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Chapter 7 

Introduction to Discrete Choice 

Models 

 

 
7.1     Introduction 

It has been mentioned that the conventional selection bias model requires 

estimation of two structural models, namely the selection model where the probability 

of participation for each person needs to be calculated and the primary model where 

the relationship between individuals’ outcomes and their attributes is sought to be 

evaluated. In terms of the selection model, when decisions are represented as a 

discrete (binary) variable –1 for participation and 0 for non-participation– the 

corresponding probabilities can be estimated by Logit or Probit models. However, in 

most practical situations, an individual may be faced with more than two decisions, 

expressed as alternative choices. In this case, the above models cannot provide 

consistent answers of the probability of selecting a specific alternative k over a set of 

M alternatives. A useful generalization that accounts for this situation is the 

Multinomial Discrete Choice Models. 

The origins of discrete choice models are rooted in the early studies of 

psychophysics (the physical study of the relations between physical stimuli and 

sensory response) at 1860. These models were later applied in biology with the 

expression models with discrete responses. Today they frequently occur in product 

market demand theory, in labor econometrics, in economics as well as in other social 

sciences.  

Suppose that an individual has to choose among K mutually exclusive alternatives 

of a product or of a service. The neoclassical economists’ approach to this problem is 

that every individual has a utility function, which allows him to rank the alternatives 

in a consistent and unambiguous manner. The individual then chooses the alternative 
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that is ranked first. Therefore, from the economists’ point of view, the choice problem 

is a problem of maximization of a utility function while the choice process is 

deterministic since each unit just selects the alternative that maximizes its utility. 

These models have introduced, initially, by Thurstone (1927) and latter by McFadden 

(1973, 1974a, 1975, 1976, 1981) and McFadden and Reid (1975) and termed Random 

Utility Models (RUM).  

An important feature in modern discrete choice modeling that is first implied by 

Luce (1959) is the Independence of Irrelevant Alternatives (IIA) property. According 

to this for all sets of alternatives S ⊆ A and T ⊆ A such that S ⊆ T and for all 

alternatives a and b such as a ∈ S and b ∈ S  
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This expression implies that the ratio of probabilities of choosing any two alternatives 

is independent of the attributes of all other alternatives. Moreover, the IIA property 

implies that the ratio of the probabilities of choosing any two alternatives is 

independent of the availability of a third alternative.  

However, the IIA assumption is restrictive in many applications. For example, it is 

unlikely that the odds ratio of any two choices would be invariant to the introduction 

of a new alternative that is a close substitute for an existing alternative. A typical 

example of this restriction is the ‘‘blue bus/red bus paradox’’, fist pointed out by 

Debreu (1960) and discussed again by Anderson, de Palma and Thisse (1992). 

Assuming that the probability for two alternatives to have equal utility values is zero 

(that is there are no ties), we write: 
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where Xik is the (M-1) × J vector of the attributes of the kth alternative (k= 1,…,M). 

           β  is a J × 1 vector of parameters. 

           Vik is a function of the observed utilities. 
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εik is a J × 1 vector of residuals that capture unobserved variations in tastes 

of the individuals, in attributes of the alternatives as well as errors in the 

perception and optimisation by the consumers. 

Note that uik can be thought of as the set of utilities for individual i, given that the 

utility of the last alternative is zero, or in other words, the utilities of the first (M-1) 

alternatives (the value that is formed for these utilities) with respect to the last utility 

if it is fixed to the constant value 0. This specification is needed in order to avoid the 

identification problem, indicated by McCullogh and Rossi (1994).  

The aim is the estimation of vector β, of the unobserved individual utilities uik and 

of the probability that the individual i will choose the alternative s. In this way, the 

relative frequency of choosing alternative s over a population of individuals can be 

estimated. 

The probability that the ith individual will choose the sth alternative is:  
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and generally, 
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Defining F(ε1, ε2, …,εM) as the joint cumulative distribution function over the values 

εik, (k = 1, 2, …,M), and Fik as the partial derivative of F with respect to its kth 

argument, the probability Pik can be written: 
 

 

Different specifications of F yield different families of discrete choice models. The 

most known ones are the Multinomial Logit (MNL), the Nested Multinomial Logit 

(NMNL) and the Multinomial Probit (MNP). A presentation of these models is 

provided in Theil (1969), McFadden (1978) and Manski and McFadden (1981). 
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 7.2     Multinomial Logit Model (MNL) 

An econometric choice model is specified by choosing a parametric form for Vik,       

(k = 1, 2, …M), and a parametric distribution F. An important specialization of (7.4) 

is the Multinomial Logit model (MNL) with choice probabilities: 
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where uik = Vik + εik is the unknown utility or value of interest for choice alternative k   

                and for individual i (i = 1, 2, …, N). 

