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CHAPTER 5 

SMOOTHING AND ROBUSTIFYING PROCEDURES FOR
SEMI-PARAMETRIC EXTREME-VALUE INDEX
ESTIMATORS

5.1 Introduction

In the previous chapter, we presented a series of (semi-parametric) estimators for the

extreme value index γ. Apart from the inherent attractiveness that they have due to the

fact that they rely on the well-established theoretical background of extreme-value

theory, each one of them has been studied extensively and its advantages and

disadvantages have been revealed according to the type of d.f. that they are applied to.

For almost all of these estimators (at least for the basic ones) consistency and asymptotic

normality have been proven. Still, one of the most serious objections one could raise

against these methods is their sensitivity towards the choice of k (number of upper order

statistics used in the estimation). The well-known phenomenon of bias-variance trade off

turns out to be unresolved, and choosing k seems to be more of an art than a science.

Previously, we have mentioned some refinements of these estimators, in an effort to

produce unbiased estimators even when a large number of upper order statistics is used in

the estimation (see, for example, Peng, 1998, or Drees, 1996). From another standpoint,

adaptive methods for choosing k were proposed for special classes of distributions (see

Beirlant et al., 1996 and references in Resnick and Stărică, 1997).  The criterion for the

choice of k is minimization of the asymptotic mean square error (AMSE). Csörgő et al.

(1985) introduced a family of kernel estimators (described in the previous chapter) and

for the same special class of distributions, they determined the optimal choice of λ

(corresponding to our k) and of the kernel function K to be used in the estimation. Their

optimality criterion is also based on minimizing AMSE. Indeed, all of these approaches

provide us with a single choice of k that is optimal in �some sense�. Still, none of these

has been widely accepted. No hard and fast rule seems to exist. It is interesting to note
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that Pickands, when introducing Pickands estimator (Pickands, 1975), also suggested an

ad-hoc method for choosing k, but that method was never actually widely adopted,

contrary to the estimator itself. Another common unfortunate feature of semi-parametric

estimators of γ  is that the optimal choice of k depends mainly on 2nd order assumptions

of the underlying d.f. F. As we have repeatedly mentioned, these conditions are not

verifiable in practice. Remember that unbiased versions of these estimators also depend

on 2nd order conditions on F. Additionally, the formulas for minimization of AMSE are

usually only asymptotic formulas and the asymptotic equivalence is not helpful for finite

samples. So, it seems that again we are led to a dead-end. Accordingly, it is not an

exaggeration to say that choosing k (number of upper order statistics used in the

estimation procedure) is the Achilles heel of semi-parametric estimation methods for

extreme-value index γ. In the sections to follow we attempt a different approach towards

this issue. We go back to elementary notions of extreme-value theory and statistical

analysis in general and try to explore methods to render (at least partially) this problem.

The procedures we use are:

− Smoothing techniques

− Robustyfing Techniques

Moreover, new developments, based on bootstrap, for choosing the number of upper

order statistics used in the estimation of the index are also presented.

5.2 Smoothing Extreme-Value Index Estimators

The essence of semi-parametric estimators of extreme-value index γ, is that we use

information of only the most extreme observations in order to make inference about the

behaviour of the maximum of a d.f. An exploratory way to subjectively choose the

number k is based on the plot of the estimator $ ( )γ k versus k. A stable region of the plot

indicates a valid value for the estimator. The search for a stable region in the plot is a

standard but problematic and ill-defined practice. The need for a stable region results

from adapting theoretical limit theorems which are proved subject to the condition that
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the number of upper order statistics k used in the estimation tends to infinity ( k n( ) →∞ )

but k is a diminishing proportion of the sample size ( k n n( ) / → 0 ).

But, since extreme events by definition are rare, there is only little data (few

observations) that can be utilized and this inevitably involves an added large statistical

uncertainty. Thus, sparseness of large observations and the unexpectedly large

differences between them, lead to a high volatility of the part of the plot that we are

interested in and makes the choice of k very difficult. That is, the practical use of the

estimator on real data is hampered by the high volatility of the plot and bias problems and

it is often the case that volatility of the plot prevents a clear choice of $γ . A possible

solution would be to smooth �somehow� the estimates with respect to the choice of k (i.e.

make it more insensitive to the choice of k), leading to a more stable plot and a more

reliable estimate of γ. Such a method was proposed by Resnick and Stărică (1997, 1999)

for smoothing the Hill and moment estimator respectively.

5.2.1 Smoothing Hill Estimator

Resnick and Stărică (1997) propose a simple averaging technique that reduces the

volatility of the Hill-plot. The smoothing procedure consists of averaging the Hill

estimator values corresponding to different values of order statistics p. The formula of the

proposed averaged-Hill estimator is :

av k
k ku

pH H
p ku

k
$ ( )

[ ]
$ ( )

[ ]

γ γ=
− = +

∑1
1

  ,

where u<1, and [x] denotes the smallest integer greater than or equal to x.

Notice that the order of number of terms involved in the averaging is k. Therefore

when n k, → ∞  we will be averaging larger and larger numbers of Hill estimator�s values

with a consequent reduction in asymptotic variance. Indeed, the authors prove that

through averaging (using the above formula), the variance of the Hill estimator can be

considerably reduced and the volatility of the plot tamed. The smoothed graph has a

narrower range over its stable regime, with less sensitivity to the value of k. This fact

diminishes the importance of selecting the optimal k. The estimate of γ suggested by
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averaged-Hill plot can be used as a basis for further studies which would, for example,

use bootstrap techniques to correct for bias. We should also note that though the

technique is simple and obvious, it turns out to be quite useful in practice, while

asymptotic normality can be proved for averaged-Hill estimator under the same

conditions required for the normality of the original Hill estimator. The smoothing

techniques make no (additional) unrealistic or uncheckable assumptions and are always

available to complement the Hill plot. Obviously, when considerable bias is present, the

averaging technique offers no improvement. Still, the procedure, while unable to solve

the bias problem, is usually more informative than the standard practice.

Theoretical (Asymptotic) Investigation of Averaged-Hill Estimator

In order to study the (asymptotic) behaviour of averaged-Hill estimator, Resnick and

Stărică (1997) proceed to the following definitions:

Definitions (Resnick and Stărică, 1997)
On [0,∞) we have the empirical processes:

Tail Empirical Process [ ]E y
k

yk n X b n k
i

n

i, / ( / )( ) ,≡ ∞−

=
∑1
1

ε γ ,

Normalized Tail Empirical Process ( )Ek n k ny k E y y, ,( ) ( )≡ − ,

where b t F t( ) ( )= −← −1 1  and ε x ( )⋅  is an indicator function,

while on (0, ∞) we have the processes:

Hill Process H y kyk n H, ( ) $ ([ ])≡ γ , and

Normalized Hill Process ( )Hk n k ny k H y, ,( ) ( )≡ −γ .

