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CHAPTER 6 

EXTREME – VALUE ANALYSIS

6.1 Introduction

As we have already mentioned in section 1.3, one of the areas where extreme-value

theory has recently gained ground is teletraffic engineering. Indeed, as the World-Wide

Web system becomes more and more popular, the need of evaluating its performance

becomes more and more compelling. In order to achieve that and go on to possible

modifications, one needs to know the behaviour of the users� 'demands' from the system.

This can be expressed either in files lengths, CPU time to complete a job, call holding

times and so on. All these quantities, essentially, constitute random variables and

consequently their distribution summarizes any information of their behaviour. It�s not

difficult to realize that, in order the system to function adequately, its capacity should be

adjusted so as to handle even the largest �demands�. Hence, the study of the extremal

'demands' (e.g. longest file lengths, longest call holding times etc) turns out to be an

important tool of teletraffic engineers.

In this thesis we apply the notion of extreme-value theory to teletraffic data-set

obtained from the Internet Traffic Archive (ITA) (http://ita.ee.lbl.gov/index.html). The

Internet Traffic Archive is a moderated repository to support widespread access to traces

of Internet network traffic, sponsored by ACM SIGCOMM. The traces can be used to

study network dynamics, usage characteristics, and growth patterns, as well as providing

the grist for trace-driven simulations. The archive is also open to programs for reducing

raw trace data to more manageable forms, for generating synthetic traces, and for

analyzing traces. The Internet Traffic Archive was put together by Peter Danzig

(University of Southern California), Jeff Mogul (Digital's Western Research Lab), Vern

Paxson (Lawrence Berkeley National Lab), and Mike Schwartz (University of Colorado

at Boulder). It was made possible by Carl Malamud and the Internet Multicasting Service
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giving it its original home. The archive is sited at the Lawrence Berkeley National

Laboratory.

More particularly, we are going to analyze data from the �EPA-HTTP� trace. This trace

contains a day's worth of all HTTP requests to the EPA WWW server located at Research

Triangle Park, NC. The logs were collected from 23:53:25 EDT on Tuesday, August 29

1995 through 23:53:07 on Wednesday, August 30 1995, a total of 24  hours. There were

47,748 total requests, 46,014 GET requests, 1,622 POST requests, 107 HEAD requests,

and 6 invalid requests. Timestamps have one-second precision. The WWW server

software used was not recorded. The logs were collected by Laura Bottomley

(laurab@ee.duke.edu) of Duke University. The dataset contains the following pieces of

information:

− host making the request

− date and time of the request

− type of request

− HTTP reply code

− bytes in the reply.

In the present extreme-value analysis we are going to concentrate on the analysis of the

files lengths requested (i.e. on the bytes in the reply).

6.2 Exploratory Data Analysis

6.2.1 Description of the Data

The original data-set contained 47,748 cases of requests. Still, in 5,331 of these cases

the file length (in bytes) requested was not recorded, thus leaving as with 42,417 valid

observations to be analyzed. However, in 5,718 of these valid cases no file was actually

requested (i.e. the file length in bytes is zero). These observations were also removed

from the data-set to be analyzed. So, finally, the data-set that we analyzed contained

36,699 file lengths in bytes. In the table that follows we present the main descriptive

statistics of the variable under investigation, so as to get a first idea of the form of the

data. A more intuitive description of the data is provided by the histogram that follows in
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figure 6.1. However, the fact that we have, as it seems, some very large observations,

spoils the original histogram of our data-set. For this reason, we split and display the data

in two parts. Figure 6.2.a is the histogram of the smaller (shorter) values of �File lengths�,

while in figure 6.2.b the histogram of large �File lengths� is depicted. Now, we can see

more clearly the �behaviour� of  �File lengths�. It is obvious that we are dealing with a

possible heavy-tailed  underlying d.f. Still, a more thorough discussion on this issue is

postponed until a later section of this chapter.

