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Abstract

The study of time series models for count data has become a topic
of special interest during the last years. However, while research on
univariate time series for counts now flourish, the literature on multi-
variate time series models for count data is notably more limited. In
the present paper, a bivariate integer-valued autoregressive process of
order 1 (BINAR(1)) is introduced. Emphasis is placed on model with
bivariate Poisson and bivariate negative binomial innovations. We
discuss properties of the BINAR(1) model and propose the method
of conditional maximum likelihood for the estimation of its unknown
parameters. Issues of diagnostics and forecasting are considered and
predictions are produced by means of the conditional forecast distribu-
tion. Estimation uncertainty is accommodated by taking advantage of
the asymptotic normality of maximum likelihood estimators and con-
structing appropriate confidence intervals for the h-step-ahead condi-
tional probability mass function. The proposed model is applied to a
bivariate data series concerning daytime and nighttime road accidents
in the Netherlands.
Keywords: BINAR; count data; Poisson; negative binomial; bivariate
time series.

1 Introduction

Multivariate count data occur in several different disciplines like epidemiol-
ogy, marketing, criminology and engineering just to name a few. In many
cases the data are observed across time leading to multivariate time series
data as, for example, when one studies the purchases of different products
across time, or the occurrence of different diseases across time.
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In the literature there are several models to fit univariate count time
series models (see Davis et al., 1999). A commonly used class of such models
consists of the so-called integer autoregressive time series models, introduced
by McKenzie (1985) and Al-Osh and Alzaid (1987). The interested reader is
referred to McKenzie (2003) and Jung and Tremayne (2006) for a brief but
detailed review of such models. The literature on multivariate time series
models for count data is less developed. Some interesting attempts have
been made during the last decade but most of them do not arise in the
context of INAR processes. Among the models that have been built in the
aforementioned setting are those of Latour (1997); Brännäs and Nordström
(2000); Heinen and Rengifo (2007); Silva et al. (2008) and Quoreshi (2006).

The aim of this paper is to introduce and examine in detail a bivariate
integer-valued autoregressive model of order 1 (BINAR(1)). To motivate
the model consider the case of road traffic accidents. Accident analysis as-
sumes that even if the behavior of crashes differs between day and night,
both types of accidents share some common hazards. Weather conditions,
the road’s quality and characteristics and “human error”, i.e. fallible per-
ception, attention and/or memory, count between the factors that introduce
correlation. On the other hand, serial correlation between successive daily
crash counts, i.e. autocorrelation, is reported as an important challenge for
all accident models (Brijs et al., 2008). Thus, appropriate time series models
are needed to handle the presence of correlation both between and within
the series of daytime and nighttime crash counts.

The remaining of the paper is structured as follows. A general specifica-
tion of the BINAR(1) process and alternative methods for the estimation of
its unknown parameters are given in section 2. In sections 3 we concentrate
on the special cases of bivariate Poisson and bivariate negative binomial inno-
vations respectively. In section 4 we give a specification of the model residuals
as a diagnostic tool while issues of forecasting are discussed in section 5. An
application to real data concerning daytime and nighttime road accidents
follows in section 6. Some concluding remarks are presented in section 7.

2 The BINAR(1) Process

2.1 Model

Let X and R be non-negative integer-valued random 2-vectors. Let A be a
2 × 2 diagonal matrix with independent elements {αjj}j=1,2. The bivariate
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integer-valued autoregressive process of order 1 can be defined as

Xt = A ◦ Xt−1 + Rt =

[
α1 0
0 α2

]
◦
[

X1,t−1

X2,t−1

]
+

[
R1t

R2t

]
, t ∈ Z (2.1)

where “◦”is the binomial thinning operator defined as α ◦ X =
∑X

i=1 Yi =
Y , where {Yi}X

i=1 is a sequence of iid Bernoulli random variables such that
P (Yi = 1) = α = 1 − P (Yi = 0) and α ∈ [0, 1] (Steutel and van Harn, 1979).
In the bivariate case, the A◦ operation is a matricial operation which acts
as the usual matrix multiplication keeping in the same time the properties of
the binomial thinning operation. One can see that with the above definition
the jth element, j = 1, 2 is given by Xjt = αj ◦ Xj,t−1 + Rjt. The elements
Rt which entered the system in the interval (t − 1, t] are usually called as
innovations.

Assuming independence between and within the thinning operations and
{Rjt} an iid sequence with mean λj and variance σ2

j = υjλj, υj > 0, j = 1, 2,
the unconditional first and second order moments based on second order
stationarity conditions are:

E(Xjt) = µXj
=

λj

1 − αj

(2.2)

V ar(Xjt) = σ2
Xj

=
(αj + υj)λj

1 − α2
j

(2.3)

Cov (Xjt, Xj,t+h) = γXj
(h) = αh

j σ
2
Xj

; h = 1, 2, . . . (2.4)

Corr (Xjt, Xj,t+h) = ρXj
(h) = αh

j ; h = 1, 2, . . . (2.5)

Obviously, the mean, variance and autocovariance functions can take only
positive values, since λj,σ

2
j and αj are all positive. Depending on whether

υj > 1, υj ∈ (0, 1), or υj = 1, the variance may be larger than the mean
(overdispersion), smaller than the mean (underdispersion), or equal to the
mean (equidispersion) respectively.

Dependence between the two series that comprise the BINAR(1) pro-
cess is introduced by allowing for dependence between R1t and R2t while
retaining all the previous assumptions fixed. Whatever the underlying joint
distribution of {R1t, R2t} is, it can be shown that the covariance between
the innovations of the two series at time t, totally determines the covariance
between the current value of the one process and the innovations of the other
process at the same point in time t and vice versa (see Appendix):
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Cov(X1t, R2t) = Cov(R1t, R2t) (2.6)

As expected, the covariance between the sequences {X1t} and {X2t} at
time t is also affected by the corresponding “survival”parts of the two pro-
cesses. More specifically it can be shown that,

Cov(X1,t+h, X2t) =
αh

1

(1 − α1α2)
Cov(R1t, R2t) ; h = 0, 1, . . . and (2.7)

Corr(X1,t+h, X2t) =
αh

1

√
(1 − α2

1)(1 − α2
2)

(1 − α1α2)
√

(α1 + υ1)(α2 + υ2)λ1λ2

Cov(R1t, R2t) ; h = 0, 1, . . .