By associating the tail empirical process to the sequence (X1, X2, ..., Xn), the authors

show the weak convergence of the normalized tail empirical process to a Brownian

motion  and deduce from this the convergence of the normalized Hill process. By a

process of integration the asymptotic behaviour of the smoothed estimator is obtained. In

the lines to follow we provide a brief outline of the reasoning that Resnick and Stărică

(1997) adopt in order to derive the adequacy (consistency and asymptotic normality) of
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the averaged-Hill estimator, as well as its improvement over Hill estimator (smaller

asymptotic variance). We omit the technical details, while the proofs of the propositions

and theorem sited below can be found in Resnick and Stărică (1997).

Necessary Conditions (these are essentially the conditions needed to prove asymptotic

normality of the Hill estimator, as well)

Condition 1:

There exist constants γ > 0 , ρ ≤ 0, K ∈ ℜ  such that

lim ( ) ( )
( ) ( )

/

t

x F tx F t
F t g t

K x
→∞

− = −1 1γ ρ

ρ
(1),

where g RV∈ ρ , the convergence in (1) is uniform on [1,∞), and

x F xu
F x

u du K g x1 1

1

2

1
1

/ ( )/( )
( )

( )γ γ γ γ
γρ

−





→
−

− +
∞

∫ , as x → ∞ .

Condition 2:

The sequence k(n), such that k → ∞ , and k n/ → 0 , satisfies

k g b n
k












→ 0 , as n → ∞ .

The derivation of the asymptotic behaviour of the tail empirical process is the first step in

the endeavor of smoothing the Hill estimator

Proposition: Asymptotic Behaviour of the Normalized Tail Empirical Process
(Resnick and Stărică, 1997)

Assume that Conditions 1, 2 hold,  as n → ∞ . Then

[ ]Ek n X b n k
i

n

y k
k

y y W y
i, / ( / )( ) , ( )≡ ∞ −




→−

=
∑1
1

ε γ

in D[ , )0 ∞ , where { }W t t( ), ≥ 0 is a standard Brownian motion.

(detailed description of Brownian motion and its properties can be found in Ross, 1996)
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Based on the above proposition and on the remark that the Hill process can �almost� be

expressed as a functional of the tail empirical process and its inverse process, the

asymptotic behaviour of Hill process is derived.

Proposition: Asymptotic Behaviour of the Normalized Hill Process (Resnick and
Stărică, 1997)

Assume that Conditions 1, 2 hold. Then as n → ∞ ,

( )( )Hk n Hy k ky
y

W y, ( ) $ [ ] ( )= − →γ γ γ

in D( , )0 ∞ , where { }W t t( ), ≥ 0 is a standard Brownian motion.

These results, concerning stochastic process, lead to the derivation of the asymptotic

distribution of the averaged-Hill estimator.

Proposition: Asymptotic Distribution of the Averaged-Hill Estimator (Resnick and
Stărică, 1997)

Assume that Conditions 1, 2 hold, n → ∞ , and let s ≥ 1, v ≥ 2  be fixed. Then

k
ks v

p N cH
p ks

ksv1
1

0
( )

$ ( ) ( , )
[ ]

[ ]

−
−









 →

=
∑γ γ ,

where c
s v

v
v

=
−

−
−







γ 2 2
1
1

1( )
ln  (v corresponds to 1/u in the previous defining formula

of the averaged-Hill estimator).

The above formula of variance consists a formal justification of the averaging

procedure. It is apparent that the variance is decreasing with respect to both s and u, while

for their minimum values s=1 and v=2 the variance of the averaged-Hill estimator is

0 614 2. γ , i.e. there is a 38.6% reduction compared to the variance of the original Hill

estimator. In essence, the bigger v (smaller u) and s the better. As long as s is concerned

it is reasonable to take s=1. But then, since the asymptotic variance is a decreasing

function of u, one would like to choose v as big as possible to ensure the maximum

decrease of the variance. However, the choice of v is limited by the sample size. Due to

the averaging, the larger the v, the fewer the points one gets on the plot of averaged Hill.

Therefore, an equilibrium should be reached between variance reduction and a

comfortable number of points on the plot. Notice, that this is a problem similar to the
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variance-bias trade-off encountered in the simple extreme-value index estimators. The

figure below graphically illustrates the reduction in the variance of the original Hill

estimator when we use smoothing.

Figure 5.1. Percentage of variance reduction due to smoothing of Hill estimator, versus smoothing

parameters s, v

In the figures that follow, we can see the effect of averaging Hill estimator to data

generated from some well-known and widely applicable distributions.
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Figure 5.2. Hill (black line) and avHill (gray line) plot (a) and alternative plot (b) for 10,000 Pareto

observations (γ=1, smoothing parameter u=0.3)
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Figure 5.3. Hill (black line) and avHill (gray line) plot (a) and alternative plot (b) for 10,000 Cauchy (10,1)

observations (γ=1, smoothing parameter u=0.3)
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Figure 5.4. Hill (black line) and avHill (gray line) plot (a) and alternative plot (b) for 10,000 log-

gamma(1,1) observations (γ=1, smoothing parameter u=0.3)

5.2.2 Smoothing Moment Estimator

The previous method referred to the smoothing of Hill estimator, i.e. it was restricted

to cases where γ > 0 . Hence, it would be desirable to proceed to the construction of a

more general smoothing procedure that would correspond to an estimator covering the

whole range γ ∈ℜ . The moment estimator $γ M , described in the previous chapter,

fulfills the requirement of being applicable to all γ ∈ℜ . So, Resnick and Stărică (1999)
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also applied their idea of smoothing to the more general moment estimator $γ M ,

essentially generalizing their reasoning of smoothing Hill estimator. As was the case for

the Hill estimator, they propose a modification of this estimator obtained through an

averaging technique.

