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CHAPTER 5 
 

 

SIMULATION - APPLICATION 
 

Several authors have conducted simulations in order to verify that ridge estimators are 

better than least squares in certain cases. The interested reader is referred to Gibbons 

(1981), Gunst and Mason (1977), Hoerl, Kennard, and Baldwin (1975), McDonald and 

Galarneau (1975), Wichern and Churchill (1978), Dempster et al. (1977), and Lawless 

and Wang (1976). In this section we will present a simulation based on the pattern of 

Wichern and Churchill. Our aim is to compare the relative performance of estimators 

(ridge and the LS estimator) with respect to their MSE so as to identify cases where ridge 

estimators provide a good alternative to the LS estimator.  

 

5.1 Description of the Simulation 
 

We use the five parameter model UXβY += ,  

where X is a 530×  matrix of explanatory variables, Y is a 130×  response vector, β  is a 

( ) 115 ×+  vector of parameters and U is a 130×  vector of errors. 

 

STEP 1: Thirty observations are generated for each explanatory variable. The 

explanatory variables are generated by: 

( ) 6
2

121 iijij ZZX αα +−=                           i =1,2,…,30                   j =1,2,3 

( ) 6*
2

12
*1 iijij ZZX αα +−=                        i =1,2,…,30                   j =4, 5 

where 621 ,...,, iii ZZZ  are independent standard normal numbers and 2α , 2
*α  are 

coefficients leading to the following correlation matrix:  
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Correlation matrix 

 1X  2X  3X  4X  5X  

1X  1 2α  2α  *αα  *αα  

2X  2α  1 2α  *αα  *αα  

3X  2α  2α  1 *αα  *αα  

4X  *αα  *αα  *αα  1 2
*α  

5X  *αα  *αα  *αα  2
*α  1 

Table 5.1: The correlation matrix 

 

The explanatory variables are then standardized so that XX′  is in correlation form. Three 

different combinations of α  and *α  are investigated:  

CASE 1: Both α  and *α  are equal to 0.99, the condition number  51 λλ = 581. 

CASE 2: α is equal to 0.99, *α  is equal to 0.10 and 51 λλ = 165. 

CASE 3: α is equal to 0.70, *α  is equal to 0.30 and 51 λλ = 8. 

Case 1 is a case of extreme multicollinearity while 2 represents a mixed case. Case 3 

represents a moderate situation. 

 

STEP 2: For each design matrix we use two coefficient vectors: Lβ , the normalized 

eigenvector corresponding to the largest eigenvalue of XX′  and Sβ , the normalized 

eigenvector corresponding to the smallest eigenvalue of XX′ . This choice seems 

appropriate since these eigenvectors give the maximum (for Lβ ) and minimum (for Sβ ) 

MSE considering however certain constraints (McDonald and Galarneau, 1975).  

 

STEP 3: Observations on the dependent variable are determined by:  

iiii UXXY ++++= 55110 ... βββ         i = 1, 2,…,30 

where 521 ,...,, iii XXX  are the original unstandardized variables, ( )2,0~ σNUi , and 0β  is 

zero. 51 ,...,ββ  are the appropriate eigenvector values. Four values of σ  are investigated: 
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σ = 0.1, 0.5, 1.0, 5.0 or equivalently four signal-to-noise ratios 2σρ ββ′=  =100, 4, 1, 

0.04. The dependent variable is standardized so that yX ′  is a vector of correlations. 

 

STEP 4: Additional samples of size 100 are generated; XX′ ,β  remain fixed while ie  

and hence the dependent variable change. 

The least squares and ridge estimates are determined using the standardized variables and 

then the estimated coefficients are transformed back to the original model. The k values 

and the standard deviations are computed for the following rules: 

 Rules (m) 

1.Hoerl Kennard (HK) 1. ( )22 ˆmax iHK ask =  

2.Hoerl Kennard and Baldwin (HKB) 2. αα ˆˆ2 ′= pskHKB ββ ˆˆ2 ′= ps  

3.Lawless Wang (LW) 
3. ∑

=

=
5

1

22 ˆ
i

iiLW apsk λ αXXα ˆˆ2 ′′= ps βΛβ ˆˆ2 ′= ps

Table 5.2: Investigated rules 

 

The performance of the estimators is evaluated in terms of the averaged total squared 

errors 

( )( ) ( )( )∑
=

−=
100

1

2ˆ
100

1ˆ
j

i
m
ij

m
i kkMSE βββ           i = 0,1,..,5 ,   m = 1,2,3   and 

( ) ( )( )∑
=

=
5

0

ˆ
i

m
i kMSEmTMSE β                      m = 1,2,3  

 where 0β  zero, 51 ,...,ββ  the appropriate eigenvectors, and ( )km
ijβ̂  the estimates in terms 

of the original model. In order to compare the ridge estimators with the least squares we 

also compute the ratio 

                                           
( )
( )m

TMSE m
R

TMSE LS
=                                     m = 1,2,3. 
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5.2 The Simulation Results 
 

The results of the simulation are presented in the Appendix (Part 2, Table 2). The 

comments made below are based on these results. 

