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Chapter 3 
 

Backward Calculation Techniques 
 

3.1 Introduction 

 
Data currently produced by National Statistical Offices (NSIs) are often subject to 

a revision process. The revision process can be viewed according to its double 

dimension: routine revisions and occasional revisions. For both of them the main 

purpose is to achieve better quality of the published data. While the former are 

regularly made to incorporate the new available information in order to improve the 

quality of the statistics, the latter occur at irregular intervals depending on major 

accounting events. 

Occasional revisions are produced by NSIs at longer and infrequent intervals. The 

nature of such revisions may be statistical, when results from changes in surveys or in 

estimation procedures, or conceptual, when results from changes in concepts, 

definitions or classifications. The effect of an occasional revision increases according 

to the interval that occurs between two successive revisions. Clearly, if the intervals 

become longer, the effects of each revision become larger creating more difficulties 

both for the accountants and the users. This implies also more work in revising, and 

consequently, more difficulties in managing the revision process. 

NSIs often face with occasional revisions. For example, when they change the 

reference year for constant price figures, they entail a revision process that involves 

the entire national accounting framework. From a conceptual point of view, 

occasional revisions are different because generated by different causes. Causes of 

this type might be  

• Changes due to new surveys 

• Changes due to modifications in definitions or interpretations of the European 

System of Accounts (ESA) and the System of National Accounts (SNA) 

• Introduction of new calculation methods 
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• Important economic events that have a big impact on the national accounting 

system.  An example of such an economic event is the introduction of EURO. 

These occasional revisions are out of the usual scheme of revision and ask for a deep 

analysis of the impact they have on the national accounting system and of the strategy 

that accounts should follow to implement them. The main effect of these revisions is 

to affect all national accounts. Time series associated to the national accounts 

aggregates have to be revised according to the new changes. As a result of this 

process, national accountants and econometricians want to have their disposal 

national accounting series that are homogeneous and at the same time cover the 

longest possible period. The reconstruction of the national accounts time series is 

associated to a revision process usually referred as backward calculation or 

retropolation.  

Eurostat´s Unit B2 is now revising the backward calculation methodologies 

adopted by some Member States. The reason for that is because Eurostat wants to 

make suggestions to other Member States that have not developed methodology on 

the backward calculation techniques to develop one. This is very important especially 

at this time that there is an increasing demand for homogeneous time-series inside the 

European Union. Furthermore, Eurostat foresees the development of the same 

methodology internally. It is apparent that the role of Eurostat in this estimation 

domain aims at the over space harmonization of the backward calculation methods. 

The present chapter starts with the description of specific areas in which backward 

calculation is necessary. Next we give an analytical description of the most well 

known backward calculation methods (annual backward calculation method and 

benchmark years and interpolation method). The Netherlands and the France 

methodological approaches are described thoroughly focusing more on theoretical 

aspects of the Kalman-Filter method used by France. In the final part some 

concluding remarks about the retropolation methods are given. 
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3.2 The introduction of EURO, The 1993 System of National 

Accounts Regulation and The 1995 European System of Accounts 

Regulation. Three cases Where Backward Calculation is Required 
 

3.2.1 Backward Calculation Due to The Introduction of EURO 
 

The Problem 

 
Until 31st December 1998, Member States of the Euro-zone, as well as the 

remaining EU Member states, sent to Eurostat their statistical data expressed in 

national currency. To obtain the figures for the European aggregates and to publish 

them, these data were converted in ECU according to the exchange rate quoted on 

financial markets. Time series associated to national accounts variables were then 

stored in the commission databases both in national currency and in ECU.  

Starting from the 1st January 1999, the national currencies of the Member States of 

the Euro-zone and EURO are both official currencies. National currency will be valid 

until 2002 and Member states will continue to publish their national accounts time 

series in national currency until the end of 2001. Possibly, Member States will switch 

to EURO in their national accounts before the scheduled deadline or they will publish 

both figures. In any case, during the period January 1999-December 2001 national 

currency and EURO will live together. 

In order to have homogeneous time series, during the transitioning period, 

Member States will convert their historical time series, expressed in national 

currency, in euro series. This operation corresponds to a backward calculation of the 

involved time series. The main difficulties in this problem arise from the fact that 

ECU and euro do not represent the same thing. Officially, starting from 1st January 

1999 the following relation stands. 

1 euro = 1 ECU 

However, for the period preceding the euro birth, the problem of the conversion of 

national currencies in ECU or euro arises. 

 

 



 49

Solution   

 
According to a recent note signed by Commissary De Silguy, the following 

decisions have been taken on this subject: 

• National currency historical time series will be converted in euro according to the 

exchange rate fixed on 30th December 1998 (the official exchange rates). 

• Historical time series previously expressed in ECU will not change. Starting from 

1st January 1999, figures will be expressed in euro. Euro time series will be the 

statistical continuation of the ECU time series. A sort of break will characterize 

the label of these time series: until 31st December 1998 they will be expressed in 

ECU and afterwards in euro. The users of official statistics will be informed by 

suitable footnotes. 

• Two types of historical time series will describe Euro-zone national accounts 

variables: the Ecu-euro time series, as described just previously and the new fixed 

euro time series obtained by converting the old national currency series according 

to the euro exchange rate fixed on 30th December 1998. The main aim of these 

″fixed″ time series is to avoid contrasts between historical time series produced by 

Member States and Eurostat. 

From a statistical point of view the ECU-euro time series and the ″fixed″euro time 

series are different because of the fixed nature of the exchange rate between euro and 

national currency in contrast to the floating rate of ECU and national currency. The 

two different natures of the series will imply different use and interpretation of the 

statistics associated to them. 
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3.2.2 Backward Calculation Due to The Introduction of ESA13 1995 

Regulation and The SNA14 1993 Regulation 
 

 

The SNA Problem 
 

The 1993 System of National Accounts states that the System of National 

Accounts consists of a coherent, consistent and integrated set of macroeconomic 

accounts, balance sheets and tables based on a set of internationally agreed concepts, 

definitions, classifications and accounting rules. One of the strong points of the SNA 

is that it creates a basis not only for detailed snapshots but especially for comparisons 

over time. In practice the accounts are compiled for a succession of time periods, thus 

providing a continuing flow of information that is indispensable for the monitoring, 

analysis and evaluation of the performance of the economy over time. Time-series of 

national accounting data give a detailed account of the economic development of a 

country over time. Most countries in the world compile national accounts according to 

the same international guidelines, which makes possible the comparison of economic 

developments between those countries. 