(2.8)
Covariances and correlations between X1t and X2,t+h, h = 0, 1, . . ., can be
defined analogously.

Note that (2.7) presumes that {Xt} is a strictly stationary process, i.e.

that the joint distribution of

(
X1t

X2t

)
is the same as that of

(
X1,t+h

X2,t+h

)
, for

all h. Using the analytical representations(
X1t

X2t

)
=

[
α1 0
0 α2

]
◦
[

X1,t−1

X2,t−1

]
+

[
R1t

R2t

]
(2.9)

and (
X1,t+h

X2,t+h

)
=

[
α1 0
0 α2

]
◦
[

X1,t+h−1

X2,t+h−1

]
+

[
R1,t+h

R2,t+h

]
(2.10)

it is easy to see that strict stationarity does indeed hold for {Xt} since the
variables involved in the right-hand sides of (2.9) and (2.10) have identical
distributions (see also Latour, 1997).

2.2 Estimation

As already noted, the structure of the BINAR(1) model implies that the
two innovation series {R1t, R2t} follow jointly a bivariate distribution. Let
GR1,R2(s1, s2) be the joint probability generating function (jpgf ) of {R1t, R2t}.
Then, the jpgf of Xt = {X1t, X2t} is given by

GXt(s) = GX1t,X2t(s1, s2) = GX1,0(1 − αt
1 + αt

1s1)GX2,0(1 − αt
2 + αt

2s2)

×
t−1∏
i=0

GR1,R2((1 − αi
1 + αi

1s1), (1 − αi
2 + αi

2s2))

(2.11)
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which reduces to

GXt(s) = GX1t,X2t(s1, s2) =
∞∏
i=0

GR1,R2((1−αi
1+αi

1s1), (1−αi
2+αi

2s2)) (2.12)

The moment generating function MXt(s) = GXt(e
s) can then be used

to obtain appropriate sample moments for the estimation of the unknown
model parameters. However, when the definition of a full density function
is feasible, maximum-likelihood (ML) estimation is generally preferable. In
the remaining of the present section we describe a general setting for ML
estimation of the unknown parameters involved in the conditional mean and
covariance functions.

The conditional density for the BINAR(1) model can be expressed as the
convolution of two binomials, namely

f1(x1) =

(
X1,t−1

x1

)
αx1

1 (1 − α1)
X1,t−1−x1 (2.13)

f2(x2) =

(
X2,t−1

x2

)
αx2

2 (1 − α2)
X2,t−1−x2 , (2.14)

and a bivariate distribution of the form f3(k, s) = P (R1t = k, R2t = s). Thus
the conditional density becomes

f(xt|xt−1,θ) =
∑

k

∑
s

f1(x1t − k)f2(x2t − s)f3(k, s) (2.15)

where θ is the vector of unknown parameters.
The conditional likelihood function is then given by

L(θ|x) =
T∏

t=1

f(xt|xt−1,θ) (2.16)

for some initial value x0 and hence maximization provides with the ML esti-
mates. Numerical maximization is straightforward with standard statistical
packages.

3 Parametric Cases

In this section we discuss two specific BINAR(1) models. The first one comes
from the assumption that the innovations of the two series follow jointly a bi-
variate Poisson distribution. The second model assumes a bivariate negative
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binomial distribution for the two innovation processes. The two represen-
tations can be viewed as appropriate tools for modeling equidispersed and
overdispersed bivariate time series respectively. Some additional specifica-
tions for negative correlation time series data are also briefly considered.

3.1 The Poisson BINAR(1) Process

3.1.1 Model

Let assume that the joint probability mass function (jpmf ) of the two inno-
vation processes {R1t, R2t} is a bivariate Poisson distribution given by

P (R1t = x, R2t = y) =

e−(λ1+λ2−φ) (λ1 − φ)x

x!

(λ2 − φ)y

y!

s∑
i=0

(
x
i

)(
y
i

)
i!

(
φ

(λ1 − φ)(λ2 − φ)

)i

(3.1)

where s = min(x, y), λ1, λ2 > 0 and φ ∈ [0, min(λ1, λ2)). We will denote this
distribution as BP (λ1, λ2, φ). The bivariate Poisson distribution defined in
(3.1) allows for dependence between the two random variables. Marginally
each random variable follows a Poisson distribution with parameters λ1 and
λ2 respectively. Parameter φ is the covariance between the two random
variables. If φ = 0 then the two variables are independent and the bivari-
ate Poisson distribution reduces to the product of two independent Poisson
distributions. For a comprehensive treatment of the bivariate Poisson distri-
bution and its multivariate extensions the reader can refer to the books of
Kocherlakota and Kocherlakota (1992) and Johnson et al. (1997).

The above assumption leads to the equidispersion case, i.e. υj = 1, or
equivalently assume that Rjt are iid Poisson sequences with σ2

j = λj, j =
1, 2. Obviously, in this case the covariance function (2.7) remains unaffected
while the correlation function (2.8) is simplified due to the simplification of
the variances of the two processes. Hence, the Poisson BINAR(1) model is
characterized by the vector of expectations µXt = E(Xt) with elements

µXjt
=

λj

1 − αj

; j = 1, 2 (3.2)

the variance-covariance matrix γXt(h) with diagonal elements

Cov(Xj,t+h, Xjt) =
αh

j λj

1 − αj

; j = 1, 2, h = 0, 1, . . . (3.3)

and off-diagonal elements

6



Cov(Xj,t+h, Xit) =
αh

j φ

1 − α1α2

; j �= i, h = 0, 1, . . . (3.4)

and the correlation matrix ρXt(h) with diagonal and off-diagonal elements
equal to

Corr(Xj,t+h, Xjt) = αh
j ; j = 1, 2, h = 0, 1, . . . (3.5)

and

Corr(Xj,t+h, Xit) =
αh

j

√
(1 − α1)(1 − α2)φ

(1 − α1α2)
√

λ1λ2

; j �= i, h = 0, 1, . . . (3.6)

respectively. Note also that conditionally on the previous observations
Xt−1 = {X1,t−1, X2,t−1}, the vector of conditional means µXt|t−1

= E(Xt|t−1)
has elements

µXjt|t−1
= αjXj,t−1 + λj, j = 1, 2.