 

5.2.1 Mean Squared Error (MSE) 

 The main theoretical justification for the construction of ridge estimators is that 

they have smaller MSE than the least squares estimator. Therefore in order to measure the 

improvement one can check the ratio of the estimated MSE for a particular ridge 

estimator to the estimated MSE for LS.  The ratio for LS is obviously 1. 

These ratios are plotted in the next figure. Each plot presents the ratio for each of the 

three estimators (HK, HKB, and LW) as a function of σ. The left (right) graph presents 

the results for Sββ = , ( )Lββ = . Each point plotted represents the average of 100 samples.  
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CASE 2 
MSE Ratio  for β=βS
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CASE 3 
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Figure 5.1: MSE Ratio 

 
The graphs above provide the basis for these observations: 

• Sββ =  

All estimators are at least as good as the LS estimator for the first two cases, that is the 

MSE for those estimators is smaller than 1. For case 3 (where the correlation is smaller) 

the estimators are slightly worse than LS- the ratio ranges between 1 and 1.011.  

The ratio decreases for larger values of σ again for the first two cases. In addition, in case 

3 the estimators have almost the same MSE. 

• Lββ =  

None of the estimators is constantly better than the LS estimator. In all 3 cases the ratio 

increases and then decreases for larger values of σ, namely it does not appear to be a 
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monotone function of σ. Moreover, HK and HKB rules appear to perform better than the 

rule of LW. 

As it was expected the ridge estimators perform better for higher degree of 

multicollinearity, that is in case 1. 

 

5.2.2 Average k 
 The average k and standard deviation of the k values observed in 100 samples are 

recorded for the three rules described above (HK-HKB-LW). The next figure presents the 

results for the three cases.  
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CASE 2 

Average k value  for β=βS
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CASE 3 

Average k value for β=βS
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Figure 5.2: Average k 

 
 
 Note that the values for the ISRM estimator are 0.3, 0.15, and 0.7 for each of the 

three cases and are not presented in the figure. This rule tends to give much larger values 

than the other rules. The following observations can be made for each case:  

 Case 1: For this extreme case of multicollinearity we notice that HK and HKB 

rule give values for k between 0.0004 to 0.044 irrespective of the value of σ  and β . The 

LW k increases rapidly to 0.7 for Sββ =  and σ >1. For Lββ =  the same rule gives values 

of k larger to one except for σ =0.1 (k = 0.18). 

 Case 2: As in case 1 HK and HKB rule give small values for k, specifically, 

between 0.0003 and 0.1332. The values of k for LW rule exceed 1 for Lββ =  and σ >0.1 

 Case 3: All rules give larger values for k than for cases 1 and 2. These values 

increase as σ increases and for σ >1 become close or larger to 1. 

In general: 

• The average k is smaller for all estimators when Sββ = . 

• Tke k values associated with estimators LW are not restricted to values less than 

one. This estimator assumes relatively large average k values as σ  approaches 

one. 



82 

5.2.3 Conclusions 
 

 In our simulation we used three methods for determining the value of k, methods 

which are often met in other simulation studies and are easy to handle. The comparison of 

the three estimators for estimating ridge parameter k to the least squares estimators was 

made using the MSE criterion. As a general remark we could say that ridge regression 

estimators yielded similar or slightly better results compared to the least squares 

estimators. 

 Specifically, the performance of the ridge estimators depends on the variance of 

the random error, the correlations among the explanatory variables and the choice 

( SL or ββ ) of the unknown coefficient vector. In this simulation one can observe the 

performance of the estimators when one of these factors is changed while the remaining 

two are fixed. As one could expect, no ridge estimator is shown to be better than the LS 

in all cases. While in some cases the HK or the HKB rule achieves a reduction in MSE in 

other cases the MSE increases. However, in case of high multicollinearity the HK rule 

appears to be a good alternative to the classical LS estimator.  

 Overall, in this study ridge regression reduces the mean squared error of the 

estimated coefficients under conditions of multicollinearity, low signal to noise ratios and 

as long as β  is equal to the eigenvector of the smallest eigenvalue. Yet, when β  is equal 

to the eigenvector of the largest eigenvalue, ridge in general performs poorly. However, 

our conclusions must be viewed with reservation since the size of the regression problem 

presented was fixed (a five parameter model with n=30) and the number of replication 

samples taken 100. Moreover, the size of the ratio of the number of predictors to the 

sample (n) is relatively small (5/30). It has been found that when the ratio is too small, 

then no difference between the least squares and ridge regression really exist. However, 

when the ratio is large, i.e., many predictors with a small sample, ridge regression has 

been demonstrated to be more accurate than least squares. (Dempster et al., 1977). In 

order to check this conclusion we also simulated data for a 5 parameter model with n=15 

and thus a large ratio (1/3). For high multicollinearity of regressors (case 1 in section 5.1) 

the MSE of all three ridge estimators were smaller than least squares (for both Lβ and 
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Sβ ), especially for low signal to noise ratios. So it would be wiser to use ridge regression 

in respective cases. 

 In practice, careful investigation is needed when a researcher considers a 

particular regression problem so as to decide whether ridge regression is the appropriate 

alternative to least squares and how to choose the best k value.  
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