In practice, one makes a plot of ( ){ }k k k nM, $ ( ) ,γ 1≤ ≤  and attempts to infer a value

of γ from a stable region of the plot. As was the case for the Hill estimator, this is quite a

subjective procedure, which is marred by the volatility of the plot and considerations of

the percentage of the display space that the plot occupies in a neighborhood of the true

value. Methods adaptively estimating the �optimal� k, which minimizes the asymptotic

mean square error, exist here as well and are welcome but they have unproven practical

value (see comments in previous section). The smoothing procedure that Resnick and

Stărică (1999) propose reduces the volatility of the plot and makes the selection of an

estimate based on the plot more secure.

So, the proposed smoothing technique consists of averaging the moment estimator

values corresponding to different numbers of order statistics p. The formula of the

proposed averaged-moment estimator, for given 0 1< <u , is :

[ ]
av k

k u
pM M

p ku

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1
 .

In practice, the authors suggest to take u=0.3 or u=0.5 depending on the sample size (the

smaller the sample size the larger u should be).

Notice that, again, the order of number of terms involved in the averaging is k.

Therefore when n k, → ∞  we will be averaging larger and larger numbers of moment

estimator values.

Still, in this case the consequent reduction in asymptotic variance is not so profound.

The authors actually show that through averaging (using the above formula), the variance

of the moment estimator can be considerably reduced only in the case γ < 0 .

In this case all the remarks that were made for averaged-Hill (smoothed graph,

diminishing importance of selecting k and so on) are valid, too. Still, in the case γ > 0

the simple moment estimator turns out to be superior that the averaged-moment

estimator. Of course in that case, as the authors argue, if we could know that indeed
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γ > 0 , we could simple use the averaged-Hill estimator. For γ ≈ 0  the two moment

estimators (simple and averaged) are almost equivalent. These conclusions hold

asymptotically, and have been shown via a graphical comparison, since the analytic

formulas of variances are rather complicated to be compared directly.

Theoretical (Asymptotic) Investigation of Averaged-Moment Estimator

In order to study the (asymptotic) properties of the smoothed moment estimator,

Resnick and Stărică (1999) prove, first of all the weak convergence of a normalized tail

empirical process to a Brownian motion which implies the convergence of a process

closely related to the moment estimator to a functional of a Brownian motion (note that,

here, the definition of tail empirical process is similar but not identical to the tail

empirical process defined in the context of averaged-Hill estimator). By an integrating

procedure, they derive the asymptotic behaviour of the averaged-moment estimator. Still,

the situation here is somewhat more complicated than was for the averaged-Hill

estimator. So, the authors do not prove asymptotic normality of the averaged-moment

estimator, but instead show that it converges to a more complicated functional. Even the

variance of the new estimator is complicated enough, show that only numerically

(graphically) can we see that the averaged estimator has larger variance when γ > 0  and

smaller variance when γ < 0 , compared to the original moment estimator. So, in the

sequel we display only the main results which reveal the asymptotic behaviour of

averaged moment estimator, as well as the required conditions (these conditions are not

more restrictive than the conditions imposed to F, in order to prove asymptotic normality

of the simple moment estimator). Full treatment of this issue and proofs of the

propositions can be found in Resnick and Stărică (1999).

Condition 1:

Let ~ min( , )γ γ= 0  and assume there exists constant ~ρ ≤ 0, and function ~A  (ultimately of

constant sign and ~A → 0 ) such that

lim

( ) ( )
( ) ( ) ~

~( )
~( )

~

t

Y Y

Y Y

b tx b t
a t b t

x

A t
H x

→∞

−
− −

=

γ

γ
1

(1),
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for a function ~H  not a multiple of ( )x
~ ~γ γ−1 ,

where ( )Y X= +ln , b t F tX ( ) ( )= −← −1 1 , and

( )( )
a t

b b t

b te b t

b t

X

X X

X X

X

( )

( ) ( )

( ) ( )

( )

=

− ∞ −

− =










γ γ

γ

γ γ

if < 0,

if 0,

if > 0.

Condition 2

The sequence k(n), such that k → ∞ , and k n/ → 0 , satisfies

k A n
k

~




→ 0 , as n → ∞ .

Proposition 1 (Resnick and Stărică, 1999):
Assume that ( )F D H∈ γ , and Conditions 1, 2 hold. Then, the following convergence

properties hold in D( , )0 ∞  as n → ∞  :

for γ ≥ 0 ,

( )( )
( )k

M ky
M ky y

B y B u u u du y B u u du
y y

1 1
2
1 1 21

2

2

1

1 1

0

1

0

− −

























→ + + −













−

− − −∫ ∫
[ ]
[ ]

( ) ( ) ln( ) (ln ) ( )

and

( )( )k ky
y

B u u u du y B u u du B yM

y y

$ [ ] ( ) ln( ) ( ln ) ( ) ( ) ( )γ γ γ γ− → + + − + −











− − −∫ ∫

1 2 11 1

0

1

0

,

while for γ < 0 ,

( )( )
( )

( )( )k
M ky
M ky

y

y B u u du y B u u du B y
y y

1 1
2
1

1 2 1

1 2
1

1
2

2

1
2

1

1

0

2 2 1

0

− −










 −














→ −

− −
×

− − −
−













−

−

− − − −∫ ∫

[ ]
[ ]

( ) ( ) ( ) ( )

γ
γ γ
γ

γ γ
γ

γ γ γ γ

and
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( )( ) ( )( )
k ky y

y B u u du y B u u du B y

M

y y

$ [ ]

( ) ( ) ( ) ( ) .

γ γ
γ γ
γ

γ γ
γ

γ γ γ γ

− → −
− −

×

− − −
−













−

− − − −∫ ∫

1 2 1

1 2
1

2
1

1

0

2 2 1

0

Proposition 2 (Resnick and Stărică, 1999):
Assume the hypotheses of proposition 1 hold and that 0 1< <u . Then in D( , )0 ∞  and

for n → ∞ , it holds that

For γ ≥ 0

( )k
k u

p

u y
B u u udu y B u u du B y dy

u

M
p ku

k

y y

1
1

1
1

1 2 1

1

1

0

1

0

1

( )
$

( ) ln ( ln ) ( ) ( ) ( )

[ ]−
−









 →

−
× − + + − + −













= +

− −

∑

∫ ∫∫

γ γ

γ γ

and for γ < 0

( ) ( )( )
k

k u
p

u

y
y B u u du y B u u du B y

u

M
p ku

k

y y

1
1

1 2 1
1

1 1 2
1

1

2

1

0

2 2 1

0

1

( )
$

( )

( ) ( ) ( ) ( ) .