Table 6.1. Descriptives  Statistics of �File lengths� (in bytes)
Measure Statistic Std. Error

Mean 8497.8880 369.1512
Lower Bound 7774.341295% Confidence Interval

for Mean Upper Bound 9221.4347
5% Trimmed Mean 3046.7888

Median 1897.0000
Variance 5001069499.289

Std. Deviation 70718.2402
Minimum 33.00
Maximum 4816896

Range 4816863
Interquartile Range 3182.0000

Skewness 30.318 0.013
Kurtosis 1267.888 0.026
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Figure 6.1. Histogram of �File lengths�
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Figure 6.2. Histograms of separate parts of data (�File lengths�)

A raw histogram may, however, be misleading as an indicator of how frequently high

levels occur, since it fails to capture phenomena such as seasonality of data or the

tendency of extreme values to occur in clusters. These are better revealed by a sequence

(time-series) plot. The corresponding plot for our data is given in figure 6.3. A first

examination of it reveals no problems of seasonality or clustering. Still, this is a very
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rough check, there are more elaborate methods to check for the existence of the previous

mentioned problems.
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Figure 6.3. Sequence plot of �File lengths� (in bytes)

Other common graphical illustrations of a data-set are the plots of the empirical

distribution function and its inverse, the quantile function. For the �File lengths� these

plots are given in figures 6.4 and 6.5. Both of these plots, as well as the previous graphs

provide a strong indication that our data are highly skewed to the right, i.e. they are long-

tailed.
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Figure 6.4. Plot of empirical distribution function
of �File lengths� in bytes.
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Figure 6.5. Plot of empirical quantile function of
�File lengths� in bytes.
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6.2.2 Investigation of Independence

One of the assumptions widely used and required for almost all the results in extreme-

value theory is that of independence of the data. Of course, for the case of Hill estimator,

there are results that prove that the good properties of the estimator hold under quite

general conditions of non-independence. Still, these results are not verified (at least yet)

for other estimators. In general, in cases that some kind of dependence of data is detected,

adjustments in the statistical methods used are needed. So, before proceeding with any

analysis of the data, it is useful to check whether independence holds. Since our data are

essentially time-series, we apply the standard tests of randomness (i.e. independence).

Moreover, the classical autocorrelation function (acf) was calculated, as well as a test of

independence based on records.

! Standard Tests of Randomness

The most popular standard (non-parametric) time-series tests of randomness

(Resnick, 1997b) are the following:

" The turning point test

Let T be the number of turning points among { }X X X n1 2, ,..., . Under the null hypothesis

of i.i.d. data we have that ( )T Normal n n~ ( ) / , ( ) /2 2 3 16 29 90− − .

" The difference-sign test

Let S be the number of indices i such that ( )X Xi i− >−1 0 . Under the null hypothesis of

i.i.d. data we have that ( )S Normal n n~ ( ) / , ( ) /− +1 2 1 12 .

We applied these tests to our data (using S-Plus) and the results were

" The turning point test :

According to this test, our data does not constitute an i.i.d. sample (the null hypothesis is

rejected with almost zero observed level of significance)

" The difference-sign test

According to it, the hypothesis of independence cannot be rejected (the observed level of

significance is 0.08)
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! A Test of Randomness Based on Records

For any sequence of observations { }X X X n1 2, ,..., , there is a corresponding sequence

of record values { }R R RNn1 2, ,..., . The number of records Nn constitutes the so-called

record counting process, defined as :

N1=1, { }N In X M
j

n

j j
= +

>
=

−
∑1

1
2

, n ≥ 2  and Mj is the maximum of { }X X j1 ,..., .

As Embrechts et al. (1997) prove, if the underlying data { }X X X n1 2, ,...,  are i.i.d., then

the first two moments of the r.v.�s Ni are given by the formulae:

( )E N
jn

j

n

=
=

∑ 1
1

, and ( )Var N
j jn

j

n

= −






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=
∑ 1 1
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1

.

The above result combined with the fact that the standardized number of records of an

i.i.d. sample converges to a distribution closely related to the Normal (Kinnison, 1985)

leads to another (rough) non-parametric test of randomness. Such a test is also applied in

Embrechts et al. (1997).

