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CHAPTER 1 

INTRODUCTION

1.1 Preface
Nowadays, statistics admittedly holds an important place in all the fields of our lives.

Almost everything is quantified and, most often, averaged. Indeed, �averaging� is the

statistical notion most easily understood and most widely used. On the other hand, not

few are the cases where the central tendency, as this is captured by an average measure, is

not suitable to �statistically� describe the situations and their impacts.

Two important dates in the history of risk management are February 1, 1953 and

January 28, 1986. During the night of February 1, 1953 at various locations the sea-dykes

in the Netherlands collapsed during a severe storm, causing major flooding in large parts

of coastal Holland and killing over 1800 people. The second date corresponds to the

explosion of the space shuttle Challenger. According to Dalal et al. (1989), a probable

cause was the insufficient functioning of the so-called O-rings due to the exceptionally

low temperature the night before launching. In both of these cases, an extremal event

caused a protective system to breakdown. One could argue that statistical concepts, such

as averages, also �broke-down�, since not only they offer no help but they can also be

misleading, if used. In such cases, it is the examination of extremes that provides us with

insight of the situations.

Natural or man-made disasters, crashes on the stock market or other extremal events

form part of society. The systematic study of extremes may be useful in contributing

towards a scientific explanation of these. As will be made clearer in the sequel, analysis

of extreme values is an aspect of statistical science that has much to offer to many fields

of human activity.
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1.2 Genesis and Historical Development
The extreme value theory is a blend of a variety of applications concerning natural

phenomena such as rainfall, floods, wind gusts, air pollution and corrosion and

sophisticated mathematical results on point processes and regular varying functions. So,

engineers and hydrologists on the one hand and theoretical probabilists on the other, were

the first to be interested in the development of extreme value theory. It is only recently

that extreme value theory attracted mainstream statisticians. Indeed, the founders of

probability and statistical theory (Laplace, Pascal, Fermat, Gauss, et al.) were too

occupied with the general behaviour of statistical masses to be interested in rare extreme

values.

Historically, work on extreme value problems may be dated back to as early as 1709

when N. Bernoulli discussed the mean largest distance from the origin when n points lie

at random on a straight line of length t (Johnson et al., 1995). A century later Fourier

stated that, in the Gaussian case, the probability of a deviation being more than three

times the square root of two standard deviations from the mean is about 1 in 50,000, and

consequently could be omitted (Kinnison, 1985). This seems to be the origin of the

common, though erroneous, statistical �rule� that plus or minus three standard deviations

from the mean can be regarded as the maximum range of valid sample values from a

Gaussian distribution.

The first to investigate extreme value statistics were early astronomers who were

faced with the problem of utilizing or rejecting �suspect� observations that appeared to

differ greatly from the rest of a data-set. Still, systematic study and exploration of

extreme value theory started in Germany in 1922. At that time a paper by Bortkiewicz

(1922) appeared which dealt with the distribution of the range of random samples from

the Gaussian distribution. The contribution of Botkiewicz is that he was the one to

introduce the concept of �distribution of largest values’. A year later another German,

von Mises, introduced the concept of �expected value of the largest member of a sample

of observations from the Gaussian distribution� (Mises, 1923). Essentially, he initiated

the study of the asymptotic distribution of extreme values in samples from Gaussian

distribution. At the same time, Dodd (1923) studie0d largest values from distributions

other than the normal.
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Still, the fathers of extreme value theory are Tippet and Fisher. Indeed, a major first

step occurred in 1925, when Tippet presented tables of the largest values and

corresponding probabilities for various sample sizes from a Gaussian distribution, as well

as the mean range of such samples (Tippet, 1925). The first paper where asymptotic

distributions of largest values (from a class of individual distributions) were considered

appeared in 1927 by Frechet (1927). A year later, Fisher and Tippet (1928) published the

paper that is now considered the foundation of the asymptotic theory of extreme value

distributions. Independently, they found Frechet�s asymptotic distribution and

constructed two others. These three distributions have been found adequate to describe

the extreme value distributions of all statistical distributions. We will explore further this

result in subsequent chapter. Moreover, they showed the extremely slow convergence of

the distribution of the largest value from Gaussian samples toward asymptote, which has

been the main reason for the difficulties encountered by prior investigators. Indeed, the

use of the Gaussian distribution as starting point has hampered the development of the

theory, because none of the fundamental extreme value theorems is related in a simple

way to the Gaussian distribution.

Some simple and useful sufficient conditions for the weak convergence of the largest

order statistic to each of the three types of limit distributions were given by von Mises

(1936). A few years later Gnedenko (1943) provided a rigorous foundation for the

extreme value theory and necessary and sufficient conditions for the weak convergence

of the extreme order statistics.