Although the time dimension is mentioned in the SNA, nothing is said about the 

method to compile time-series. In fact, the SNA gives guidelines for forward 

calculation of national accounting data and not for backward calculation. In the 1993 

SNA (and in the 1995 ESA) the words revision, time-series, backward calculation or 

retropolation does not appear. Furthermore, despite the fact that revisions of 

international guidelines are one of the important motives to revise national accounts 

and to obtain time-series which are consistent with the revised data for the revision 

year, these revisions and the time series are not discussed. The fact that the session of 

the twenty-third General Conference of the International Association for Research in 

Income and Wealth (New Brunswick, Canada,1994) was devoted to policies for 

revisions of national accounts is an indication that revisions and time-series are 

considered to be a problem with no clear answers.  

                                                           
13 European system of accounts. 
14 System of national accounts. 



 51

The fact that the international guidelines do not discuss revisions and backward 

calculations of national accounting data is probably one of the reasons that different 

revision policies occur in different countries. This concerns differences with regard to 

the frequency of the revision, the choice of the revision date, the level of the detail at 

which the benchmark year is revised, the method for compiling time-series and the 

length and detail of the time series. Differences in methods between countries obscure 

comparisons between countries. As a result in order to achieve an international 

comparability, the Member States of the European Community made some 

arrangements for the backward calculation of national accounting data. 

 

The ESA Problem 
 

Starting form April 1999, Member States will publish national accounts figures 

according to the European System of Accounts. The introduction of European System 

of Accounts regulation entails several changes in the compilations of national 

accounts. These changes demand for a backward calculation of time series to ensure 

coherence and homogeneity of the series describing national accounts aggregates. 

The introduction of European System of Accounts regulation is another typical 

example of occasional revision due to changes in definitions and in interpretation. It is 

a major occasional event that asks for a deeply analysis of the impact on the national 

account system and on the historical national accounts time series. Because of the 

importance of the changes that the European System of Accounts regulation 

introduces in the national accounts systems, many Member States already analyzed 

the effects of the new accounting rules and in some cases already started the 

reconstruction of the time series.  

In the following sections, several techniques of backward calculation of national 

accounts time series proposed by some Member States are analyzed and discussed in 

order to suggest to the remaining Member States concrete strategies to carry out 

backward calculation. 
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3.3 An Overview of Backward Calculation Techniques 
 

One of the main aims of national accounts is to create a base for over time 

comparison of economic variables. In fact European System of Accounts (ESA) and 

System of National Accounts (SNA) regulation does not give any guidelines 

concerning backward calculation or retropolation. For that reason, different solutions 

have been adopted by Member States in order to treat this problem. 

Generally speaking, in the methods for backward calculation of national 

accounting data two archetypes can be distinguished 

 

• Annual backward calculation 

• Benchmark years and interpolation 

In both methods several variants are possible and also a combination of both 

methods is thinkable. For example in the Netherlands case a number of variants of the 

first class of methods were used in the past. Until now, the second class was not used 

except from the revision of the national accounting data in the interwar period. The 

former class of methods is very well known in National Statistical Institutes and 

methods belonging to them are currently used to revise time series. The latter has not 

been intensively applied till now to revise national accounts series. 

 

3.3.1Annual Backward Calculation 
 

Annual backward calculation is based on the principle that the retrapolated figures 

are calculated year by year back in time. Several methods can be used to obtain such 

results. The differences among them depend more or less on accuracy, and 

consequently time used in carrying out the revision process and more or less on the 

intensive use of statistical techniques. The most well known methods belonging to the 

backward calculation class are the following: 

 

Full Revision Method   
 

The full revision method is a very complete one. Figures to be revised, covering 

all the years in the backward calculation period, are estimated by applying the same 



 53

principles that underlie the revision. This means that in the case of the application of 

European System of Accounts regulation, past years are estimated according to the 

new rules established by that regulation. This procedure due to its detailed level of 

analysis, asks for the existence of a very good system of basic statistics suitable to be 

re-used according to the new classifications and revisions. Clearly, this method is very 

time consuming and requires much staff. 

 

Revision by Superposition of Corrections 
 

Time series figures concerning the years of the backward calculation period are 

determined by superposing corrections on the figures before revision. Starting point is 

the consistent data set of national account which was compiled in the past. 

Corrections resulting from the revision process are added to this basic set. The 

revision process involves all the past years. 

Two cases can be distinguished when applying this method: The former 

corresponds to a superposition of a set of corrections already calibrated on the 

complete accounting context; the latter implies the revision of the concerned item, the 

extension of the revision of the concerned items to all periods and the consolidation of 

all accounts. 

 

Growth Rates Method 
 

Starting from the balanced set of national accounts figures for the revision year, 

time-series figures for the past are determined by applying backwards the growth rates 

associated to the time series before revision. Obviously, if revised growth rates for a 

certain variable are available, they are used. The revision process works at the level of 

detail chosen. Afterwards, the figures are balanced again in the framework of a 

consistent national accounts system. 

 

Simple Proportional Method  
 

The simple proportional method is a simplified version of the annual backward 

calculation method. The revision year is expressed both under the new and the old 
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accounting system rules. Then in order to reconstruct the past revised values of the 

series, a simple proportional rule is applied to the old time series values. 

The simple proportional method offers an easy technique to carry out backward 

calculation, especially in a first attempt to determine the new path of the involved 

time series. Clearly, it is an approximate solution that does not analyze in a very deep 

way the revision effects on time-series but on the contrary is a low resource and time 

consumption approach to the backward calculation. 

