the logistic regression model: 

                                                          ( )Xβ−+
=

e1
1π                                                     (4.2.2) 

where ( )′= pβββ ,...,, 10β  and π  is the probability that the event Y occurs, ( )1== YPπ . 

The unknown parameter vector β  can be estimated by β̂ , the maximum likelihood 

estimator (MLE) of β . Schaefer et al (in Lee and Silvapulle, 1988) have derived the ridge 

estimator for the logistic regression model as 

( ) ( ) ( )βXVXIXVXβ ˆˆˆˆ 1
′+′=

−
kk ,  

where ( )β̂ˆ VV = . They have also shown that if the degree of multicollinearity is high then 

( ){ } { }ββ ˆˆ MSEkMSE <  for many observations and small value of k. 

Lee and Silvapulle (1988) propose a method for the determination of k using 

Bayesian methods. They obtained the following two choices of k: 

                                                      ( )( ) 1ˆˆ1ˆ −
′+= ββπak ,                                                (4.2.3) 

                                        ( )( ) ( )( ) 111 ˆˆcovˆˆcov
−−−





 ′



= ββββtrkb .                               (4.2.4) 

After a Monte Carlo study for the examination of the performance of the above 

estimators the authors concluded that ak̂  is considered the “best” choice for k. 

 

4.2.6 Autocorrelated disturbances 
 
 Firinguetti (1989) studies the effect of collinearity and autocorrelated disturbances 

in the performance of several ridge regression estimators. The use of ridge regression in 

generalized linear models has been considered by other authors too. Yet it had only been 

discussed in cases where the error variance-covariance matrix ( )Ω2σ  was known. 

Firinguetti suggests that even when one has to estimate k and Ω , conditions can be found 

where the ordinary ridge regression estimator dominates the generalized least squares 

(GLS) estimator. 
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Consider the model UXβY +=  as described in (2.2.1), where U is a vector of T 

disturbances such that  

                                   ttt uu ερ += −1 ,         1<ρ ,     Tt ,...,2,1=                             (4.2.5) 

and 

                               ( )2,0~ σε Nt ,   ( ) 0=′ttE εε    for each ttt ≠′, .                          (4.2.6) 

The GLS estimator 

                                                     ( ) YΩXXΩXb 111 −−− ′′= ,                                         (4.2.7) 

where 
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is the minimum variance unbiased estimator. Since in practice ρ  is usually unknown it is 

estimated by ρ̂  = 
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 where βXYe ˆ−= , the OLS residuals. Then the GLS 

estimator of β  becomes 

                                                  ( ) YΩXXΩXb 111 ˆˆˆ −−− ′′= .                                            (4.2.9) 

In case when collinearity is present in a GLRM, the author suggested considering a 

generalized version of some well-known ridge estimators. For example, the generalized 

Hoerl, Kennard and Baldwin RR (GHKB) estimator is: 

 ( ) ( ) YΩXIXΩXb 11

1
1

1
ˆˆˆ −−− ′+′= kk  

                     ( ) bXΩXIXΩX ˆˆˆ 11

1
1 −−− ′+′= k  

with 
bb ˆˆ

2

1 ′
=

psk  and ( ) ( )
( )pn

s
−

−
′

−
=

− bXYΩbXY ˆˆˆ 1
2 . 

One can also define the generalized Lawless and Wang RR (GLWR) estimators as 

 ( ) ( ) YΩXIXΩXb 11

2
1

2
ˆˆˆ −−− ′+′= kk  
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                     ( ) bXΩXIXΩX ˆˆˆ 11

2
1 −−− ′+′= k  

with 
bXΩXb ˆˆˆ 1

2

2 −′′
=

psk . 

Comparing the different estimators using MSE and absolute bias the author suggests that 

in the presence of multicollinearity and autocorrelation the generalized ridge regression 

estimators can perform better than the other methods. 