[ ]−
−









 → −

− −
−

×

− − −
−













= +

− − − −

∑

∫ ∫∫

γ γ
γ γ

γ

γ γ
γ

γ γ γ γ

5.3 Robust Estimators Based on Excess Plots

In the derivation of Hill estimator, we have mentioned that one of Hill estimator�s

motivating ideas was based on mean excess plot. In the sequel we explore this approach,

underline its deficiencies and try to find some �better� (actually, more robust) alternatives

in the context of excess plots.

A graphical tool for assessing the behaviour of a d.f. F is the mean excess function

(MEF), also known as mean residual life. More precisely, the limit behaviour of MEF of
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a distribution gives important information on the tail of that distribution function

(Beirlant et al., 1995). MEF�s and the corresponding mean excess plots (MEP�s) are

widely used in the first exploratory step of extreme-value analysis, while they also play

an important role in the more systematic steps of tail index and large quantiles estimation.

MEF is also of interest in actuarial studies (especially in reinsurance), survival analysis

and reliability; it is related to other well-known functions such as the Lorenz curve and

the hazard function. MEF is essentially the expected value of excesses over a threshold

value u. The formal definition is as follows

Definition: Mean Excess Function, Mean Excess Plot (Beirlant et al., 1996)

Let X be a positive r.v. X with d.f. F and with finite first moment. Then the mean

excess function (MEF) of X is

( )e u E X u X u
F u

F y dy
u

xF

( )
( )

( )= − > = ∫
1 , for all u>0.

The corresponding mean excess plot (MEP) is the plot of points { }u e u, ( ),  for all u > 0 .

The empirical counterpart of mean excess function based on sample ( )X X X n1 2, ,..., , is

( ) ( ) ( )

( ) ( )
$( )

,

,

e u
X u X

X

i u i
i

n

u i
i

n=
− ∞

=

∞
=

∑

∑

1

1

1

1

.

Usually, the MEP is evaluated at the points u X i n= : , where ( )X X Xn n n n1 2: : :...≥ ≥ ≥  are

the (descending) order statistics of the sample. In that case, MEF takes the form

( ) ( )E e X
k

X Xk k n i n
i

k

k n= = −+
=

+∑$ ( ): : :1
1

1
1 ,  k=1,..., n.

Properties of MEF

A detailed investigation of MEF and its properties, as well as long lists of the

formulae of MEF for several known d.f.�s,  can be found in Embrechts, et al. (1997) and

in Beirlant et al. (1996). In the sequel we present the most important properties that are

useful for the present scope.
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! Any continuous d.f. F is uniquely determined by its MEF. The "1-1" relationship can

be described by the formula

1 0 1

0

− = −








∫F x e
e x e u

du
x

( ) ( )
( )

exp
( )

, x ≥ 0.

! If X~Exp(λ), then e u( ) = −λ 1 , for all u>0.

Based on this property we can discriminate the d.f.�s as follows. If the MEF of a d.f.

ultimately (i.e. as u xF→ ) increases, then the d.f. is heavier-tailed than the exponential

d.f. and is called sub-exponential, while if MEF ultimately decreases, the corresponding

d.f. has weaker than exponential tails, and is called super-exponential. Ultimately

constant behaviour of MEF implies that the d.f. is medium tailed, i.e. it has tails

equivalent to exponential tails. Still, as Drees and Reiss (1996) mention, when the MEF

is increasing, yet ultimately there is a concave tendency, then the underlying d.f. will be

close (in the upper-tail) to a Weibull d.f. with parameter c<1, i.e. the d.f. is medium

tailed. A more thorough discussion on sub-exponentiality is cited in the appendix of

Embrechts, et al. (1997).

! If X is of Pareto type with index 1/γ (i.e. X MDA H∈ ( )γ , γ>0), then

( ) ( )e u E X u X uXln ln ln ln= − > →γ ,  as u → ∞ .

Intuitively, this last property suggests that if the MEF of the logarithmic-transformed data

is ultimately constant, then X MDA H∈ ( )γ , γ>0 and the values of the MEF converge to

the true value of γ.

Replacing u, in the above relation, by a high quantile Q k
n

1−





, or empirically by

X(k+1):n, we find that the estimator e XX k nln ( ):( )+1  will be a consistent estimator of γ in case

1-F is regularly varying with index �1/γ (whenever X(k+1):n diverges, with arbitrarily large

probability, to ∞). This holds when k n/ → 0  as n → ∞ . Notice that the empirical

counterpart of e XX k nln ( ):( )+1  is the well-known Hill estimator.
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However, though theoretically the values of MEF consistently estimate the parameter

γ, in practice strong random fluctuations of the empirical MEF and the corresponding

MEP are observed, especially in the right part of the plot (i.e. for large values of u), since

there we have fewer data. But this exactly is the part of plot that mostly concerns us, that

is the part that theoretically informs us about the tail behaviour of the underlying d.f.

Consequently, the calculation of the �ultimate� value of MEF can be largely influenced by

only a few extreme outliers, which may not even be representative of the general �trend�.

It is striking the result of Drees and Reiss (1996), that the empirical MEF is an inaccurate

estimate of the Pareto MEF, and that the shape of the empirical curve heavily depends on

the maximum of the sample.

In an attempt to make the procedure more robust, that is less sensitive to the strong

random fluctuations of the empirical MEF at the end of the range, the following

adaptations of MEF have been considered (Beirlant et al., 1996).

" Generalized Median Excess Function M k X Xp
pk n k n

( )
([ ] ): ( ):( ) = −+ +1 1

where [x] is the largest integer not larger that x

(for p=0.5 we get the simple median excess function).

" Trimmed Mean Excess Function T k
k pk

X Xp
j n

j pk

k

k n
( )

:
[ ]

( ):( )
[ ]

=
−

−
= +

+∑1
1

1 .

The general motivations and procedures explained for the MEF and its contribution to

the estimation of γ hold here as well. Thus, alternative estimators for γ>0 are :

" ( )$
ln( / )

ln ln. ([ ] ): ( ):γ gen med pk n k np
X X= −+ +

1
1 1 1

which for p=0.5 gives ( )$
ln( )

ln ln([ / ] ): ( ):γ med k n k nX X= −+ +
1
2 2 1 1

(the consistency of this estimator is proven by Beirlant et al., 1996).