 

3.3.2 Benchmark Years and Interpolation 
 

The second group of basic methods for backward calculation of national accounts 

is based on a two step procedure. In the first step detailed estimates for one or more 

benchmark years are calculated. In the second step, figures for the remaining years are 

determined by interpolation. The benchmark years and interpolation method can be 

applied in different ways i.e. the full benchmark year method and the layer correction 

method 

 

The Benchmark Years 
 

Before starting the present description we have to give some basic definitions. As 

we have already said retropolation of national accounting data is necessary after a 

revision of the national accounts has taken place. Such a revision is carried out for the 

so-called revision year. Consequently the revision year is that one for which the new 

definitions and accounting rules are used for first time. The new figures for that year 

are determined at a very detailed level using the new accounting rules. Revision years 

and benchmark years are strongly connected. Actually the revision year is an 

outstanding example of a benchmark year and is the starting point for the backward 

calculation of the data. It is obvious that the benchmark years are crucial points in the 

time series and they should include as much information as possible. That’s why 

benchmark years are usually years in which population, occupation or industrial 

censuses are conducted. Furthermore the economic situation is of great importance for 

the choice of the benchmark years. The corrections which are carried out for the 

revision year have to be determined for the other benchmark years as well. After a 
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number of revisions have been carried out in due time for all benchmark years, strata 

of corrections matrices are available (one for each revision). 

 

Interpolation 
 

After the revision corrections for the benchmark years have been determined, the 

corrections for the intermediate years are calculated by interpolation. However, the 

method of interpolation differs between Member States. In the next section we are 

going to analyze the estimation approaches for the intermediate years as well as the 

history of backward calculation of two pioneering countries (in the field of backward 

calculation); the Netherlands approach and the France approach. 

Benchmark years interpolation method seems to be the solution to the problem of 

backward calculation according to the methodologies proposed by Member States in 

this field. This method has a number of advantages. 

• The method is transparent and relatively fast,  

• The revision corrections are determined explicitly,  

• Decisions are taken in the past in the balancing of the data are upheld  

• In the case of new revision only the revision corrections for the benchmark year 

have to be determined.  

As far as it concerns the interpolation method is flexible, not to much time consuming 

and it can use direct information about certain variables for one or more years.  

 

Full Benchmark Year 
 

Figures for the benchmark years are estimated in a detailed way, using new 

definitions, classifications and sources. The benchmark years should be very well 

known and should dispose a complete set of basic information  The integration and 

balancing of benchmark years is made according to the new accounting rules. This 

means that the integration decisions taken in the past, are not used. The figures for the 

years between the benchmark years are interpolated. The level of detail is chosen 

according to the level of detail of the revision in the benchmark years and is extended 

to the interpolated years. In the interpolation process the historical tracks of previous 

revisions are taken into account. 
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Layer Correction 
 

Figures for the benchmark years are determined starting from the original, 

balanced data set. Corrections, resulting from revisions, are balanced and then 

superposed to the basic set of original data. In this way, layers of correction matrices 

become available (one for each revision). Corrections for the intermediate years are 

determined by means of interpolation of the correction matrices. Afterwards, figures 

for the years between the benchmark years are determined by integrating the original  

data and the corrections. 

According to this method, corrections are determined for all years in the period to 

be revised. However, not all years are treated in the same way. Especially in 

estimating the revision corrections the difference between benchmark years and other 

years is evident. The figures for the benchmark years are estimated with the help of 

detailed information. The figures for the other years are estimated more roughly.  

 

3.4 The Netherlands Case 
 

In the Netherlands there is a tradition of almost 60 years in compiling time-series 

of national accounts data. In 1948 the first revision of national accounting data 

(referring to the years 1921-1939) was published. 

In the Netherlands the various methods for backward calculation have been used 

extensively. The annual backward calculation has been used for compiling time-series 

1977-1985, consistent with the 1987 revision. The revision by superposition of 

corrections method was used for compiling the time-series 1969-1977, following the 

1977 revision. The growth rates method was used for compiling the time-series 1969-

1976 following the 1987 revision. The simple proportional method was originally 

planned for the time-series 1948-68 according to the 1987 revision. The full 

benchmark year method was originally planned for compiling time-series for the 

years 1969-1986 following the 1987 revision. However, in the end the annual 

backward calculation method and especially the growth rates method were used.  

Recently, Statistics Netherlands decided to change the method of backward 

calculation. The new method is a variant of the layer correction method belonging to 

the benchmark years and interpolation category. 
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In the Dutch case the corrections for the intermediate years are calculated with the 

help of an interpolation procedure that has been developed for this purpose 

(Kazemier, 1997). The interpolation is carried out within the framework of the input-

output tables. 

To start with, the corrections for the benchmark years are expressed as a 

percentage of the values before the correction. This means, if we take a column of the 

input-output table as an example, that for each cell of the column a correction 

percentage is determined. These percentages are interpolated between the benchmark 

years by assuming a linear pattern. Next, the percentages are applied to the values 

before the corrections. In this way the before revision structures are kept and the 

developments of the variables before revision are taken into account. 

The system for the interpolation is very flexible. For instance, it is possible to use 

direct information about a certain variable for one or more years. The corrections are 

determined in such a way that for all non-benchmark years integrated sets of 

corrections are obtained. These sets have the same structure and level of detail as 

those for the benchmark years. 

In the Dutch situation the present benchmark years are 1987,1977,1969,1958 and 

1948. The first two years are revision years. For instance in the reporting year 1969 

the 1968 SNA was implemented. In that year a reclassification of enterprises was 

carried out and the value added tax was introduced. The year 1958 is chosen because 

in the past extra attention was paid in that year in the compilation of the national 

accounts. The year 1948 is a benchmark year because it is the first year for which the 

international guidelines of the 1953 SNA and the 1952 OECD were implemented. In 

addition, the 1948 is the first `normal` year after the Second World War. 

 

3.5 The French Case 
 

The French approach to the estimation of the intermediate years is based on a 

linear model that links the variable in the new accounting system and the variables of 

the accounting system before revision. The estimates of this linear model are obtained 

by applying the Kalman –filter algorithm. Consequently, before focusing on the 

French’s exact methodology we will describe the Kalman-Filter algorithm. 
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3.5.1 The Kalman Filter 
 

In 1960, R.E. Kalman published his famous paper describing a recursive solution 

to the discrete-linear filtering problem. The idea behind Kalman´s work is to express a 

dynamic system in a particular form called state-space representation.  