For the data-set under investigation, with the sample size equal to 36699, the expected

number of records is 11.1 with variance 9.4, while the actual, observed number of records

is 12. These values seem to support the hypothesis of independence (the observed level of

significance under the approximate assumption of normality is 0.77).

! A Method Based on Sample Auto-Correlation Function

An exploratory, informal method for testing for independence can be based on the

sample autocorrelation function, defined as

( )
$ ( )

( )( )
ρ h

X X X X

X X

i i h
i

n h

i
i

n=
− −

−

+
=

−

=

∑

∑
1

2

1

, h ∈ℵ + .

Large values of the autocorrelation function or, to be more precise, values exceeding the

constructed 95% confidence bounds, indicate lack of independence. The pattern of the

values of the autocorrelation function can be better viewed by the so-called

autocorrelation plot of ( )h h, $ ( )ρ . For our data-set, the autocorrelation plot, for lag h up to
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100, is given in figure 6.6. In the plot, 95% confidence bounds are also given

(automatically calculated in SPSS). Though some values of the autocorrelation function

exceed the bound, still since these are too few (6 exceedances in 100 points, lags) they

can be even regarded as included in the common statistical error. Moreover, the fact that

the autocorrelation function doesn�t display any particular pattern with respect to the lag

h, is reassuring that no statistical autocorrelation exists in the data.
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Figure 6.6. Autocorrelation plot of �File lengths� for lags h=1,..,100.

However, it is important to realize that the 95% confidence bounds drawn by a typical

statistical package (like S-Plus or SPSS) are drawn using Bartlett�s formula, under the

assumption that the data are normally distributed or, at best, that they have finite fourth

moment. But, this assumption is totally inappropriate for heavy tailed-data, as is probably

our case. So, not much faith should be put on these bounds. Moreover, in many cases of

heavy-tailed data the centering by the sample mean is omitted, since if the mathematical

expectation does not exist, it is totally meaningless to center by the sample mean. In such

cases, the following heavy-tailed modification of autocorrelation function is more

appropriate :
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As Resnick (1998) mentions, for the case of moving-average sequences, though there are

cases where the mathematical correlation does not even exist (γ > 1
2

), $ ( )ρ H h  still

converges to a limiting constant. However, the limit law for $ ( )ρ H h  is very complex.

Many and strong assumptions have to be imposed in order to derive the limiting d.f. of

$ ( )ρ H h . Nonetheless, the function $ρ H  and its corresponding plot can be used as an

exploratory tool to make preliminary investigations of dependence. If on graphing the

sample heavy-tailed autocorrelation  function, one finds only small values, then it may be

possible to model the data as i.i.d. Similarly, if the sample heavy-tailed autocorrelation

function is small beyond lag g, then there is some evidence that MA(q) (moving average

model of order q) may be an appropriate model. Of course, without firm knowledge of

the quantiles of the limit distribution of $ ( )ρ H h , it is impossible to say with precision

what �small� means. Still, in our case, we will be restricted to that exploratory view,

since, as we will see in the sequel, our data don�t even seem to follow any of the known

and usually used long-tailed d.f.�s. The heavy-tailed autocorrelation plot for our data is

given in figure 6.7. The majority of values does not exceed the limit 0.015, while the

largest autocorrelation is observed for lag 57 and is approximately 0.04. Generally

speaking, one could judge these values to be "small", indicating lack of autocorrelation in

data.
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Figure 6.7. Heavy-tailed autocorrelation plot of �File lengths� for lags h=1,..,100.

Since all the previous non-parametric and graphical checks of dependence do not give us

a clear indication that dependence in our data exists, we are going to move on to other

analyses assuming that our data are indeed independently (and identically) distributed.

Moreover, even the nature of our data do not suggest that any form of dependence or

correlation should exist. For example, if at some point during the day a large file is

requested, there is no reason to believe that the next requested file should also be large or

should be small.