 

4.3 A Recent Advance in Ridge Regression 

 It is not unusual to have collinearity and influential cases simultaneously in a data 

set. Walker and Birch (1988) discuss about the effect that collinearity can have on the 

influence of any given case and propose some influence measures in case we use ridge 

regression. Part C in the Appendix provides a brief overview of influence analysis. 

 

4.3.1 Influence in Ridge Regression 
 

 Using a different notation for convenience the ridge estimator of β  is now 

denoted as 

                                                   ( ) YXIXXb ′+′= −1* k ,                                             (4.3.1) 

The ridge residuals are defined as *XbYe −= . In order to measure the influence of a 

single case a version of DFFITS (difference in fit standardized) for RR can be used, 

namely 

( ) ( )( )
( )*

**
*

b
bb

i

i

xSE
ixiDFFITS −

= , 

where ( )i*b  is the ridge estimator of β  without the ith case, ( )*bixSE  is an estimator of 

the standard error (SE) of the fitted value without the ith case and ix  is the ith row of 

matrix X.  

The authors also define two versions of Cook’s distance iD  
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( )( ) ( )( )
2

****
*

ps
iiDi

bbXXbb −′′
−

=  or ( )( ) ( )( )
2

****
*

ˆˆˆˆ
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iiDi

YYYY −
′

−
=  
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( )( ) ( ) ( ) ( ) ( )( )
2

**111**
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ikkiDi

bbIXXXXIXXbb −+′′+′′
−

=
−−−

. 

For choosing the value of k the authors suggest the value of k that minimizes the 

following quantity 

                                                ( ) ( )*2 2 HtrTsSSRC kk +−= ,                                   (4.3.2) 

where kSSR  is the sum of squares of residuals from RR and  ( ) XIXXXH ′+′= −1* k . 

As one can conclude from the definitions of DFFITS and Cook’s distance, the influence 

of each case is a function of the ridge parameter k. It is interesting to note that while the 

influence of some cases decreases the influence of some others increases. Thus, the 

authors advise to determine the value of k and then compute the influence measures for 

that k. If it is necessary to delete certain cases, the process described should be repeated. 

 

4.3.2 Local change of small perturbations 
 
 Shi and Wang (1999) presented another approach in order to measure the 

influence of observations on the ridge estimator. Instead of examining the influence of 

case deletion they perform local influence analysis. In local influence analysis we try to 

estimate the local change of small perturbations on the variance or on the explanatory 

variables. 

The functions used to estimate these changes are the generalized influence function (GIF) 

and the generalized Cook statistic (GC) 

• Perturbing the variance 

The variance of the errors becomes 12 −Wσ  where ( )ωW diag=  with diagonal elements 

of ( )′= nωω ,...,1ω . The perturbed version of the ridge estimator is 

                                              ( ) ( ) WYXIWXXb ′+′= −1* kω .                                      (4.3.3) 

The generalized influence function of *b  under the perturbation is given by 
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( ) ( ) ( ) leXIXXlb *1* , DkGIF ′+′= − , where ( ) ( )**
idiagD ee =  and l is a unit-length vector. 

Again two versions of the generalized Cook statistic of *b  can be defined 

 ( ) ( ) ( ) 2***
1 , psDDGC leHellb ′= ,                                                                   (4.3.4) 

and 

( ) ( ) ( ) 2*2***
2 , psDDGC leHellb ′= ,                                                               (4.3.5) 

where ( ) XIXXXH ′+′= −1* k  and H is the hat matrix of LS regression. 

• Perturbing the explanatory variables 

Similar influence measures can be defined when we have perturbation of the explanatory 

variables. 

 

Finally, recall the quantity (4.3.2) and consider the perturbation of the variance. Let 

( )ωkC , ( )ωkSSR  and ( )ωH*  denote the perturbed versions of kC , kSSR  and *H , 

respectively. Then  

                       ( ) ( ) ( )( )ωHωω *2 2trTsSSRC kk +−= .                                   (4.3.6) 

 