A Kalman–Filter is simply an optimal recursive data processing algorithm. There 

are many ways of defining optimal, depending upon the criteria chosen to evaluate the 

performance. One aspect of this optimality is that the Kalman-Filter incorporates all 

information that can be provided to it. It processes all available measurements, 

regardless of their precision, to estimate the current value of the variables of interest, 

with use of (1) knowledge of the system and the measurement device dynamics (2) 

the statistical description of the system of noises, measurement noises and uncertainty 

in the dynamics of the models and (3) any available information about initial 

conditions of the variables of interest. The word recursive in the previous description 

means that the Kalman-Filter does not require all previous data to be kept in storage 

and reprocessed every time a new measurement is taken. A Kalman-Filter combines 

all available measurement data, plus prior knowledge about the system and measuring 

devices, to produce an estimate of the desired variables in such a manner that the error 

is minimized statistically. In other words, if we were to run a number of candidate 

filters many times for the same application, then the average results of the Kalman-

Filter would be better than the average results of any other. Conceptually, what any 

type of filter tries to do is to obtain an “optimal” estimate of desired quantities from 

data provided by a noisy environment. 

 

 

The State-Space Representation of a Dynamic System - Maintained 

Assumptions 
 

Let ty denote an )1n( × vector of variables at date t. A rich class of dynamic 

models for ty can be described in terms of a possibly unobserved )1r( × vector tξ  

known as the state vector. The state space representation of the dynamics of y is given 

by the following system of equations: 
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(3.5.1.2) w´HxAy

(3.5.1.1) vF
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´

t

1tt1t

+ξ+=

+ξ=ξ ++  

where ´H and ́A,F  are matrices of parameters of dimension )rn(),kn( ),rr( ××× , 

respectively and tx  is a )1k( ×  of exogenous or predetermined variables. Equation 

(3.5.1.1) is known as the state equation while equation (3.5.1.2) is known as the 

observation equation. The )1r( ×  vector tv  and the )1n( ×  vector tw  are white noise 

vectors: 
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where  Q and R  are )rr( ×  and )nn( × matrices respectively. The disturbances tv  

and tw are assumed to be uncorrelated at all lags: 

(3.5.1.5)   and t allfor  0´)wv(E t τ=τ . 

The statement that tx  is predetermined or exogenous means that tx  provides no 

information about st+ξ  or stw +  for s=0,1,2,… beyond that contained in 

12t1t y,...,y,y −− . Thus, for example, tx  could include lagged values of y  or variables 

that are uncorrelated with tξ  and tw  for all τ . 

The system (3.5.1.1) through (3.5.1.5) is typically used to describe a finite series 

of observations T21 y,...,y,y  for which assumptions about the initial value of the 

state vector tξ  are needed. As a result we assume that tξ  is uncorrelated with any 

realizations tw or tv : 

(3.5.1.7)  T1,2,...,for t  0´)w(E
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Thus, (3.5.1.6) and (3.5.1.3) imply that tv  is uncorrelated with lagged values of tξ : 

(3.5.1.8).   2,...1.-t1,-tfor t  0´)v(E t ==ξτ  

Similarly, 

[ ]
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The system (3.5.1.1) through (3.5.1.7) is quite flexible, though it is 

straightforward to generalize the results further to systems in which tv is correlated 

with tw .  

 

Derivation of The Kalman Filter 
 

Consider the general state-space: 

 w´HxAy

 vF
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1tt1t

+ξ+=

+ξ=ξ ++  
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The analyst is presumed to have observed .x,...x,x,y,...,y,y T21T21 One of the 

ultimate objectives may be to estimate the values of any unknown parameters in the 

system on the basis of these observations. Actually there are many uses of Kalman-

Filter. It is motivated here as an algorithm for calculating linear least squares forecasts 

of the state vector on the basis of the data observed through date t, 

(3.5.1.12)  ´)´x´,...,x´,x´,y´,...,y´,y(
  where)/(E

11tt11ttt

t1t
^

t/1t

^

−−

++

=Ψ

Ψξ=ξ  

and )/(E t1t

^
Ψξ +  denotes the linear projection of 1t+ξ  on tΨ  and a constant. The 

Kalman-Filter calculates these forecasts recursively, generating 1T/T

^

1/2

^

0/1

^
,...,, −ξξξ  in 

succession. The mean squared error (MSE) associated with each of these forecasts, is 

represented by the following )rr( × matrix: 
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




ξ−ξξ−ξ= +++++  
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Starting The Recursion 
 

The recursion begins with 0/1

^
ξ  which denotes a forecast of 1

^
ξ  based on no 

observations y  or x . This is just the unconditional mean of 1ξ , )(E 10/1

^
ξ=ξ  with 

associated mean square error given by the following formula: 

).(3.5.1.14)(E )(EEP
´

11110/1 







ξ−ξ








ξ−ξ=  

A general rule for the initialization of the algorithm can be the following. Provided 

that the eigenvalues of F  matrix are all inside the unit circle, then the process for tξ  

in (3.5.1.1) is covariance stationary. The unconditional mean of ξ  can be found by 

taking expectations of both sides of (3.5.1.1), producing 

),(FE)(E t1t ξ=ξ +  or since tξ  is covariance stationary, .0)(E)FI( tr =ξ−  

Since unity is not an eigenvalue of F , the matrix )FI( r −  is nonsingular, and this 

equation has unique solution .0)(E t =ξ  The unconditional variance of ξ  can be 

similarly found by postmultiplying (3.5.1.1) by its transpose and taking expectations: 

[ ] ´).vv(EF́´)(FE´)vF́´)(vF(E´)(E 1t1ttt1tt1tt1t1t ++++++ +ξξ=+ξ+ξ=ξξ  Cross product 

terms have been disappeared in the light of (3.5.1.8). Letting Σ denote the variance 

covariance matrix of ξ , this equation implies that QF́F +Σ=Σ  whose solution by 

theory is given by [ ] ).Q(veq)FF(I()(vec 1
r2

−⊗−=Σ  Thus in general in the 

initialization step of the algorithm we can focus in the following rules. 