           Vik is the systematic observable component or mean utility value of choice  

                alternative k and for individual i. 

           εik is the random error component associated with choice alternative k and  

               individual i. 

  

The MNL or conditional Logit model is obtained by assuming that εij are 

independently and identically distributed (iid) with the Extreme Value Type-I 

distribution1 (see McFadden, 1973): 

 

( ) ( )ikik eexpP −=≤ εε  

 

However, the assumption of independent εij yields counterintuitive forecasts for 

alternative sets containing choices that are close substitutes. Such an example is the 

“red bus / blue bus” example. In this case the model is inappropriate because the IIA 

axiom is implausible. 

McFadden (1973) also discusses the Maximum Likelihood Estimator (MLE) of the 

regression parameter of interest β for the MNL. Hausman (1978), Hausman and 

                                                           
1 The name Extreme Value comes from the interest to find the maximum of a series of random 
variables (their extreme value). 
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McFadden (1984) and McFadden (1987) provide some specification tests for this 

model.  

McFadden (1978, 1981) describes a useful generalization of the MNL model and a 

way to relax the restrictive IIA assumption, namely the Nested Multinomial Logit 

model (NMNL) that uses a nested structure to estimate the probability of choosing a 

specific alternative. For a detailed presentation of the NMNL model the reader is 

referred to Maddala (1983) and Anderson et. al. (1992).  

Another, more general type of MNL models that also relaxes IIA assumption is 

the Mixed Multinomial Logit model (MMNL) introduced by Boyd and Mellman 

(1980). This model allows for another source of variation to be present, apart from 

random disturbance. McFadden and Train (2000) establish by a theorem that MNL 

mixtures can closely approximate a very broad class of Random Utility models that 

have zero probability of ties. Estimation methods of MMNL are referred in Hausman 

and Wise (1978), Manski and McFadden (1981), McFadden (1989) and Hajivassiliou 

and McFadden (1997).  

Another common approach is that of δ-MNL model. Georgescu-Roegen (1958) 

describe the problem of thresholds in stochastic consumer choices. Suppose that an 

individual is faced with two alternatives with approximately the same attributes. As a 

result their utility values are approximately the same. Given that the individual is able 

to recognize and respond to differences in utilities however small they may be, they 

relax utility maximization assumption, with the assumption that an individual i selects 

s alternative over k if and only if their difference in utilities is greater than a threshold 

δ; else the individual is indifferent between the choices. Lioukas (1984) also describes 

the problem of thresholds in stochastic consumer choice and approaches it by 

applying an MNL model to real data a three alternatives choice situation. He calls this 

model δ – MNL model. 

 

 

7.3     Multinomial Probit Model 

An alternative family of Discrete Choice Models is achieved by assuming different 

distribution for the joint cumulative distribution function F(εi1, εi2, …,εiM). More 

specifically, by assuming that the random components εik are jointly Normally 

distributed with corresponding density: 
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the Multinomial Probit Model is derived. Here M is the number of alternatives and the 

variance – covariance matrix Σ is normalized: 
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to avoid the identification problem.  

Despite the comparative advantage of MNP against MNL model in relaxing the 

IIA assumption the former cannot be represented in a closed form as MNL model 

(equation 7.5). Thus, the calculation of its choice probabilities requires evaluation of 

high dimensional numerical integration, specifically when the number of alternatives 

is higher than four. The most common methods to avoid such evaluation are the 

simulation methods. Specifically, the Clark method of Clark (1961), the Method of 

Simulated Moments (MSM) discussed in Lerman and Manski (1981), McFadden 

(1989), McFadden and Ruud (1994) and Geweke et. al. (1994), the Simulated 

Maximum Likelihood estimation procedure (SML) proposed by Manski and Lerman 

(1981) and the method of Simulated Scores (MSS) proposed by McCulloch and Rossi 

(1994), Hajivassiliou (1996) and Hajivassiliou and McFadden (1997) are some 

methods for the estimation of the parameters and the probabilities of the selection 

model.  

A detailed description of this model is found in Hausman and Wise (1978), 

Geweke et. al. (1994) and Maddala (1983). Currim (1982) is referred in two different 

forms of MNP models, namely the Independent Probit and the Generalized 

Covariance Probit model. These models are obtained by properly reformulating the 

variance-covariance matrix Σ of the random errors εik.  

 
 