For h = 0, the conditional variance-covariance matrix γXt|t−1
(h) has diagonal

and off-diagonal elements equal to

Cov(Xj,t+h, Xjt|Xj,t−1) = αj(1 − αj)Xj,t−1 + λj and

Cov(Xj,t+h, Xit|Xj,t−1, Xi,t−1) = φ

respectively, while otherwise it is the zero matrix.

3.1.2 Estimation

The conditional density for the Poisson BINAR(1) model can be obtained by
substituting

f3(k, s) =
e−(λ1+λ2−φ)

∑min(k,s)
m=0 (λ1 − φ)k−m(λ2 − φ)s−mφm

(k − m)!(s − m)!m!
(3.7)

in (2.15). Then we get

f(xt|xt−1, α1, α2, λ1, λ2, φ) = e−(λ1+λ2−φ)

g1∑
k=0

g2∑
s=0

∑min(k,s)
m=0 (λ1 − φ)k−m(λ2 − φ)s−mφm

(k − m)!(s − m)!m!

×
(

x1,t−1

x1t − k

)
αx1t−k

1 (1 − α1)
x1,t−1−x1t+k

(
x2,t−1

x2t − s

)
αx2t−s

2 (1 − α2)
x2,t−1−x2t+s (3.8)

where g1 = min(x1t, x1,t−1) and g2 = min(x2t, x2,t−1).
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3.2 A BINAR(1) Process with BVNB Innovations

3.2.1 Model

Assume that the jpmf of the innovations {R1t, R2t} is a bivariate negative bi-
nomial distribution of the following form (Marshall and Olkin, 1990; Boucher
et al., 2008; Cheon et al., 2009):

P (R1t = x, R2t = y) =
Γ(β−1 + x + y)

Γ(β−1)Γ(x + 1)Γ(y + 1)

×
(

λ1

λ1 + λ2 + β−1

)x(
λ2

λ1 + λ2 + β−1

)y (
β−1

λ1 + λ2 + β−1

)β−1

(3.9)

where λ1, λ2, β > 0. We will denote this distribution as BVNB(λ1, λ2, β).
Note that the marginal distribution of Rjt is univariate negative binomial
with parameters β−1 and pj = β−1/(λj + β−1), j = 1, 2 and that the corre-
lation between the two count variables R1t and R2t

Corr(x, y) =

√
λ1λ2β2

(1 + λ1β)(1 + λ2β)
(3.10)

must be positive. This assumption allows for more flexibility than the Pois-
son BINAR(1) model does, due to the involvement of the overdispersion
parameter β in the model’s specification.

Recall that in section 2.1, {Rjt} was generally defined as an iid sequence
with mean λj and variance σ2

j = υjλj, υj > 0, j = 1, 2. For the BVNB model,
σ2

j = λj(1 + βλj) implying that υj = 1 + βλj, λj, β > 0. Consequently
υj > 1 which indicates the overdispersion case. However, the resulting model
is not a BINAR model with negative binomial marginals but a model that
effectively accounts for overdispersion. In specific, the statistical properties
of the BINAR(1) model with BVNB innovations are encompassed in the
vector of expectations µXt = E(Xt) with elements

µXjt
=

λj

1 − αj

; j = 1, 2 (3.11)

the variance-covariance matrix γXt(h) with diagonal and off-diagonal ele-
ments equal to

Cov(Xj,t+h, Xjt) =
αh

j λj(1 + βλj + αj)

1 − α2
j

; j = 1, 2, h = 0, 1, . . . (3.12)
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and

Cov(Xj,t+h, Xit) =
αh

j βλ1λ2

1 − α1α2

; j �= i, h = 0, 1, . . . (3.13)

respectively, and the correlation matrix ρXt(h) with diagonal elements

Corr(Xj,t+h, Xjt) = αh
j ; j = 1, 2, h = 0, 1, . . . (3.14)

and off-diagonal elements

Corr(Xj,t+h, Xit) =
αh

j β

(1 − α1α2)

√
(1 − α2

1)(1 − α2
2)λ1λ2

(1 + βλ1 + α1)(1 + βλ2 + α2)
; j �= i, h = 0, 1, . . .

(3.15)
Conditionally on the previous observations Xt−1 = {X1,t−1, X2,t−1}, the

vector of conditional means µXt|t−1
= E(Xt|t−1) has elements

µXjt|t−1
= αjXj,t−1 + λj, j = 1, 2.

For h = 0, the conditional variance-covariance matrix γXt|t−1
(h) has diagonal

and off-diagonal elements equal to

Cov(Xj,t+h, Xjt|Xj,t−1) = αj(1 − αj)Xj,t−1 + λj(1 + βλj) and

Cov(Xj,t+h, Xit|Xj,t−1, Xi,t−1) = βλ1λ2

respectively, while otherwise it is the zero matrix.

3.2.2 Estimation

For the BINAR(1) model with BVNB innovations it holds that

f3(k, s) =
Γ(β−1 + k + s)

Γ(β−1)k!s!

(
λ1

λ1 + λ2 + β−1

)k (
λ2

λ1 + λ2 + β−1

)s(
β−1

λ1 + λ2 + β−1

)β−1

(3.16)

Thus the conditional density (2.15) becomes

f(xt|xt−1, α1, α2, λ1, λ2, β) =
g1∑

k=0

g2∑
s=0

Γ(β−1 + k + s)

Γ(β−1)k!s!