If the eigenvalues of F  are inside the unit circle then the Kalman-Filter iterations can 

be started with 00/1

^
=ξ  and 0/1P the )rr( × matrix whose elements expressed as a 

column vector are given by [ ] ).Q(veq)FF(I()P(vec 1
r0/1 2

−⊗−=  

If instead some eigenvalues of F  are on or outside the unit circle, or if the initial state 

1ξ  is not regarded as an arbitrary draw from the process implied by (3.5.1.1), then 
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0/1

^
ξ  can be replaced by analyst’s best guess as to the initial value of 1ξ , where 0/1P  

is a positive definite matrix that summarizes the confidence about this guess. Larger 

values for the diagonal elements of 0/1P  register greater uncertainty about the true 

value of tξ . 

 

Forecasting ty  

 

Given starting values 0/1

^
ξ  and 0/1P  the next step is to calculate analogous 

magnitudes for the following date, 1/2

^
ξ  and 1/2P . The calculations for T,...,3,2t =  

all have the same basic form, so we will describe them in general terms for step t ; 

given 1t/t

^

−ξ  and 1t/tP −  the goal is to calculate t/1t

^

+ξ  and t/1tP + . First, since we have 

assumed that tx  contains no information about tξ  beyond that contained in 1t−Ψ ,  
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Consider that we want to forecast the value of ty : ),x/y(Ey 1ttt1t/t −

∧

−

∧
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From (3.5.1.2) we notice that  ´HxA)y(E tt
´

t ξ+=
∧

.  From the law of iterated 

projections and using the previous expressions we conclude that  

(3.5.1.15) ´Hx´A),x/(E´Hx´Ay 1t/tt1tttt1t/t −

∧

−−

∧
ξ+=Ψξ+=  

The error of this forecast can be derived analytically with the help of (3.5.1.2) 

equation. More specifically, 

t1t/tt1t/ttttt1t/tt w)´(H´Hx´Aw´Hx´Ayy +ξ−ξ=ξ−−+ξ+=− −

∧

−

∧

−

∧

 with mean 

square error given by the following formula: 

[ ] .(3.5.1.16)   ´wwE H)´)(´(HE)´y(y)y(yE tt1t/tt1t/tt1t/tt1t/tt +



 ξ−ξξ−ξ=



 −− −

∧

−

∧

−

∧

−

∧

Cross product terms have disappeared, since   0)´(wE 1t/ttt =



 ξ−ξ −

∧

because we 

have assumed that tw  is uncorrelated with tξ . Furthermore, since 1t/t −

∧

ξ  is a linear 
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function of 1t−Ψ  it must be also uncorrelated with tw . Using (3.5.1.4) and (3.5.1.13), 

equation (3.5.1.16) can be written as follows:  

(3.5.1.17)   RH P´H)´y(y)y(yE 1t/t1t/tt1t/tt +=







−− −−

∧

−

∧
 

 

 

Updating The Inference About tξ  

 

Next the inference about the current tξ  is updated on the basis of the observation 

of ty  to produce )./(E),x,y/(E tt1ttttt/t Ψξ=Ψξ=ξ
∧

−

∧∧

 This can be calculated by 

using the formula for updating a linear projection: 

3.5.1.18). ( )yy()´yy)(yy(E.                    

)´yy)((E

1t/tt

1

1t/tt1t/tt

1t/tt1t/tt1t/tt/t

−

∧−

−

∧

−

∧

−

∧

−

∧

−

∧∧

−×







−−×









−ξ−ξ+ξ=ξ

 

 But 

(3.5.1.19)  HPH)´)((E                                            

w)´((HE)´yy)((E

1t/t1t/tt1t/tt

´

t1t/tt1t/tt1t/tt1t/tt

−−

∧

−

∧

−

∧

−

∧

−

∧

−

∧

=







ξ−ξξ−ξ=

=







+ξ−ξ








ξ−ξ=−ξ−ξ

 

By appropriate substitutions we end up to the following formula for updating 

inference about tξ : 

(3.5.1.20)   ).´Hx´Ay.()RHP´H(HP 1t/ttt
1

1t/t1t/t1t/tt/t −

∧
−

−−−

∧∧
ξ−−++ξ=ξ  

The mean square error associated with the updated projection, which is denoted by 

t/tP , can be found as follows: 
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(3.5.1.21)  P´H)RHP´H(HPP   

)´)(yy(E)´yy)(yy(E

)´yy)((E)´)((E)´)((EP

1t/t
1

1t/t1t/t1t/t

1

1t/tt1t/tt

1

1t/tt1t/tt

1t/tt1t/tt1t/tt1t/ttt/ttt/ttt/t

−
−

−−−

−

−

∧

−

∧−

−

∧

−

∧

−

∧

−

∧

−

∧

−

∧∧∧

+−=

=







ξ−ξ−×








−−×









−ξ−ξ−








ξ−ξξ−ξ=








ξ−ξξ−ξ≡

 

 

Producing a Forecast of 1t+ξ  

 

Next, the state equation (3.5.1.1) is used to forecast 1t+ξ : 

(3.5.1.22)  0F)/v(E)/(EF)/(E t/tt1tttt1tt/1t +ξ=Ψ+Ψξ=Ψξ=ξ
∧

+

∧∧

+

∧

+

∧
 

Substituting (3.4.20) into (3.4.22) we derive the following expression: 

(3.5.1.23)  )H´-A´x-(yR)HH(H´PFPF 1-t/ttt
1-

1-t/t1-t/t1t/tt/1t

∧

−

∧

+

∧
ξ++ξ=ξ . 

The last expression of the (3.5.1.23) equation is called the measurement innovation, or 

the residual. The residual reflects the discrepancy between the predicted measurement 

and the actual measurement ty . The matrix given by   R)HH(H´PFP -1
1-t/t1-t/t +  is 

known as the gain or blending factor denoted by tK  and is chosen in such a manner 

in order to minimize the a-posteriori error covariance of the state forecast. 