The theoretical developments at the 1920s and mid 1930s were followed in the late

1930s and 1940s by a number of publications concerning applications of extreme value

statistics. Gumbel was the first to study the application of extreme value theory. His first

application was to old age, the consideration of the largest duration of life. In the sequel

he showed that the statistical distribution of floods could be understood by the use of

extreme value theory (Gumbel, 1941). �Extreme value� procedures have also been

applied extensively to other meteorological phenomena (such as rainfall analysis), to

stress and breaking strength of structural materials and to the statistical problem of

outlying observations.
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The applications mentioned above all refer to the early development of statistical

analysis of extremes from a theoretical as well as practical point of view. Gumbel�s book

of 1958 (Gumbel, 1958) contains a very extensive bibliography of the developed

literature up to that point of time. Of course, since then many more refinements of the

original ideas and further theoretical developments and fields of applications have

emerged. Some of these recent developments will be further discussed in the chapters to

follow. Still, while this extensive literature serves as a testimony to the validity and

applicability of the extreme value distributions and processes, it also reflects the lack of

co-ordination between researchers and the inevitable duplication of results appearing in a

wide range of publications.

1.3 Fields of Application
The reader should have already gained an idea of the diversity of fields where

extreme-value analysis can be applied. In the sequel, we give only a short review of the

most important areas where extreme-value theory has already been successfully

implemented.

! Hydrology – Environmental Data

As we have mentioned hydrologists were of the first to use extreme-value theory in

practice. Here, the ultimate interest is the estimation of the T-year flood discharge, which

is the level once exceeded on the average in a period of T years. Under standard

conditions, the T-year level is a high-quantile of the distribution of discharges. Thus, one

is primarily interested in a quantity determined by the upper tail of the distribution. Since,

usually the time span T is larger than the observation period, some additional

assumptions on the underlying distribution of data have to be made. If the statistical

inference is based on annual maxima of discharges, then hydrologists favoured model is

the extreme-value model. Alternatively, if the inference is based on a partial duration

series, which is the series of exceedances over a certain high threshold, the standard

model for the flood magnitudes is the generalized Pareto model.
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There is a large literature of extreme-value analyses applied to hydrological data.

Hosking et al. (1985) and Hosking and Wallis (1987) apply their proposed estimation

method to river Nidd data (to 35 annual maxima floods of the river Nidd, at Hunsingore,

Yorkshire, England). Davidon and Smith (1990) apply the generalized Pareto distribution

to more detailed data of the same river, taking into account both seasonality and serial

dependence of data. Dekkers and de Haan (1989) are concerned with the high tide water

levels in one of the islands at the Dutch coast.

The increasing need to exploit coast areas combined with the concern about the

greenhouse effect has resulted in a demand for the height of sea defences to be estimated

accurately, and to be such that the risk of the sea-dyke being exceeded is small and pre-

specified. So, more elaborate techniques have recently been developed. Tawn (1992)

performed extreme-value analysis to hourly sea levels by taking into account the fact that

the series of observations is not a stationary sequence (due to astronomical tidal

component). Barão and Tawn (1999) utilize bivariate extreme value distributions to

model data of sea-levels at two UK east coast sites, while de Haan and de Ronder (1998)

model wind and sea data of Netherlands using bivariate extreme value d.f.

Extreme low sea levels are of independent interest in applications to shipping and

harbour developments and for the design of nuclear power station cooling water intakes.

With simple adaptations most methods can be applied to sea-level minima to solve such

problems.

Another related issue is that of rainfalls. The design of large-scale hydrological

structures requires estimates to be made of the extremal behaviour of the rainfall process

within a designated catchment region. It is common to simulate extreme events (rainfalls)

and then to access the consequent effect on hydrological models of reservoirs, river flood

networks and drainage systems. Coles and Tawn (1996) exploit extreme value

characterizations to develop an explicit model for extremes of spatially aggregated

rainfall over fixed durations for a heterogeneous spatial rainfall process.

Furthermore, in ecology, higher concentration of certain ecological quantities, like

concentration of ozone, acid rain or SO2 in the air are of great interest due to their

negative response on humans and generally, on the biological system. For example,

Smith (1989) performs extreme value analysis in ground-level ozone data, taking into
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account phenomena common in environmental time series, such as seasonality and

clustering of extremes. Similar is the subject dealt with in Küchenhoff and Thamerus

(1996).