(
λ1

λ1 + λ2 + β−1

)k (
λ2

λ1 + λ2 + β−1

)s(
β−1

λ1 + λ2 + β−1

)β−1

×
(

x1,t−1

x1t − k

)
αx1t−k

1 (1 − α1)
x1,t−1−x1t+k

(
x2,t−1

x2t − s

)
αx2t−s

2 (1 − α2)
x2,t−1−x2t+s

(3.17)

where g1 = min(x1t, x1,t−1) and g2 = min(x2t, x2,t−1).
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3.3 Other distributional choices

As mentioned before, the choice of the joint distribution for R1t and R2t deter-
mines the properties of the underlying process. While the bivariate negative
binomial provides overdispersion, it is interesting to note that a selection of a
distribution with negative correlation can also produce negative correlation
between the two series (see (2.7)). The literature on bivariate count distribu-
tions with negative correlation is limited. One of the reasons is that negative
correlation in bivariate counts occurs rather infrequently. However there are
such models in the literature, as for example the bivariate Poisson-lognormal
model of Aitchinson and Ho (1989) (see also Chib and Winkelmann, 2001),
the finite mixture model developed in Karlis and Meligkotsidou (2007) and
models based on copulas see, e.g. Nikoloulopoulos and Karlis (2009) and
the references therein. Finally, noted that while we used a certain bivari-
ate negative binomial distribution, there are certain other alternatives in the
literature which could have been used. We have selected this one mainly
because of its relative simplicity.

4 Diagnostics

In this section we describe diagnostics for assessing the goodness of fit. Usu-
ally, in model fitting, this is accomplished by means of residual analysis.
However, due to the structural distinctiveness of INAR-type models, the
classical definition of residuals as differences between the observed and fitted
values, may prove to be inadequate as a diagnostic tool. We follow Free-
land and McCabe (2004a) by introducing a definition for residuals for count
data that distinguishes between a set of residuals for the continuation process
r1t = α◦Xt−1−αXt−1 and another for the arrival component r2t = Rt−λ. In
this section we attempt to extend the ideas of Freeland and McCabe (2004a)
to the BINAR(1) model.

For each one of the two series {X1t, X2t}, we define two sets of residu-
als; one for each random component. So, for the continuation components
we let r

(j)
1t = αj ◦ Xj,t−1 − αjXj,t−1 and for the arrival components we let

r
(j)
2t = Rjt − λj, j = 1, 2. In order to arrive at a sensible and practical

form of the above definitions, the unobservable quantities αj ◦Xj,t−1 and Rjt

should be replaced with Et[αj ◦ Xj,t−1] and Et[Rjt] respectively, i.e. with
their conditional expectations given the observed values of Xjt and Xj,t−1.

PROPOSITION 1. Let Et[·] denote the conditional expectation to the
sigma field, �t = σ(Xj0, Xj1, ..., Xjt), j = 1, 2. For the BINAR(1) model
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with bivariately distributed innovations the following equalities hold:

Et[α1 ◦ X1,t−1] =
α1X1,t−1P (x1t − 1|X1,t−1 − 1, X2,t−1)

P (x1t|X1,t−1, X2,t−1)
(4.1)

Et[α2 ◦ X2,t−1] =
α2X2,t−1P (x2t − 1|X1,t−1, X2,t−1 − 1)

P (x2t|X1,t−1, X2,t−1)
(4.2)

Et[R1t] =

∑
x2t

g1∑
k=0

g2∑
s=0

kf1(x1t − k)f2(x2t − s)f3(k, s)

P (x1t|X1,t−1, X2,t−1)
(4.3)

Et[R2t] =

∑
x1t

g1∑
k=0

g2∑
s=0

sf1(x1t − k)f2(x2t − s)f3(k, s)

P (x2t|X1,t−1, X2,t−1)
(4.4)

where the densities f1(·) and f2(·) are given in (2.13) and (2.14),
f3(k, s) = P (R1t = k, R2t = s), g1 = min(x1t, x1,t−1) and g2 = min(x2t, x2,t−1).
Using Proposition 1 we can now define the residuals as

r
(j)�
1t = Et[r

(j)
1t ] = Et[αj ◦ Xj,t−1] − αjXj,t−1, and (4.5)

r
(j)�
2t = Et[r

(j)
2t ] = Et[Rjt] − λj, for j = 1, 2 (4.6)

Regarding separately each one of the two series that comprise the BI-
NAR(1) model, it is noted that adding the components of the two new sets
of residuals gives the usual definition of residuals, i.e.

r
(j)�
1t + r

(j)�
2t = Et[αj ◦ Xj,t−1] − αjXj,t−1 + Et[Rjt] − λj

= Et[αj ◦ Xj,t−1 + Rjt] − αjXj,t−1 − λj

= Xjt − αjXj,t−1 − λj = r
(j)
t . (4.7)

Thus, the adequacy of each component of the model may by assessed by
plotting the aformentioned sets of residuals.

5 Forecasting

The usual way to produce forecasts in time series models is via the conditional
forecast distribution. Freeland and McCabe (2004b) established the h-step-
ahead conditional distribution of the Poisson INAR(1) model, based on the
remark of Al-Osh and Alzaid (1987) that

(Xt, Xt−h)
d
=

(
αh ◦ Xt−h +

h−1∑
i=0

αi ◦ Rt−i, Xt−h

)
(5.1)
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where Rt is a sequence of uncorrelated non-negative integer-valued random
variables with finite mean and variance.