Consequently equation (3.5.1.23) becomes  

(3.5.1.24)  )H´-A´x-(yKF 1-t/tttt1t/tt/1t

∧

−

∧

+

∧
ξ+ξ=ξ . 

The mean square error of this forecast can be found from (3.5.1.22) and the state 

equation (3.5.1.1). Analytically the mean square error can be derived from the 

following formula: 

[ ] (3.5.1.25)  Q´FFP´vvE´FEF           

FvFFvFEEP

t/t1t1t

´

t/t1tt/t1t

´

t/t1ttt/t1tt

´

t/1t1tt/1t1tt/1t

+=+



















ξ−ξ








ξ−ξ=

=



















ξ−+ξ








ξ−+ξ=




















ξ−ξ








ξ−ξ=

++

∧

+

∧

+

∧

+

∧

++

∧

++

∧

++

The cross products are again zero because of the initial assumptions. Furthermore 

substituting (3.5.1.21) into (3.5.1.25) we derive the following analytical form for the 

mean square error of the state forecast. 
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[ ] (3.5.1.26) Q.F´P´H)RHP´H(HPPFP 1t/t
1

1t/t1t/t1-t/tt/1t ++−= −
−

−−+  

If we observe carefully the gain factor tK  we will see that as the observation error 

covariance approaches zero, the gain tK  weights the residual less heavily. Another 

way of thinking about the gain factor tK  is that as the measurement error covariance 

R  approaches zero, the actual measurement is trusted more and more, while the 

predicted measurement is trusted less and less. 

 

Summary of The Kalman-Filter Process and Remarks 
 

To summarize, the Kalman-Filter starts with the unconditional mean and variance 

of 1ξ : )(E 10/1

^
ξ=ξ and .)(E )(EEP

´

11110/1 



 ξ−ξ



 ξ−ξ=  Typically these are 

given by 00/1

^
=ξ  and [ ] ).Q(veq)FF(I()P(vec 1

r0/1 2
−⊗−=  

Then, we iterate on   )H´-A´x-(yR)HH(H´PFPF 1-t/ttt
1-

1-t/t1-t/t1t/tt/1t

∧

−

∧

+

∧

ξ++ξ=ξ  and 

[ ]  QF´P´H)RHP´H(HPPFP 1t/t
1

1t/t1t/t1-t/tt/1t ++−= −
−

−−+  for .T,...,2,1t =  The value of 

t/1t+

∧

ξ  denotes the best forecast of 1t+ξ  based on a constant and a linear function of 

).x,...,x,x,y,...,y,y( 11tt11tt −− The matrix t/1tP +  gives the mean square error of this 

forecast. The forecast of 1ty +  is given by t/1t1tt/1t ´Hx´Ay +

∧

++

∧

ξ+=  with associated 

mean square error . R HP´H)´y(y)y(yE t/1tt/1t1tt/1t1t +=



 −− ++

∧

++

∧

+  

The Kalman-Filter process estimates a process by using a form of feedback 

control: the filter estimates the state process at some time and then obtains feedback in 

the form of (noisy) measurements. As such, the Kalman-Filter equations fall into two 

groups: time update equations and measurement update equations. The time update 

equations are responsible for projecting forward in time the current state and the error 

covariance estimates in order to obtain a-priori estimates for the next time step. The 

measurement update equations are responsible for the feedback i.e. for incorporating a 

new measurement into the a-priori estimate to obtain an improved a-posteriori 

estimate. The time update equations can also be thought as predictor equations, while 
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the measurement update equations can be thought as corrector equations. Indeed the 

final estimation algorithm resembles that of a predictor-corrector algorithm for 

solving numerical problems. Schematically we can describe the Kalman-Filter 

algorithm as follows: 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: Graphical representation of the Kalman-filter algorithm. 

 

Using the Kalman-Filter to Evaluate The Likelihood Function 

 

The Kalman-Filter was previously motivated in terms of linear projections. The 

forecasts 1t/t −

∧

ξ  and 1t/ty −

∧

 are thus optimal within the set of forecasts that are linear 

in ),x( 1tt −Ψ  where ´
12t1t12t1t1t ´)x´,...,x´,x´,y´,...,y´,y( −−−−− ≡Ψ . If the initial state 1ξ  

and the innovations T
1ttt )v,w( =  are multivariate Gaussian, then we can make the 

stronger claim that the forecasts 1t/t −

∧

ξ  and 1t/ty −

∧

 calculated by the Kalman-Filter are 

optimal among any functions of ),x( 1tt −Ψ . Moreover, if 1ξ  and T
1ttt )v,w( =  are 

Gaussian, then the distribution of ty  conditional on ),x( 1tt −Ψ  is Gaussian with mean 

and variance given by the following expression: 

( ) ; RHP´H,´Hx´AN~,x/y 1t/t1t/tt1t,tt 






 +





 ξ+Ψ −−

∧

−  that is 

Initial estimates 

1/00/1 P and ξ  

Measurement Update 
(Correct) 
(1) Compute the Kalman 

gain  
(2) Update the state 

estimate 
(3) Update the error 

covariance of the state 
estimate 

 

Time Update (Correct) 
(1) Project the state 

ahead 
(2) Project the error 

covariance of the 
state estimate ahead 
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( )

( ) 1,2,...Tfor t  ´Hx´AyRHP´H´Hx´Ay
2
1exp

(3.5.1.27)                                      RHP´H2),x/y(f

1t/ttt
1

1t/t

´

1t/ttt

2/1
1t/t

2/n
1ttt,X/Y 1ttt

=







ξ−−+








ξ−−−×

+π=Ψ

−

∧
−

−−

∧

−
−

−
−Ψ −

From (3.4.26), we can construct the log-likelihood that has the following form: 

( )∑
=

−Ψ Ψ
−

T

1t

1tttXY
(3.5.1.28)  .,x/y/flog

1t,tt
. 