6.2.3 Investigation of Heavy Tails

Before proceeding to the formal study of extremes of the data in hand (i.e. to the

formal estimation of extreme value index γ), there are several exploratory methods that

can be used to give us a first insight into the behaviour of the extremes of a data-set. Such

methods are the mean (or median) excess plots and the QQ plots based on exponential or

other long-tailed d.f.�s. The usefulness of these tools is mainly that they provide us with

an indication of whether our data are long-tailed (γ ≥ 0 ) or short tailed (γ < 0 ).

Knowledge, even rough, of the sign of γ can direct to the choice of more preferable

extreme-value index estimators. Moreover, in the former case our interest should be
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focused on the estimation of large quantiles, while in the latter case the estimation of

upper end-point is more meaningful.

! Excess Plots

The definition and properties of mean and median excess functions have been given

in section 5.3.1. As we have mentioned there, if the empirical mean excess function

(MEF) of a data-set ultimately increases for the larger thresholds u, then this implies that

the underlying d.f. is sub-exponential, while if it decreases, the corresponding d.f. is

super-exponential. Ultimately constant behaviour of empirical MEF implies that the d.f

has tails equivalent to exponential tails. The mean excess plot, accompanied with the

corresponding median excess for the �file lengths� we are examining are given below. If

we ignore the last values of the empirical MEF (which is based on very few

observations), an increase seems to exist, implying that we are dealing with a distribution

with heavier than exponential tails.
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Figure 6.8. Empirical mean excess plot (a) and median excess plot (b) of �File lengths�.

However, we are interested in checking whether the underlying d.f. of our data is long-

tailed in the sense that it belongs to MDA H( )γ , γ>0. So, we should look at the mean

excess plot not of the original data but of their logarithmic transformations. Indeed, we

have already showed that if the empirical MEF of the logarithmic-transformed data is

ultimately increasing, then the d.f. belongs to MDA H( )γ  with γ>0, and the values of the
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MEF converge to the true value of γ. For the �file lengths� we are analyzing the plots are

given below. These plots indicate a decrease implying that our data-set is not actually

long-tailed. Still this result may be misleading. Indeed, one of the main assumptions of

mean excess plot is that the underlying distribution has a finite first moment. However,

long-tailed distributions with γ>1 do not satisfy such a condition, and the corresponding

mean excess plot of such distributions is totally misleading. For this reason, we proceed

to QQ plots, which do not have such restrictive assumptions.
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Figure 6.9. Empirical mean excess plot (a) and median excess plot (b) of log-transformed data.

! Quantile (QQ) Plots

The use of quantile plots (or QQ plots) as exploratory tools in extreme-value analysis

is described in detail in Beirlant et al. (1996). The usefulness of these plots lies in the fact

that for important classes of distributions the quantiles Q(p) are linearly related with the

corresponding quantiles of a standard member from this class of distributions. As

linearity in a graph can be easily checked by eye, this tool can be used in order to check

goodness-of-fit of a data-set to a particular d.f.

In the sequel we present the QQ plot of our data-set, with respect to the Exponential

(figure 6.10) and the Pareto (figure 6.11) distribution. These are distributions medium

and long tailed, respectively, commonly used in practice. In each case the straight line,

that indicates the �perfect fit�, has been estimated (using Least Square method) based on

the whole data-set, i.e. these QQ plots evaluate the overall fit of our data-set. However,
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since our main interest is focused on the �upper part� of the data (largest values) it would

be more interesting to look only on this part of the plots (right part).

0 2 4 6 8 10

Exponential Quantiles

0

1000000

2000000

3000000

4000000

5000000

O
bs

er
va

tio
ns

Exponential QQ Plot

Figure 6.10. Exponential QQ (quantile) plot of the �File Lengths� data-set.

0 2 4 6 8 10

Exponential Quantiles

0

10

20

30

40

lo
g(

O
bs

er
va

tio
ns

)

Pareto QQ Plot

(a)

0 2 4 6 8 10

Exponential Quantiles

2

6

10

14

lo
g(

O
bs

er
va

tio
ns

)

Pareto QQ Plot

(b)
Figure 6.11. Pareto QQ (quantile) plot of the �File Lengths� data-set, with the fitted LS line (a) and without

fitted line (b).
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The exponential QQ plot (figure 6.10) indicates that the main part of the data fits well the

exponential d.f., but the right tail deviates strongly from the perfect fit. In fact, the

observed values are much larger than the expected ones, implying subexponentiality of

the data (same conclusion as the one drawn from the mean excess plot).