" $
[ ]

ln ln:
[ ]

( ):γ trim j n
j pk

k

k nk pk
X X=

−
−

= +
+∑1

1
1

The performance of both of these families of alternative estimators is going to be

explored (via simulation) in the next section.
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5.4 Simulation Comparison of Extreme-Value Index
Estimators

5.4.1 Details of Simulation Study

In this section, we try to investigate and compare, via Monte Carlo methods, the

performance of several of the extreme-value index estimators introduced in the fourth

chapter, as well as the performance of the modifications suggested previously in the

current chapter. Apart from the standard form of estimators, we apply to all these the

averaging procedure presented in section 5.2. Resnick and Stărică (1997, 1999) suggest

(and prove the adequacy and good properties of) this procedure only in the context of Hill

and moment estimator. Anyhow, we apply it to other extreme-value index estimators, so

as to empirically evaluate its performance to these estimators. In addition, apart from

these mean-averaged estimators, we apply analogously a median-averaging procedure to

our estimators. Moreover, for γ > 0 , we also examine estimators based on median excess

plot as well as on trimmed mean excess plot (see section 5.3.). The following table 5.1

contains all the estimators that are included in the present simulation study. These

estimators are compared with respect to the distributions of table 5.2.

Table 5.1. Estimators included in the simulation study

Estimators Formula

Standard Estimators

Pickands estimator (for γ∈ℜ ) $
ln

ln : :

: :

γ P
M n M n

M n M n

X X
X X

=
−
−









1
2

2

2 4

Hill estimator (for γ>0) $ ln ln: :γ H i n
i

k

k nk
X X= −

=
+∑1

1
1

Adapted Hill estimator (for γ∈ℜ ) $ ln( ) ln( )γ adH i
i

k

kk
UH UH= −

=
+∑1

1
1

Moment estimator (for γ∈ℜ ) ( )
$γ M M

M
M

= + − −










−

1
1

2

2

1

1 1
2
1 ,

( )∑ −≡
=

+
k

i

j
nknij XX

k
M

1
:)1(: lnln1
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Moment-Ratio estimator (for γ>0) $γ MR
M
M

= ⋅1
2

2

1

QQ estimator (for γ>0) $

ln ln ln

ln ln

: :

γ qq

j n
j

k

i n
i

k

i

k

i

k

i
k

X k X

k i
k

i
k

=
+

−








+






−
+







==

= =

∑∑

∑ ∑

1

1 1

11

2

1 1

2

Peng�s estimator (for γ∈ℜ ) ( )
$γ L

M
M

M
M

= + − −










−

2

1

1
2

2

1

2
1 1

2
1

W estimator (for γ<1/2) ( )
$γ W

L
L

= − −










−

1 1
2
1 1

2

2

1

Mean-Averaged Estimators (s=0.5)
Averaged Pickands estimator
(for γ∈ℜ ) av k

s k
pP P

p ks

k
$ ( )

( )
$ ( )

[ ]

γ γ=
− = +

∑1
1 1

Averaged Hill estimator (for γ>0) av k
s k

pH H
p ks

k
$ ( )

( )
$ ( )

[ ]

γ γ=
− = +

∑1
1 1

Averaged adapted Hill estimator
(for γ∈ℜ )

[ ]
av k

k s
padH adH

p ks

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1

Averaged moment estimator
(for γ∈ℜ )

[ ]
av k

k s
pM M

p ks

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1

Averaged moment-ratio estimator
(for γ>0)

[ ]
av k

k s
pMR MR

p ks

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1

Averaged QQ estimator (for γ>0) av k
s k

pqq qq
p ks

k
$ ( )

( )
$ ( )

[ ]

γ γ=
− = +

∑1
1 1

Averaged Peng�s estimator
(for γ∈ℜ )

[ ]
av k

k s
pL L

p ks

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1

Averaged W estimator (for γ<1/2)
[ ]

av k
k s

pW W
p ks

k
$ ( )

( )
$ ( )γ γ=

− = +
∑1

1 1

Median-Averaged Estimators (s=0.5)
Median-Averaged Pickands
estimator (for γ∈ℜ )

{ }med av k med p p ks kP P. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged Hill estimator
(for γ>0)

{ }med av k med p p ks kH H. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged adapted Hill
 estimator (for γ∈ℜ )

{ }med av k med p p ks kadH adH. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged moment estimator
(for γ∈ℜ )

{ }med av k med p p ks kM M. $ ( ) $ ( ), [ ] ,...,γ γ= = +1
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Median-Averaged moment-ratio
estimator (for γ>0)

{ }med av k med p p ks kMR MR. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged QQ estimator
(for γ>0)

{ }med av k med p p ks kqq qq. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged Peng�s estimator
 (for γ∈ℜ )

{ }med av k med p p ks kL L. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Median-Averaged W estimator
(for γ<1/2)

{ }med av k med p p ks kW W. $ ( ) $ ( ), [ ] ,...,γ γ= = +1

Estimators based on Excess Plot
Estimator based on Median Excess
Plot (for γ>0) ( )$

ln( )
ln ln([ / ] ): ( ):γ med k n k nX X= −+ +

1
2 2 1 1

Estimators based on Trimmed Mean
Excess Plot (for γ>0)
p=0.01, 0.05, 0.10

$
[ ]

ln ln:
[ ]

( ):γ trim j n
j pk

k

k nk pk
X X=

−
−

= +
+∑1

1
1

Table 5.2. Distributions used in the simulation study

Name Other parameters Extreme-value index  γ
Burr (τ, λ) = (0.25, 1), (0.55, 1), (0.5, 2), (1, 0.5) 0.25, 0.55, 1, 2
Fréchet - 0.25, 0.55, 1, 2
Log-gamma α=1, λ = 4, 1/0.55, 1, 0.5 0.25, 0.55, 1, 2
Log-logistic - 0.25, 0.55, 1, 2
Pareto - 0.25, 0.55, 1, 2
Weibull λ=1, τ=0.5, 1.5 0
Exponential - 0
Log-normal µ=100, σ=1 0
Normal µ=10, σ=1 0
Gamma α=1, β=0.5, 1.5 0
Beta (α, β) = (0.5, 3), (2, 3), (0.5, 0.5), (2, 0.5) -1/3, -2
Uniform (α, β) = (0,1), (5, 10) -1

In particular, from each of these distributions, 1000 samples were generated of

moderate size (n=100) and 500 samples of large size (n=1000), based on which the

performance of the estimators is examined. In our study, the performance of any

estimator of γ, is evaluated in terms of the bias, standard error and root mean square error

of the estimator based on k upper order statistics (where k ranges from 1 up to sample

size). The root mean square error (RMSE), being a combination of standard deviation and

bias, is essentially the basis for comparisons of estimators. In the next section we
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summarize the main results of the simulation study. More details can be found in the

tables in the appendix.