Expression (3.5.1.27) can be maximized numerically with respect to the unknown 

parameters in the matrices  R.and H,A,Q,F  

 

Smoothing  
 

The Kalman-Filter was previously motivated as an algorithm for calculating a 

forecast of the state vector tξ  as a linear function of previous observations 

)/(E 1tt1t/t −

∧

−

∧

Ψξ≡ξ . The matrix 1t/tP −  represents the mean square error of the forecast 

and can be estimated by using the following formula:  

.EP
´

1t/tt1t/tt1t/t

















 ξ−ξ






 ξ−ξ≡ −

∧

−

∧

−  

A goal might then be to form an inference about the value of tξ  based on the full 

set of data collected, including observations on .x,...,x,x,y,...,y,y T1ttT1tt ++  Such an 

inference is called the smoothed estimate of tξ , denoted by )./(E TtT/t Ψξ≡ξ
∧∧

 For 

example, data on GNP15 from 1954 through 1990 might be used to estimate the value 

that ξ  took on in 1960. The mean square error of this smoothed estimate is denoted 

with (3.5.1.29)  EP
´´

T/ttT/ttT/t

























ξ−ξ








ξ−ξ≡

∧∧
. 

Consider the estimate of tξ  based on observations through date t, t/t

∧

ξ . Suppose 

we were subsequently told the true value of 1t+ξ . From the formula for updating a 

linear projection, the new estimate of tξ  could be expressed as: 

                                                           
15 Gross National Product. 
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(3.5.1.30) ))((E                    

))((E),/(E

t/1t1t

1
´

t/1t1tt/1t1t

´
t/1t1tt/ttt/tt1tt









ξ−ξ×








ξ−ξξ−ξ×









ξ−ξξ−ξ+ξ=Ψξξ

+

∧

+

−

+

∧

++

∧

+

+

∧

+

∧∧

+

∧

 

The first term in the product on the right hand side of (3.5.1.30) can be written as  

                    

.)FvF)((E))((E t/t1ttt/tt
´

t/1t1tt/tt 







ξ−+ξξ−ξ=








ξ−ξξ−ξ

∧

+

∧

+

∧

+

∧

 

Furthermore, 1tv +  is uncorrelated with tξ  and t/tξ . Thus, 

                   

). (3.5.1.31 ́FP.F́))((E))(.(E t/t
´

t/ttt/tt
´

t/1t1tt/tt =



 ξ−ξξ−ξ=



 ξ−ξξ−ξ

∧∧

+

∧

+

∧

 

Substituting (3.5.1.31) and the definition of t/1tP +  into (3.5.1.30) we obtain the 

following expression:  

)(J),/(E that have we

(3.5.1.32)                                                 P´FPJ  Defining

)(P´FP),/(E

t/1t1ttt/tt1tt

1
t/1tt/tt

t/1t1t
1

t/1tt/tt/tt1tt

+

∧

+

∧

+

∧

−
+

+

∧

+
−
+

∧

+

∧

ξ−ξ+ξ=Ψξξ

≡

ξ−ξ+ξ=Ψξξ

 

The linear projection (3.5.1.32) turns out to be the same as (3.5.1.33) )/(E T1tt Ψξξ +

∧
. 

That means that knowledge of jty +  or jtx +  would be of no added value if we already 

knew the value of 1t+ξ .  

It follows from the law of iterated projections that the smoothed estimate, 

)/(E Tt Ψξ
∧

, can be obtained by projecting (3.5.1.33) on TΨ . In calculating this 

projection, we need to think carefully about the nature of the magnitudes in (3.5.1.33). 

The first term, t/t

∧

ξ , indicates a particular exact linear function of TΨ ; the coefficients 

of this function are constructed from population moments and these coefficients 

should be viewed as deterministic constants. The projection of t/t

∧

ξ  on TΨ  is thus still 

t/t

∧

ξ . The term tJ  is also a function of population moments, and so is again treated as 
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deterministic quantity. The term t/1t+

∧

ξ  is another exact linear function of TΨ . Thus 

the projection on TΨ  is given by the following expression: 

(3.5.1.34)           )(J

or  )/(EJ)/(E

t/1tT/1ttt/tT/t

1tT1ttt/tTt

+

∧

+

∧∧∧

+

∧

+

∧∧

ξξ+ξ=ξ









ξ−Ψξ+ξ=Ψξ

 

Thus, the sequence of smoothed estimates 
T

1t
T/t

=

∧

ξ  is calculated as follows: 

First the Kalman-Filter is calculated and the sequences 
T

1t
t/t

=

∧

ξ  
1T

0t
t/1t

−

=
+

∧

ξ  T

1tt/tP
=

 

1T

0tt/1tP −

=+  are stored. The smoothed estimate for the final date in the sample, T/T

∧

ξ  

is just the last entry 
T

1t
t/t

=

∧

ξ . Next we generate 
1T

1ttJ
−

=
. Then we use (3.5.1.34) for 

1Tt −=  to calculate       ).(J 1T/TT/T1T1T/1TT/1T −

∧∧

−−−

∧

−

∧
ξξ+ξ=ξ Now that 

      T/1T−

∧

ξ has been calculated we use again (3.5.1.34) for 2Tt −= . Proceeding 

backward through the sample in this fashion permits calculation of the full set of 

smoothed estimates. 

As far as it concerns the mean square error associated with the smoothed estimate 

we obtain the following: 

t/1ttt/ttT/1ttT/tt

t/1ttT/1ttt/ttT/tt

JJ

or
JJ

+

∧∧

+

∧∧

+

∧

+

∧∧∧

ξ+ξ−ξ=ξ−+ξ−ξ

ξ+ξ−ξ−ξ=ξ−ξ
 

Multiplying the previous equation by its transpose and taking expectations, we obtain  

´J´)(EJ)´)((E

(3.5.1.35)            ´J´)(EJ)´)((E

tt/1tt/1ttt/ttt/tt

tT/1tT/1ttT/ttT/tt









ξξ+








ξ−ξξ−ξ=

=







ξξ+








ξ−ξξ−ξ

+

∧

+

∧∧∧

+

∧

+

∧∧∧

 

The cross-product terms have been disappeared from the left side because T/1t+

∧

ξ  is a 

linear function of TΨ  and so is uncorrelated with the projection error t/tt

∧

ξ−ξ . 
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Similarly, on the right hand side, t/1t+

∧

ξ  is uncorrelated with t/tt

∧

ξ−ξ . Consequently 

equation (3.5.1.35) states that: 

(3.5.1.36)  ´.J´)(E´)(EJPP tt/1tt/1tT/1tT/1ttt/tT/t 







ξξ+








ξξ−+= +

∧

+

∧

+

∧

+

∧
 

With the help of (3.5.1.36) we obtain the mean square error for the smoothed estimate 

which is given by the following formula: 

.(3.5.1.37)  ´J)PP(JPP tt/1tT/1ttt/tT/t ++ −+=  

Again, this sequence is generated by moving through the sample backward, starting 

with 1Tt −= . 