The above result holds also for the marginal distribution of each one
of the two series (X1t, X2t) that consist a BINAR(1) model. As in the
univariate case, αh

j ◦ Xj,t−h | Xj,t−h, j = 1, 2, has a binomial distribution
with parameters (αh

j , Xj,t−h). Moreover, the joint and marginal distribu-

tions of
∑h−1

i=0 αi
1 ◦ R1,t−i and

∑h−1
i=0 αi

2 ◦ R2,t−i are determined by the joint
and marginal distributions of X1t and X2t. This relation can be described

in terms of the jpgf of

{
h−1∑
i=0

αi
1 ◦ R1,t−i,

h−1∑
i=0

αi
2 ◦ R2,t−i

}
. Denote by Sj the

quantity
h−1∑
i=0

αi
j ◦ R1,t−j, j = 1, 2. Then,

GS1,S2(s1, s2) =
h−1∏
i=0

GR1,R2((1 − αi
1 + αi

1s1), (1 − αi
2 + αi

2s2)) (5.2)

Hence, the joint distribution of {X1t, X2t} given {X1,t−h, X2,t−h} is a
convolution of two binomial distributions with parameters (αh

1 , X1,t−h) and
(αh

2 , X2,t−h) respectively, and a bivariate distribution with jpgf of the form
(5.2). Obviously, if (5.2) has not a closed-form expression, then neither the
h-step-ahead forecast distribution can be specified in closed-form. However,
it is straightforward to evaluate it numerically.

For the Poisson BINAR(1) model, it can be proved that

GS1,S2(s1, s2) = exp

[(
1 − αh

1

1 − α1

)
λ1(s1 − 1) +

(
1 − αh

2

1 − α2

)
λ2(s2 − 1)

+

(
1 − αh

1α
h
2

1 − α1α2

)
φ(s1 − 1)(s2 − 1)

]
(5.3)

while the corresponding jpgf for the BINAR(1) model with BVNB innova-
tions is given by

GS1,S2(s1, s2) =
h−1∏
i=0

[
1 − βλ1α

i
1(s1 − 1) − βλ2α

i
2(s2 − 1)

]−β−1

(5.4)

which is not of a convenient form.

Note however that irrespective of the jpgf of

{
h−1∑
i=0

αi
1 ◦ R1,t−i,

h−1∑
i=0

αi
2 ◦ R2,t−i

}
,

closed-form expressions are available for their conditional expectations and
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variances (conditional on X1t, X2t). More specifically, it can be proved that

E

(
h−1∑
i=0

αi
j ◦ Rj,t−i

)
=

(
1 − αh

j

1 − αj

)
λj (5.5)

and

V ar

(
h−1∑
i=0

αi
j ◦ Rj,t−i

)
=

(
1 − α2h

j

1 − α2
j

)
υjλj +

(
1 − αh

j

1 − αj

− 1 − α2h
j

1 − α2
j

)
λj (5.6)

THEOREM 1. The jpmf of {X1,T+h, X2,T+h} given {x1T , x2T} is given by

Ph(X1,T+h = x1, X2,T+h = x2|x1T , x2T ) =
min(x1,x1T )∑

k=0

min(x2,x2T )∑
s=0

(
x1T

x1 − k

)
(αh

1)
x1−k(1 − αh

1)
x1T−x1+k

×
(

x2T

x2 − s

)
(αh

2)
x2−s(1 − αh

2)
x2T−x2+s

× f

(
h−1∑
i=0

αi
1 ◦ R1,T+h−i = k,

h−1∑
i=0

αi
2 ◦ R2,T+h−i = s|x1T , x2T

)

with means,

E(xj,T+h|x2T , x2T ) = αh
j xjT +

(
1 − αh

j

1 − αj

)
E(Rjt) ; j = 1, 2, h = 1, 2, . . .

(5.7)
and variances,

V ar(xj,T+h|x1T , x2T ) = αh
j (1 − αh

j )xjT +

(
1 − α2h

j

1 − α2
j

)
V ar(Rjt)

+

(
1 − αh

j

1 − αj

− 1 − α2h
j

1 − α2
j

)
E(Rjt) ; j = 1, 2, h = 1, 2, . . .

(5.8)

The corresponding jpgf of {X1,T+h, X2,T+h} given {x1T , x2T} is of the form
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GX1,T+h,X2,T+h
(s1, s2|x1T , x2T ) = (1−αh

1+αh
1s1)

X1T (1−αh
2+αh

2s2)
X2T GS1,S2(s1, s2)

(5.9)
where GS1,S2(s1, s2) is given in (5.2).

Corollary 1. For the Poisson BINAR(1) model, the jpgf and jpmf of
{X1,T+h, X2,T+h} given {x1T , x2T} are given by

GX1,T+h,X2,T+h
(s1, s2|x1T , x2T ) = (1 − αh

1 + αh
1s1)

X1T (1 − αh
2 + αh

2s2)
X2T

× exp

{(
1 − αh

1

1 − α1

)
λ1s1 +

(
1 − αh

2

1 − α2

)
λ2s2 +

(
1 − αh

1α
h
2

1 − α1α2

)
φ(s1 − 1)(s2 − 1)

}

and

Ph(X1,T+h = x1, X2,T+h = x2|x1T , x2T ) =
min(x1,x1T )∑

k=0

min(x2,x2T )∑
s=0

(
x1T

x1 − k

)
(αh

1)
x1−k(1 − αh

1)
x1T−x1+k

×
(

x2T

x2 − s

)
(αh

2)
x2−s(1 − αh

2)
x2T−x2+s

× exp

{
−
[(

1 − αh
1

1 − α1

)
λ1 +

(
1 − αh

2

1 − α2

)
λ2 −

(
1 − αh

1α
h
2

1 − α1α2

)
φ

]}

×
min(k,s)∑

m=0

[(
1−αh

1

1−α1

)
λ1 −

(
1−αh

1αh
2

1−α1α2

)
φ
]k−m [(

1−αh
2

1−α2

)
λ2 −

(
1−αh

1αh
2

1−α1α2

)
φ
]s−m [(

1−αh
1αh

2

1−α1α2

)
φ
]m

(k − m)!(s − m)!m!

respectively, with means,

E(xj,T+h|x1T , x2T ) = αh
j xjT +

1 − αh
j

1 − αj

λj ; j = 1, 2, h = 1, 2, . . . (5.10)

variances,

V ar(xj,T+h|x1T , x2T ) = αh
j (1 − αh

j )xjT +
1 − αh

j

1 − αj

λj ; j = 1, 2, h = 1, 2, . . .