5.4.2 Discussion of Simulation Results

Before proceeding to the discussion of the results, it should be noted that the performance

of the estimators did not seem to remain stable for data stemming from different

distributions. For this reason, in the sequel we provide the main findings of the simulation

study distinguishing for each different class of distributions. More general remarks are

provided at the end of this section.

•  Burr Distribution

In the case of Burr distribution, the estimation of extreme-value index, which ranges in

the interval (0,+∞), seems to depend on the value of extreme-value index itself. So, for

γ=0.25 (i.e., more generally speaking, for γ < 1
2

) the best estimator is Hill estimator (it

has the smallest rmse and in most cases the smallest bias). Moreover, in small samples

(n=100) Hill, also, has the smallest std, while for n=1000 Moment-Ratio displays the

smallest std. The mean averaging procedure improves the performance of Pickands

estimator. The same general result holds for γ=0.55 but only for small samples. For

γ=0.55 (large samples) and for γ=1 Moment-Ratio outperforms the Hill estimator.

Finally, for γ>1 (i.e. for γ=2) Moment estimator is preferable for large sample sizes

(n=1000), while W is best when it comes to small sample sizes. As long as trimming

effect is concerned, no clear effect exists.

•  Fréchet Distribution

For samples of small size (n=100), Hill estimator, in general, displays the best

performance. For Fréchet data with γ up to 1, Hill estimator has the smallest rmse and,

most of the times, the smallest bias and std. However, when γ exceeds 1 (in our case for

γ=2) the variability of Hill is much increased and W stands out as the best estimator.

When we are dealing with large simulated data-sets (n=1000), though, the performance of
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Hill remains in the same level, Moment-Ratio estimator improves greatly (its bias and,

consequently, its rmse is reduced significantly) and turns out to be the best estimator.

Again this holds for values of γ smaller than or equal to 1, since for γ=2, Moment

estimator has the smallest rmse. As long as the averaging procedures are concerned, the

only improvement is observed in the case of mean-averaged Pickands estimator.

•  Log-Gamma Distribution

For large sample sizes (n=1000) and γ up to 1, the best estimator is, undeniably, the

Moment-Ratio estimator. It has the smallest bias, std, as well as rmse. However, when γ

exceeds 1, the behavior of Moment-Ratio deteriorates (mainly due to the large increase of

std) and though, still, Moment-Ratio has the smallest bias, it is Moment the estimator

with the smallest rmse. A point that is worthy to be pointed out here is that while the

behavior of most estimators deteriorates as γ exceeds 1, the performance of W estimator

is improved. Actually, now, W has the smallest std. The situation is quite different when

we are dealing with small samples (n=100). In those cases, it is the Hill the best estimator

(smallest bias, std, rmse). Of course the behavior of Moment-Ratio is not disappointing

since it is the second best estimator (not differing much from the Hill). The only case

where Hill is surpassed by another estimator is for γ=2 and for small k (k=12, 20), when

W estimator displays the smallest std and rmse. No satisfactory improvement can be

attributed to the averaging procedures.

•  Log-Logistic Distribution

When we are dealing with large samples the situation is quite clear. The best estimator is

the Moment-Ratio estimator, since it always has the smallest rmse (in many cases it also

has minimum bias or std). However, the evaluation of estimators gets more complicated

for small sample sizes (n=100). Generally speaking, we could say that among all

estimators the estimator based on 10% trimmed mean excess plot is the best estimator

(smallest rmse). If we confine our comparison among the standard estimators, then Hill

and Moment-Ratio estimators are the most preferable.  For γ<1 and for small and

moderate choice of k (k=12, 20) it is the Hill which has the smallest rmse (while the

second smallest rmse is achieved by the Moment-Ratio), while when a larger portion of
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data is used in the estimation (k=40) the Moment-Ratio stands out as the best estimator

(followed by the Hill). Irrespectively of the choice of k, in the case of γ>1, the best

estimator is W.

•  Pareto Distribution

As was the case for distributions previously discussed, the Moment-Ratio estimator tends

to be, in general, preferable. For large samples and γ up to 1, Moment-Ratio has the

smallest rmse and the smallest bias (for γ smaller than 1 it also has the smallest std).

However, when γ exceeds 1, Moment estimator �outguns� Moment-Ratio. Even then,

Moment-Ratio has the smallest bias, while W has the smallest std. Again, for small

samples the situation is somewhat different. For γ up to 1, Hill is the best estimator

(smallest rmse, bias and, usually, smallest std). But for γ=2 and for k small (k=12, 20) its

variability is much increased while the behavior of W is improved leading to a minimum

rmse attributed to W. It is useful to add that Moment-Ratio is the second best estimator

here.

•  Weibull Distribution

Weibull d.f. belongs to the maximum domain of attraction of Gumbel d.f., i.e. the

extreme value index equals zero. That means that not all of the estimators under

examination should actually be applied to that type of data. Indeed, according to

theoretical results, Hill, Moment-Ratio and QQ estimators are not consistent for γ ≤ 0 .

However, in the context of our simulation study we applied all estimators even in cases

that they are not applicable (for comparison reasons). The simulation results here do not

suggest that any single estimator is uniformly best. So, for large samples and τ=0.5 Peng

is the best estimator, while for τ=1.5 the result depends on the number of upper order

statistics used (k). For large k, again Peng is the best estimator. However for smaller k

(k=12, 20) QQ and Moment estimators display better performances (though even then the

performance of Peng is not bad). The situation is somehow similar for small samples

(n=100). That is, for τ=0.5 Peng is preferable but for τ=1.5, it is outperformed by

Moment and Moment-Ratio estimators.
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•  Exponential Distribution

For large sample sizes (n=1000) Moment estimator has the best performance (for all

choices of k). Apart from having the smallest rmse, it also exhibits minimum bias. As

long as standard error is concerned, Moment-Ratio has the smallest values (though

Moment-Ratio is theoretically applicable only for γ > 0 ). The mean averaging procedure

improves the performance of Pickands estimator (though it still remains inferior to other

estimators). Estimators based on trimmed mean excess plots have a better performance

than simple Hill estimator (the larger the proportion of trimming the better the

performance of the estimator, while the median excess estimator is worse than Hill.