 

The French Model  
 

The principle underlying the retropolation in the French case is as follows. We are 

trying to work out for a period of T years the measurement of an item that is known 

for only k years (k<T) in two accounting systems simultaneously and for T years in 

one of the systems. Schematically the previous case can be described by the following 

figure. 

 
T years unknown under new rules         k years known under new rules 
 
 
 
 
 T+k years known under old rules 
 
 

For this purpose France and more specifically the Institut National de la 

Statistique et de Etudes Economiques (INSEE) proposes to use a linear model linking 

the variables in the two accounting systems and from this to calculate the conditional 

(or linear) expectation of the non-observed variables as a function of the set of values 

available under the former system. 

Let tx  be a vector of the observed values available at date t  of N accounting 

magnitudes obtained in the former base. Assume now that a new measure tX  is 

introduced. Our objective is to construct the time-series for the past according to the 
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new measure X. In other words what we are looking for, is to calculate the following 

conditional expectation. 

)X,...X,x,...x,x,...,x,x/X(E kT1TkT1TT21t ++++  

Experience and several trials have led France to adopt two types of short-term 

annual dynamic linear relationship between tx  and tX  having the following form: 

 

  )xX(xx
)xX(xxxX

or
  )X(xx

XxxX

t1t1t1tt

t1t1t1tttt

t1t1tt

t1t1ttt

η+α−φ+∆δ=∆
ε+α−χ+∆γ+∆β+=α−

η+∆φ+∆δ=∆
ε+∆χ+∆β+∆α=∆

−−−

−−−

−−

−−

 

with 















Σ

σ








Ν








η
ε

0
0

,
0
0

~
t

t . 

The model above contains non-observable variables and the estimation of the 

parameters is carried out using the Kalman-Filter method. However, this type of 

estimation remains problematical from a numerical standpoint since the likelihood 

may show local maximum. 

The estimation procedure of the French retropolation model can be described by 

the following algorithm: 
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t .Expressing the model in state-

space form-necessary in order to apply the Kalman-Filter method- we derive the 

following model: 
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We want to express the likelihood of )y,y,...,y,y( KT1KT32 +−+ . Applying the 

properties of conditional expectation, we obtain: 
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where ty  represents the conditional likelihood of ty  for the entire set of observations 

to date s  and )s/t(Σ  is the conditional variance for the same set of information. 

These quantities for )Kt( >  are calculated by the following steps. 

• Initialization    
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Once the parameters have been estimated, it is possible to construct by a smoothing 

process the likelihood of tN z)0,1(  conditional on the whole of the available 

observations which is what we were looking for. This is obtained by the following 

procedure: 

Smoothing: )zz()z(V)z(Vzz t/1tKT/1t
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Software for The French Retropolation Method 
 

A retropolation program was developed to provide automated estimates of time 

series. France’s retropolation software is supported by SAS software and IML16 and it 

is developed for MVS operating system.  

It has an understandable manual that provides definitions of the basic concepts as well 

as examples.  

There is a clear way of inputting the data consisting of the series from the old base as 

well as the series from the new base. 

The software provides a number of statistics for the evaluation of the candidate 

models. Statistics of this type are the standard deviations of the parameter estimations 

(the smaller it is the better), the standard deviation of the period of analysis (the 

smaller it is the smaller the degree of imprecision), the Bayes information Criterion 

for assessing how good is the fit of the estimated models as well as a number of other 

criteria for evaluating the convergence of the algorithm. Moreover the software 

produces graphs of the retropolated series and the old base series which provide an 

additional help in the evaluation of the candidate models. Although there is an on line 

help and a friendly to the user environment the present retropolation program requires 

a familiarity with the advanced statistical programs such as SAS and S+ and also 

knowledge on basic statistical concepts. As a result there is a need of training in order 

the user to be able to use the macros and to program in a satisfactory level.  

 The big advantage of this software is that by using it we are in the position to 

evaluate all candidate models and decide which is the optimal one. However, we must 

be very careful when speaking for maximization of the likelihood or for convergence 

because instead of a global maximum we might find a local one. Also the evaluation 

of the candidate models is based on some statistical criteria but these are not the only 

ones. The best solution in this case is to adopt a model choice approach i.e. run 

different models and decide which is the best. 

 

 

 

 

                                                           
16 Interactive Matrix Language. 
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3.6 Concluding Remarks 
Eurostat is now revising the backward calculation methods in order to be able to 

make proposals to other Member States to develop a relevant methodology. These 

proposals aim at the better harmonization of the backward calculation techniques and 

consequently to the better over space comparability of the results   

Attempting to make some concluding remarks about the retropolation methods in 

France and Netherlands we can say the following:  

The Netherlands approach is based on the benchmark years/interpolation method. 

In this method, after specifying the corrections for the benchmark years, interpolation 

is applied in order to specify the corrections for the intermediate years. 

The French approach is different in that the estimation of the intermediate years is 

based on a linear model that links the variable in the new accounting system and the 

variables of the accounting system before revision.  The estimates of the linear model 

are obtained via the Kalman−Filter algorithm.  

The best solution for the backward calculation is the full annual backward 

calculation. However, this technique requires a very good system of basic statistics,  

very good and detailed knowledge of the national accounting system and is very time 

and staff consuming. Under these restrictions benchmark years/interpolation method 

seems to offer a good alternative solution. Although benchmark years method is a 

more rough and mechanical method, it can give good solutions to the problem of 

backward calculation but only under certain quality requirements. 

 

 