A first look at the Pareto QQ plot (figure 6.11.a) makes clear that by no means do our

data fit the Pareto d.f. Still, if we do not try to fit Pareto globally , but look only on the

behaviour of the right tail of the data (right part of figure 6.11.b), we can see a linear

pattern for these large values, i.e. ultimately the data do seem to follow a Pareto d.f. This

remark suggests that, probably, we are dealing with a long-tailed underlying d.f. F, i.e.

( )F MDA H∈ γ , γ > 0 . Still, the formal investigation of the extremal behaviour of the

data-set under study, comes in the section that follows.

6.3 Extreme-Value Analysis

6.3.1 Estimation of Extreme-Value Index γ

Here, we deal with the main scope of the current analysis, which is the investigation

of the extremal behaviour of �File Lengths� transported via the site of EPA. This is partly

achieved through the estimation of extreme-value index γ. From the previous exploratory

analysis we believe that γ is positive. For this reason, apart from extreme-value index

estimators applicable to γ ∈ℜ , we are also going to use extreme-value index estimators

restricted to the case γ > 0 . In chapters 4 and 5 we have presented several semi-

parametric extreme-value index estimators, while in section 5.4 we have evaluated their

performance via simulation. According to these simulations, not a uniformly best

estimator exists. So, we are going to estimate γ with more that one estimator. In

particular, we are going to apply Pickands, Moment, Peng's and W estimators (applicable

for any γ ∈ℜ ), as well as Hill and Moment-Ratio (only for γ > 0 ). Each of these

estimation techniques provides us with a sequence of estimated values of γ (one for each

k, number of upper order statistics used in the estimation). So, a vital step before deciding

on the estimated value of extreme-value index γ is the choice of k. On of the methods to
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accomplish that, is a graphical one, already discussed. In the sequel we provide the plots

{ }k k, ( )γ  of the estimators used, as well as the corresponding �alternative plots� (see

section 4.3.2), which are more useful and reliable in the case that our data do not follow

closely a Pareto d.f. (as is probably the case here). Moreover, in each plot, apart from the

standard estimators, the mean and median averaged estimators are depicted. Note that in

the graphs to follow we display the estimated values of γ that correspond to k up to

10,000 (27% of the whole dataset). The purpose of this is to focus on the part of data that

essentially concerns us and since, in any case we are looking for the proper number k of

upper order statistics used and observations smaller than the upper 20% or 25% cannot

actually be regarded to be "large". So, we can get a better view of the part of the graph

that we are actually interested in.
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Figure 6.12. Plot (a) and alternative plot (b) of Pickands estimator of γ ( ), and the corresponding mean-
averaged (…),  and median-averaged ( _ . _ ) estimators.
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Figure 6.13. Plot (a) and alternative plot (b) of Moment estimator of γ ( ), and the corresponding mean-
averaged (…),  and median-averaged ( _ . _ ) estimators.
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Figure 6.14. Plot (a) and alternative plot (b) of Peng's estimator of γ ( ), and the corresponding mean-
averaged (…),  and median-averaged ( _ . _ ) estimators.
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Figure 6.15. Plot (a) and alternative plot (b) of W estimator of γ ( ), and the corresponding mean-
averaged (…),  and median-averaged ( _ . _ ) estimators.
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Figure 6.16. Plot (a) and alternative plot (b) of Hill estimator of γ ( ), and the corresponding mean-
averaged (…),  and median-averaged ( _ . _ ) estimators.
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Figure 6.17. Plot (a) and alternative plot (b) of Moment-Ratio estimator of γ ( ), and the corresponding
mean-averaged (…),  and median-averaged ( _ . _ ) estimators.