(5.11)
and covariance,
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Cov(x1,T+h, x2,T+h|x1T , x2T ) =

(
1 − αh

1α
h
2

1 − α1α2

)
φ ; h = 1, 2, . . . (5.12)

Corollary 2. For the BINAR(1) model with BVNB innovations, the jpgf
and the jpmf of {X1,T+h, X2,T+h} given {x1T , x2T} are given by

GX1,T+h,X2,T+h
(s1, s2|x1T , x2T ) = (1 − αh

1 + αh
1s1)

X1T (1 − αh
2 + αh

2s2)
X2T

×
h−1∏
i=0

[
1 − βλ1α

i
1(s1 − 1) − βλ2α

i
2(s2 − 1)

]−β−1

and

Ph(X1,T+h = x1, X2,T+h = x2|x1T , x2T ) =
min(x1,x1T )∑

k=0

min(x2,x2T )∑
s=0

(
x1T

x1 − k

)
(αh

1)
x1−k(1 − αh

1)
x1T−x1+k

×
(

x2T

x2 − s

)
(αh

2)
x2−s(1 − αh

2)
x2T−x2+s

× f

(
h−1∑
i=0

αi
1 ◦ R1,T+h−i = k,

h−1∑
i=0

αi
2 ◦ R2,T+h−i = s|x1T , x2T

)

respectively, where f

(
h−1∑
i=0

αi
1 ◦ R1,T+h−i = k,

h−1∑
i=0

αi
2 ◦ R2,T+h−i = s|x1T , x2T

)
can be numerically calculated.
The means and variances of this process are given by,

E(xj,T+h|x1T , x2T ) = αh
j xjT +

1 − αh
j

1 − αj

λj ; j = 1, 2, h = 1, 2, . . . (5.13)

and

V ar(xj,T+h|x1T , x2T ) = αh
j (1 − αh

j )xjT +

(
1 − α2h

j

1 − α2
j

)
(1 + βλj)λj

+

(
1 − αh

j

1 − αj

− 1 − α2h
j

1 − α2
j

)
λj ; j = 1, 2, h = 1, 2, . . .

(5.14)
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whereas the covariance function is not of a closed-form.

The marginal probabilities Ph(x1|x1T , x2T ) and Ph(x2|x1T , x2T ) can be cal-
culated directly as, Ph(x1|x1T , x2T ) =

∑
x2

Ph(x1, x2|x1T , x2T ) and
Ph(x2|x1T , x2T ) =

∑
x1

Ph(x1, x2|x1T , x2T ) respectively.
Given the fact that the vector of parameters θ is unknown, in practice

we are only able to compute Ph(x1, x2|x1T , x2T ; θ̂) where θ̂ are typically the
maximum likelihood estimators introduced in section 2.2. Lack of knowledge
about the true values of the model parameters and the need to estimate them
introduce uncertainty in the estimation of the h-step-ahead jpmf ’s. Estima-
tion uncertainty, i.e. the error made in estimating these probabilities, can be
assessed by taking advantage of the asymptotic normality of ML estimators.
Under standard regularity conditions, the ML estimator θ, denoted by θ̂,
is asymptotically normally distributed around the true parameter value, i.e.√

T (θ̂ − θ0)
a∼ N(0, i−1), where i−1 is the inverse of the Fisher information

matrix (Bu and McCabe, 2008). The δ-method can then be used for finding
the asymptotic distribution of a random variable g(θ̂). An application of the
δ-method to g(θ̂) = Ph(x|xT ; θ̂) provides us with a confidence interval for
the probability associated with any fixed value of x = (x1, x2) in the fore-
cast distribution. Obviously, these intervals may be truncated outside [0,1]
(Freeland and McCabe, 2004b).

THEOREM 2 (Freeland and McCabe, 2004b): The quantity Ph(x|xT ; θ̂)
has an asymptotically normal distribution with mean Ph(x|xT ; θ0) and vari-
ance

σ2
h(x; θ0) = T−1

{(
∂Ph

∂θ̂′

∣∣∣∣
θ=θ0

)
i−1

(
∂Ph

∂θ̂

∣∣∣∣
θ=θ0

)}
(5.15)

It is apparent that analytical expressions for (5.15) are only available
in cases where Ph(x|xT ) has a closed-form expression as is the case for the
Poisson BINAR(1) model (see Appendix).

Closing this section, it is worth noting that summarizing the forecast
distribution by means of conditional expectations, while ensures a minimum
mean square error, it has drawbacks with respect to data coherency since the
integer-valued property of the time series is not taken into account. Free-
land and McCabe (2004b) suggest instead the use of the median of this
distribution which always lies in the support of the series and is therefore co-
herent. Also, Pavlopoulos and Karlis (2008) propose a parametric bootstrap
approach which guarantees both integer-valued predictions and prediction

16



intervals with integer-valued ends. In our case, since the distributions are
discrete, it is relatively easy to find the median to use as prediction instead
of the mean, as the median will satisfy the discrete nature of the data.

6 Application

The data used in this application refer to the joint modelling of daytime
and nighttime road accidents in Schiphol area, in the Netherlands for the
year 2001. As nighttime accidents we refer to accidents happened between
10.00am-06.00pm, while the rest were considered as daytime accidents. In
accident analysis those types of accidents are considered to have different
behavior. During nighttimes the traffic is of different nature (e.g. more
people travel for entertainment). On the other hand since both types share
the same environment, like weather conditions, characteristics of the road,
they are correlated. The data are daily observations.

Data from successive days are typically correlated as they refer to similar
conditions. Ignoring this time series nature of the data can lead to incorrect
inference (see Brijs et al., 2008). Hence joint modelling of the two time series
can be very useful. For such data typically the autocorrelations are relatively
small and thus AR(1) models are enough to capture the time dependence.

The data can be seen in figure 1. The daytime and nighttime accidents
have mean values (variances) equal to 7.27 (20.93) and 1.50 (1.87) respec-
tively implying ovedispersion. The autocorrelation functions for both series
present a rather exponential decay with a few exceptions. The first order
autocorrelation coefficient is 0.12 for daytime accidents and 0.13 for night-
time accidents. Finally the correlation between the two time series is 0.145
revealing a short of correlation between the series.