! Insurance

Estimating loss severity distributions (i.e. distributions of individual claim sizes) from

historical data is an important actuarial activity in insurance. In the context of re-

insurance, where we are required to choose or price a high-excess layer, we are

specifically interested in estimating the tails of loss severity distributions. In this situation

it is essential to find a good statistical model for the largest observed historical losses; it

is less important that the model explains smaller losses. In fact, a model chosen for its

overall fit to all historical losses may not provide a particularly good fit to the large

losses. Such a model may not be suitable for pricing a high-excess layer. It is obvious that

extreme-value theory is the most appropriate tool for this job, either by using extreme

value distribution to model large claims or generalized Pareto distribution to model

exceedances over a high threshold.

The applicability of extreme-value theory to insurance is discussed by Beirlant et al.

(1994), Mikosch (1997), McNeil (1997), McNeil and Saladin (1997) with application to

Danish data on large fire insurance losses, Rootzen and Tajvidi (1997) with application to

Swedish windstorm insurance claims.

! Finance – Risk Management

Finance and, even more general, risk management are areas where only recently

extreme-value theory has gained ground. Insurance and financial data can both be

investigated from the viewpoint of risk analysis. Therefore, the insight gained from

insurance data can also be helpful for the understanding of financial risks.

Mainly due to the increase in volume and complexity of financial instruments traded,

risk management has become a key issue in any financial institution or corporation of

some importance. Globally accepted rules are put into place aimed at monitoring and

managing the full diversity of risk. Extreme event risk is present in all areas of risk

management. Whether we are concerned with credit, market or insurance risk, one of the

greatest challenges to the risk manager is to implement risk management models which
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allow for rare but damaging events, and permit the measurement of their consequences.

In market risk, we might be concerned with the day-to-day determination of the Value-at-

Risk (VaR) for the losses we incur on a trading book due to adverse market movements.

In credit or operational risk management our goal might be the determination of the risk

capital we require as a cushion against irregular losses from credit downgrading and

defaults or unforeseen operational problems. No discussion has perhaps been more heated

that the one on VaR. The biggest problem with VaR is the main assumption in the

conventional models, i.e. that portfolio returns are normally distributed.

In summary the main points of risk management are the followings

− Risk management is interested in estimating tail probabilities and quantiles of profit-

loss distributions, and indeed of general financial data

− Extremes do matter

− We want to have methods for estimating conditional probabilities concerning tail-

events: �Given that we incur a loss beyond VaR, how far do we expect the excess to go?�

− Financial data show fat tails.

Extreme-Value Theory is a subject whose motivations match the four points highlighted

above. It has a very important role to play in some of the more technical discussions

related to risk management issues. The usefulness of extreme-value theory to risk

management is stressed by Danielsson and de Vries (1997), McNeil (1998 and 1999),

Embrechts et al.  (1998, 1999), Embrechts (1999).

! Teletraffic Engineering

Classical queuing and network stochastic models contain simplifying assumptions

guaranteeing the Markov property and insuring analytical tractability. Frequently, inter-

arrival and service times are assumed to be i.i.d. and typically underlying distributions are

derived from operations on exponential distributions. At a minimum, underlying

distributions are usually assumed nice enough that moments are finite. Increasing

instrumentation of teletraffic networks has made possible the acquisition of large

amounts of data. Analysis of this data is disturbing since there is strong evidence that the

classical queuing assumption of thin tails and independence are inappropriate for these

data. Such phenomena as file lengths, CPU time to complete a job, call holding times,
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inter-arrival times between packets in a network and length of on/off cycles appear to be

generated by distributions which have heavy tails. Resnick and Stărică (1995), Kratz and

Resnick (1996), and Resnick (1997a) deal with such kind of data.

Other areas where extreme-value analysis has found application are engineering

strength of materials (Harter, 1978 provides a detailed literature on this subject),

earthquake size distribution (see, e.g., Kagan, 1997), athletic records (Strand and Boes,

1998, Barão and Tawn, 1999), city-sizes, corrosion analysis, exploitation of diamond

deposits, demography, geology and meteorology among others.

1.4 Overview
In the second chapter we provide laws, theorems and propositions that constitute the

theoretical background of extreme values. In chapter 3, some fully parametric estimation

methods are described. Another family of estimation methods is presented in chapter 4,

the family which includes the well-known extreme-value index estimators Hill, moment,

and so on. These are the so-called semi-parametric estimation methods, on which special

emphasis is put. In chapter 5 some recently suggested methods for improving the

performance of extreme-value index estimators are described. Their performance is

evaluated via simulation.  In chapter 6, extreme-value analysis on teletraffic data is

performed. Chapter 7 is the final chapter of this thesis, where the main findings are

summarized and suggestions for further research are made.