For small samples (n=100) Moment estimators perform better only when a large portion

of the sample is used in the estimation (k=40). Even then when we are dealing with

averaged estimators, Pickands outperforms the Moment. When a smaller k is used in the

estimation of extreme-value index (k=12 or 20) Moment-Ratio performs better (in terms

of rmse) and has the smallest std, while Pickands has the smallest bias.

Generally speaking, for estimating the extreme-value index in the case of exponential

d.f.s Moment estimator is most preferable for large samples, while for small samples we

should opt for mean-averaged Pickands estimators.

•  Log-Normal Distribution

For large samples the situation is quite clear, since Peng is the best estimator for all

choices of k. However, things are not so simple for n=100. In that case, the choice of best

estimator seems to depend on the choice of k. So, for large k, Peng is the best estimator,

while for small k Moment and Moment-Ratio outperform it.

•  Normal Distribution

In the case of normally distributed data the zero extreme-value index seems to be better

estimated by the Moment-Ratio estimators. This holds for all choices of k, for small and

for large sample sizes. The only problem seems to be the fact that Moment-Ratio

estimator is not theoretically applicable when extreme-value index equals zero. Other

estimators with satisfactory behaviour are Hill and Q-Q estimators (both of which are,

again, not applicable for zero extreme-value index). As long as averaging procedures are
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concerned, we should note that mean averaging greatly improves the performance of the

standard Pickands estimator. However, mean averaged Pickands estimator is not one of

the best estimators.

•  Gamma Distribution

Here, for the first time the mean averaging procedure provides rather promising results.

Though there is not a uniformly best estimator (for all choices of k and sample size n),

the mean averaged Pickands estimator displays the most satisfactory behaviour (in most

cases it has the smallest rmse). It is really impressive its improvement over the simple,

standard Pickands estimator. Other estimators with acceptable performance are Peng's,

Moment, Moment-Ratio and Hill estimator.

•  Beta Distribution

Beta distribution belongs to the maximum domain of attraction of Weibull d.f, since it

has finite upper end-point. That means that the extreme-value index that we are trying to

estimate is negative and, as previously mentioned, not all estimators are applicable here.

When we are dealing with large samples the situation is quite clear. Moment estimator is

uniformly the best estimator (with the smallest rmse). Also, Peng's performance is almost

as good as Moment's. Moreover, here it is evident the beneficial effect of the averaging

procedures (the mean as well as the median averaging). Mean averaging procedure

substantially improves the performance of Pickands estimator, while both averaging

procedures improve the performance of Moment and Peng's estimator. So, in most cases

it is the mean averaged Moment estimator that has the smallest rmse among all tested

estimators. These results hold for different choices of k and parameters α,β of the beta

distribution (i.e. for different values of the extreme-value index). However, this is not so

when it comes to small sample sizes. Actually, for small sample sizes (n=100 in our case)

the situation is much more complicated. The performance of the estimators depends not

only on the value of k but also on the value of the extreme-value index γ itself. So, for

values of γ close to 0 (-1/3 in particular) mean averaged Pickands estimator seems to be

the best choice, while among the standard estimators Moment-Ratio and Moment are

more preferable. As the value of γ draws away from zero (γ=-2) the performance of all
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estimators deteriorates (the values of rmse's are evidently larger). The behaviour of

Moment, Moment-Ratio and Peng's estimator is very disappointing. Pickands is the best

estimator among standard estimators. Moreover, the effect of averaging procedures is

much less significant. Anyhow, it is the median averaged Pickands and Moment

estimators that exhibit the smallest rmse.

•  Uniform Distribution

Uniform distribution is also bounded to the right and its tails are characterized by

extreme-value index equal to -1. The situation here is somewhat similar to the case of

Beta distribution. More specifically, for large sample sizes (n=1000) Moment estimator is

the most preferable estimator, followed by Peng's. Averaging procedures (mean and

median) improve their performances, while mean averaging also improves the

performance of Pickands estimator. Here it is the median averaging procedure that

provides better results than the mean averaging. These results hold for small samples of

uniformly distributed data. The only difference in this case is that for small k (k=12)

standard estimators display very large rmse's and the 'good' estimators previously

mentioned are outperformed by estimators such as Hill and Moment-Ratio.

General Comments

# For γ>0, MDA(Fréchet)

For large sample sizes Moment-Ratio seems to be the most preferable estimator. It is

usually the best estimator, in terms of minimum rmse. Even in cases that other estimators

outperform it, it is one of the bests, while in no case does it display very unsatisfactory

performance. It is interesting to note that W estimator tends to be appropriate for

distributions with extreme-value index γ larger than 1, though for smaller values of γ its

performance can be very unsatisfactory. So it may be risky to use that estimator, since in

real-life applications the value of γ is unknown. For small samples (in our case n=100)

Hill estimator turns out to be the best choice, while Moment-Ratio and Moment

estimators can also be regarded as safe options. Among averaging procedures, only the

mean averaging of Pickands estimator is effective. However, the improvement is not

large enough to out-beat the other standard estimators. On the other hand, the trimming
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procedure concerning the Hill estimator slightly improves the performance of Hill. This

result combined with the fact that standard Hill estimator is, in some cases, the best

estimator lead to even better results. Still further exploration on this issue is required.

# For γ=0, MDA(Gumbel)

The maximum domain of attraction of Gumbel distribution contains a wide range of

distributions differing a lot. Consequently there is not a uniformly superior estimator.

However, by looking more carefully the above results one could deduce the conclusion

that Peng's is the most preferable estimator of the extreme-value index. Moment and

(surprisingly) Moment-Ratio also display an adequate behaviour. The usefulness of

averaging procedures in these cases should also be stressed out. These procedures have

an obvious profitable impact on Pickands estimator, so that mean-averaged Pickands

estimator can also be regarded as an adequate estimator of zero γ.

# For γ<0, MDA(Weibull)

This class contains upper-bounded distributions. Though the shape of distributions differs

a lot from the distributions with γ=0, the behaviour of extreme-value index estimators in

these two classes of d.f.'s displays great analogues. Here, Moment and Peng's estimators

are undeniably the most preferable estimators and the beneficial effect of both mean and

median averaging procedures is even more evident. Moreover, as we deviate from zero

(and positive) values of γ, the inadequacy of estimators such as Hill, Moment-Ratio and

so on is more clear.