In order to model the data we considered both the bivariate Poisson
INAR(1) model and the INAR(1) model with BVNB innovations. The re-
sults can be seen in Table 1. Comparing the log-likelihood one can see that
both the time series context and the correlation between the series are needed.
The negative binomial BINAR(1) model can also model the overdispersion
and thus it provides the better fit. We have also fitted a model with bivari-
ate Poisson lognormal innovations which having two more parameters offered
very small improvement being much more computationally demanding (re-
sults are not presented here).

It is clear that the time series models are better than the models that
neglect this. In addition the BVNB INAR(1) model is much better as it cap-
tures the overdispersion in the dataset together with the correlation between
the two series but also the autocorrelation within each series. The standard
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Figure 1: Time series plots and acf plots for the series of daytime and night-
time accidents.
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Table 1: Maximum Likelihood Estimates from fitting alternatively a BI-
NAR(1), two independent INAR(1) models and a simple bivariate Poisson
model.

BINAR(1) Independent INAR(1) Biv. Poisson Neg.Bin BINAR(1)
Estimate SE Estimate SE Estimate SE Estimate SE

α̂1 0.0769 0.0253 0.0805† 0.0253† 0.0427 0.0380
α̂2 0.0867 0.0430 0.0991‡ 0.0431‡ 0.1144 0.0444
λ̂1 6.7282 0.2261 6.7022† 0.2258† 7.2885 0.1415 6.9771 0.3537
λ̂2 1.3667 0.0873 1.3481‡ 0.0868‡ 1.4973 0.0641 1.3250 0.0937

φ̂ =0.2682 0.1052 0.3098 0.1048 β̂ =0.2248 0.0297
Log-Lik -1744.7200 -1748.1490 -1751.5670 -1619.3770

AIC 3499.44 3504.298 3509.134 3248.754
†daytime accidents
‡nighttime accidents

errors of the estimates obtained by the two approaches (standard errors are
derived numerically from the Hessian) show that fitting a BINAR(1) model
to the data generally improves the precision of the produced estimates. On
the other hand it is apparent that ignoring any form of the correlation (either
within or between) or the overdispersion leads to incorrect standard errors
and hence incorrect inferences.

Figures 2-4 and the related inference concern results obtained from the
BINAR(1) model with BVNB innovations. Figure 2 includes the plots of the
residuals of the two series. Since these residuals have not been standardized,
the survival and arrival residuals add up to the Pearson residuals. Moreover,
a large Pearson residual is comprised by a large survival and arrival residual,
while a small Pearson residual consists of a small survival and arrival residual.
The signs of survival and arrival residuals may also differ in some cases.
However, they still keep their similarity in pattern.

Another interesting point is the reflection of the model structure in the
correlation between different pairs of residuals. More specifically, the sample
correlations between the survival and arrival residuals of each series are very
high: 0.72 for the daytime series and 0.67 for the nighttime series. The arrival
residuals of the two series are also significantly correlated at 0.16 depicting the
structural assumption underlying the BINAR(1) model that the correlation
between the two series has been introduced by using correlated innovation
terms.

Figure 3 shows the one-step-ahead marginal predictive distributions
P (x1,n+1|x1n, x2n) and P (x2,n+1|x1n, x2n) where X1 corresponds to the day-
time series and X2 corresponds to the nighttime series. The last observation
was equal to 4 for the former series and equal to 1 for the latter series. As
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one can see in Figure 3, both distributions are skewed to the right which
is in accordance with the shape of the negative binomial distribution. The
most probable one-step-ahead predictive value is equal to 7 for the daytime
series and equal to 1 for the nighttime series. The larger dispersion of the
series of daytime accidents compared with the nighttime accidents series is
also reflected in the plot of its predictive distribution.

Figure 4 shows the observed values of the series of daytime and nighttime
accidents with the corresponding one-step-ahead predictions. The divergence
between real data and forecasts is also portrayed. The horizontal lines corre-
spond to the observed mean values of the two series. Obviously, divergence
is larger for observations that lie far away from the mean. This seems to be
expected since the one-step-ahead predictions have the same mean but are
less dispersed than the original series. Note also that the correlation coef-
ficient of the two series of forecasts is equal to the correlation coefficient of
the real data series.
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Figure 2: Non-standardized residuals of the daytime and nighttime accidents’
series.
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7 Concluding Remarks

The main focus in this paper is on bivariate time series for count data. Gener-
ally, the desired BINAR(1) model can be constructed in two different ways:
The first approach prespecifies the form of the marginal distributions and
subsequently identifies the required form of the distribution of the innova-
tions in order for stationarity to hold. In the second approach it is the choice
of the form of the innovations distribution that leads to the specification of
the underlying marginal distributions. The models proposed in this paper
have been built following the last approach. In particular, we considered
two different BINAR(1) models, one with bivariate Poisson innovations and
another one with bivariate negative binomial innovations. The former spec-
ification has the useful property that the joint distribution of the two series
under consideration is also bivariate Poisson. In the latter case, we don’t
end up with a bivariate negative binomial INAR(1) process but we obtain
a BINAR(1) model that effectively accounts for overdispersion. Deviations
from the equidispersion restriction could alternatively accounted for by as-
suming another distribution for the innovations, e.g. mixed Poisson, or by
the inclusion of appropriate regressors. Results on such extensions will be
reported elsewhere.