It is a fortunate event that in our case all the estimators tend to almost the same value of γ

and, more precisely, the value 1. Especially, Moment-Ratio and Moment estimators

which have, according to the previous simulation results, the best performance for

positive γ, display almost a straight line to 1. So, we can deduce that the value of γ that

best describes the sizes of requested files from the size of EPA is approximately 1. This

implies that the underlying distribution of the data under study belongs to the maximum

domain of attraction of the Frechet(1) distribution, i.e. it a Pareto-type d.f. asymptotically

decaying like Pareto(1) ( 1)( −
∞→ → xxF x ).
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6.1.2 Estimation of Large Quantiles

Though the value of extreme-value index estimator is indicative of the tail-heaviness

of the underlying distribution of our data, a quantity that is more useful for practical

purposes is large quantiles. That is, in practice what is desirable to know is what is the

�File Length� that is exceeded only 1 in x times/transactions (x should be large, such as

100, 1000 or even larger). Each extreme-value index estimator leads to a different

estimation formula for large quantiles, too, (see chapter 4) that is, also, dependent on the

number k of upper-order statistics used in the estimation. Here, we use the generic

formula proposed by Dekkers et al. (1989) :
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




−   (see also section 4.5),

substituting each different estimator.

In the figures that follow we present the estimators of 99-quantile based on the extreme-

value index estimators previously used vs k.
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Figure 6.18. Plot of 99-quantile based on Pickands
estimator ( ), and the corresponding mean-averaged (…),
and median-averaged ( _ . _ ) estimators.
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Figure 6.19. Plot of 99-quantile based on Moment estimator
( ), and the corresponding mean-averaged (…),  and

median-averaged ( _ . _ ) estimators.
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Figure 6.20. Plot of 99-quantile based on Peng's estimator
( ), and the corresponding mean-averaged (…),  and

median-averaged ( _ . _ ) estimators.
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Figure 6.21. Plot of 99-quantile based on W estimator
( ), and the corresponding mean-averaged (…),  and

median-averaged ( _ . _ ) estimators.
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Figure 6.22. Plot of 99-quantile based on Hill estimator
( ), and the corresponding mean-averaged (…),  and

median-averaged ( _ . _ ) estimators.
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Figure 6.23. Plot of 99-quantile based on Moment-Ratio
estimator ( ), and the corresponding mean-averaged (…),

and median-averaged ( _ . _ ) estimators.

Generally speaking, we could say that the behaviour of quantile estimators does not

display the nice stability (with respect to k) as was the case for the extreme-value index

estimators. However, the 99-quantile estimator based on the Moment-Ratio estimator

displays the most stable behaviour indicating a value of 99-quantile approximately

100Kb (though constantly larger than the corresponding empirical estimate which is

82Kb).
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In the table below we provide the estimators of 95-, 99-, and 99.9- quantiles, based on the

Moment-Ratio estimator of γ, for several different values of k.

Table 6.2. Estimation of large quantiles (in Kb) using Moment-Ratio estimator of γ.

Estimation Moment-Ratio Quantiles
Methods Estimation of γ 95% 99% 99.9%
Empirical Estimate - 25.846 82.054 1136.764

k used
1000 0.945 19.133 89.760 795.025

2000 0.905 25.579 95.276 734.338

3000 0.871 22.631 93.820 700.947

4000 0.930 19.974 95.793 828.905

5000 1.012 18.467 100.483 1047.887

6000 1.045 18.653 103.873 1161.415

7000 1.047 19.526 105.445 1174.495

8000 1.047 20.248 106.693 1182.169

9000 1.034 19.680 104.126 1127.136

10000 1.035 19.680 104.182 1128.756

To sum up it can be concluded that, we may assume that the size of files requested from

the particular site of EPA follows a long-tailed distribution (which decays similar to a

Pareto(1) distribution). This property may be further exploited in order to derive other

useful outcomes. As far as large quantiles are concerned, we could say that, based on the

extreme-value approach, the 95-quantile is roughly 20Kbs, the 99-quantile reaches

100Kbs, while a file larger than 1Mb is requested only one in a thousands times.
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