5.5 Methods for Selecting k

In the previous sections we have presented some attempts to derive extreme-value

index estimators, smooth enough, so that the plot { })(�, kk γ  is an adequate tool for choosing

k and consequently deciding on the estimate $ ( )γ k . However, such a technique will

always be a subjective one and there are cases where we need a more objective solution.

Actually, there are cases where we need a quick, automatic, cut and clear choice of k. So,

for reasons of completeness, we present some methods for choosing k in extreme-value

index estimation. Such a choice of k is, essentially, an �optimal choice�, in the sense that
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we are looking for the optimal sequence k n( )  that balances variance and bias of the

estimators. This optimal sequence k nopt ( )  can be determined when the underlying

distribution F is known, provided that the d.f. has a second order expansion involving an

extra unknown parameter. We have already mentioned that such second order conditions

are unverifiable in practice. Still Dekkers and de Haan (1993) prove that such conditions

hold for some well-known distributions (such as Cauchy, uniform, exponential,

generalized extreme-value). Of course, in practice we do not know the exact analytic

form of the underlying d.f. So, several approximate methods, which may additionally

estimate (if needed) the 2nd order parameters, have been developed. Notice, that the

methods existing in the literature are not generally applicable to any extreme-value index

estimator but are designed for particular estimators in each case. In the sequel, we

describe two such approaches that stem from totally different reasoning (though in all

cases the ultimate objective is to find a sequence k(n) that minimizes the asymptotic

mean square error of the estimator).

5.5.1 Regression Approach

Remember that according to the graphical justification of Hill estimator, this

estimator can be derived as the estimation of the slope of a line fitted to the k upper-order

statistics of our data-set (i.e. to the right of the anchor point − +
+











+ln , ln :

k
n

X k n
1
1 1

). In this

sense, the choice of k can be reduced to the problem of choosing an anchor point to make

the linear fit optimal. In statistical practice, the most common measure of optimality is

the mean square error.

In the context of Hill estimator (for γ > 0 ) and adapted Hill estimator (for γ ∈ℜ ),

Beirlant et al. (1996) propose the minimization of the asymptotic mean square error of

the estimator as an appropriate optimality criterion. They have suggested using

MSE k
k

w X X k
jopt j k
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γ

as a consistent estimate (as n → ∞ , k → ∞ , k n/ → 0) of asymptotic mean square error

of Hill estimator ( w j k
opt
,  is a sequence of weights).
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Theoretically, it would suffice to compute MSEopt  for every relevant value of k and

look for the minimal MSE value with respect to k. Note that in the above expression

neither γ (true value of extreme-value index) nor the weights w j k
opt
, , which depend on a

parameter ρ of the 2nd order behaviour of F, are known. So, Beirlant et al. (1996) propose

an iterative algorithm for the search of the optimum k. The idea of this algorithm is as

follows:

− An initial value k0 is found by minimizing a function of data

− Original estimators of γ, ρ (γ0, ρ0) are estimated based on k0.

− Based on the estimates of γ, ρ (γi, ρi) a new ki is found that minimizes the MSE of the

above expression

− Again revised estimates of γ, ρ are obtained

− And so on, until the improvement in the estimated MSE is smaller than some

tolerance level.

5.5.2 Bootstrap Approach

Draisma et al. (1999) developed a purely sample-based method for obtaining the

optimal sequence k nopt ( ) . They, too, assume a second order expansion of the underlying

d.f., but the second (or even the first) order parameter is not required to be known. In

particular, their procedure is based on a double bootstrap. They are concerned with the

more general case γ ∈ℜ , and their results refer to Pickands and moment estimator.

As before, they want to determine the value of k, k nopt ( ) , minimizing the asymptotic

mean square error ( )E kF $ ( )γ γ− , $γ  refers either to Pickands $γ P  or moment estimator

$γ M . However, in the above expression there are two unknown factors: the parameter γ

and the d.f. F. Their idea is to replace γ by a second estimator $γ +  (its form depends on

whether we use Pickands or moment estimator) and F by the empirical d.f. Fn. This

amounts to bootstrapping. The authors prove that minimizing the resulting expression,

which can be calculated purely on the basis of the sample, still leads to the optimal

sequence k nopt ( )  with the help of a second bootstrap.
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The proposed algorithm can be summarized in the following steps

Step 1:

Select with replication a random sample of size n1 (n1<<n) from the original sample of

size n.

Denote this (bootstrapped) sample as ( )X X n1 1

* *,...,  and its order statistics as

( )*
:

*
:1 11...1 nnn XX ≥≥ .

Based on this sample compute the extreme-value index estimators $ ( )*γ M k  (or $ ( )*γ P k )

and  $ ( )*γ + k  for k=1,2,...,n1.

Compute the quantity ( )q k kn s1

* * *( ) $ ( ) $= − +γ γ , for k=1,2,...,n1 (s = �P� or �M�).

Step 2:

Repeat this procedure r times independently (r can be taken as large as necessary), i.e.

obtain the sequences q kn i1 ,
* ( ) for i=1,...,r.

Compute S k
r

q kn n i
i

r

1 1

1
1

( ) ( ),
*=

=
∑

Step 3:

Minimize S kn1
( )  with respect to k. Let k n S kopt k n

* ( ) arg min ( )1 1
= .

Step 4:

Repeat step 1 to 3 independently with the number n1 replaced by ( )n n n n2 1
2

1=   < .

Obtain, thus, k n S kopt k n
* ( ) arg min ( )2 2

= .

Step 5:

Calculate k nopt ( )  on the basis of  k nopt
* ( )1  and k nopt

* ( )2 . The exact formula for estimation

can be found in Draisma et al. (1999).

The authors test their proposed bootstrap procedure on various d.f.�s (such as Cauchy,

generalized Pareto, generalized extreme-value) via simulation. The general conclusion is

that the bootstrap procedure gives reasonable estimates (in terms of mean square error of

the extreme-value index estimator) for the sample fraction to be used. So, such a

procedure takes out the subjective element of choosing k. However, even in such a
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procedure an element of subjectivity remains, since we have to choose the number of

bootstrap replications (r) and the size of the bootstrap samples (n1).

Similar bootstrap-based methods for selecting k have been presented by Danielsson

and de Vries (1997) and Danielsson et al. (2000) confined to γ > 0 , with results

concerning only the Hill estimator $γ H . Moreover, Geluk and Peng (2000) apply a 2-

stage non-overlapping subsampling procedure, in order to derive the optimal sequence

k nopt ( )  for an alternative tail index estimator (for γ > 0 ) for finite moving average time

series.
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