It is of course self-evident that the proposed model is not a panacea. For
example, when significant correlation between the series under consideration
is present at lags higher than 1, fitting a BINAR(1) model proves to be rather
inadequate. Thus, extensions of the present model to higher orders would
be a useful contribution to the improvement of its flexibility. Moreover, the
structure of real-life data frequently implies need for the inclusion of both
autoregressive and moving average components (when for example seasonal
patterns are observed in time series of counts). So, extending the bivariate
INAR model to a bivariate INARMA model seems to be another interesting
challenge. Finally, generalization of the proposed process to the multivariate
case would provide a great opportunity for modelling more than two time
series of correlated count data. In this case, the definition of a multivari-
ate discrete distribution for the innovation process is needed. The existing
models have certain limitations and they do not lead to models with well
specified marginals. Hence inference can be difficult with standard methods
like maximum likelihood and some alternatives, like composite likelihood,
should be considered.
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Appendix

I. PROOF OF EQUATION (2.6).

Cov(X1t, R2t) = E(X1tR2t) − E(X1t)E(R2t)

= E(X1tR2t) − µ1λ2

= E

[( ∞∑
i=0

αi
1 ◦ R1,t−i

)
R2t

]
− µ1λ2

=
∞∑
i=0

αi
1 {E(R1,t−iR2t)} − µ1λ2

= E(R1tR2t) +
∞∑
i=1

αi
1 {E(R1,t−1R2t)} − µ1λ2

= Cov(R1t, R2t) +
∞∑
i=0

αi
1 {λ1λ2} − µ1λ2

= Cov(R1t, R2t)

II. ESTIMATION UNCERTAINTY OF THE POISSON BINAR(1) MODEL.
For the Poisson BINAR(1) model, we let θ̂T = (α̂1, α̂2, λ̂1, λ̂2, φ̂) be the

ML estimators of θ = (α1, α2, λ1, λ2, φ) based on a sample of size T . Then,
(5.15) can be written as

σ2
h(x; θ0) = T−1

⎧⎨
⎩
(

∂Ph

∂α1

∣∣∣∣
θ=θ0

)2

i−1
1,1 +

(
∂Ph

∂α2

∣∣∣∣
θ=θ0

)2

i−1
2,2 +

(
∂Ph

∂λ1

∣∣∣∣
θ=θ0

)2

i−1
3,3

+

(
∂Ph

∂λ2

∣∣∣∣
θ=θ0

)2

i−1
4,4 +

(
∂Ph

∂φ

∣∣∣∣
θ=θ0

)2

i−1
5,5 + 2

(
∂Ph

∂α1

∂Ph

∂α2

∣∣∣∣
θ=θ0

)
i−1
1,2

+ 2

(
∂Ph

∂α1

∂Ph

∂λ1

∣∣∣∣
θ=θ0

)
i−1
1,3 + 2

(
∂Ph

∂α1

∂Ph

∂λ2

∣∣∣∣
θ=θ0

)
i−1
1,4 + 2

(
∂Ph

∂α1

∂Ph

∂φ

∣∣∣∣
θ=θ0

)
i−1
1,5

+ 2

(
∂Ph

∂α2

∂Ph

∂λ1

∣∣∣∣
θ=θ0

)
i−1
2,3 + 2

(
∂Ph

∂α2

∂Ph

∂λ2

∣∣∣∣
θ=θ0

)
i−1
2,4 + 2

(
∂Ph

∂α2

∂Ph

∂φ

∣∣∣∣
θ=θ0

)
i−1
2,5

+ 2

(
∂Ph

∂λ1

∂Ph

∂λ2

∣∣∣∣
θ=θ0

)
i−1
3,4 + 2

(
∂Ph

∂λ1

∂Ph

∂φ

∣∣∣∣
θ=θ0

)
i−1
3,5 + 2

(
∂Ph

∂λ2

∂Ph

∂φ

∣∣∣∣
θ=θ0

)
i−1
4,5

}
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where i−1
k,j is the k, j-element of the matrix i−1, k, j = 1, 2, ..., 5 and

∂Ph

∂α1

=
h

1 − αh
1

x1T

{
Ph(x1 − 1, x2|x1T − 1, x2T ) − αh−1

1 Ph(x1, x2|x1T , x2T )
}

− λ1(1 − hαh−1
1 − (1 − h)αh

1)

(1 − α2
1)

{Ph(x1, x2|x1T , x2T ) − Ph(x1 − 1, x2|x1T , x2T )}

+
α2φ(1 − hαh−1

1 αh−1
2 − (1 − h)αh

1α
h
2)

(1 − α1α2)2
{Ph(x1, x2|x1T , x2T )

− Ph(x1 − 1, x2|x1T , x2T ) − Ph(x1, x2 − 1|x1T , x2T ) + Ph(x1 − 1, x2 − 1|x1T , x2T )}

∂Ph

∂α2

=
h

1 − αh
2

x2T

{
Ph(x1, x2 − 1|x1T , x2T − 1) − αh−1

2 Ph(x1, x2|x1T , x2T )
}

− λ2(1 − hαh−1
2 − (1 − h)αh

2)

(1 − α2
2)

{Ph(x1, x2|x1T , x2T ) − Ph(x1, x2 − 1|x1T , x2T )}

+
α1φ(1 − hαh−1

1 αh−1
2 − (1 − h)αh

1α
h
2)

(1 − α1α2)2
{Ph(x1, x2|x1T , x2T )

− Ph(x1 − 1, x2|x1T , x2T ) − Ph(x1, x2 − 1|x1T , x2T ) + Ph(x1 − 1, x2 − 1|x1T , x2T )}

∂Ph

∂λ1

=

(
1 − αh

1

1 − α1

)
{Ph(x1, x2|x1T , x2T ) + Ph(x1 − 1, x2|x1T , x2T )}

∂Ph

∂λ2

=

(
1 − αh

2

1 − α2

)
{Ph(x1, x2|x1T , x2T ) + Ph(x1, x2 − 1|x1T , x2T )}

∂Ph

∂φ
=

(
1 − αh

1α
h
2

1 − α1α2

)
{Ph(x1, x2|x1T , x2T ) − Ph(x1 − 1, x2|x1T , x2T )

− Ph(x1, x2 − 1|x1T , x2T ) + Ph(x1 − 1, x2 − 1|x1T , x2T )}
In order to obtain analytical expressions for the elements that comprise

the Fisher information matrix i−1 we follow the notation of Freeland and
McCabe (2004b) and denote by �̈θ the second derivatives of the log-likelihood
of the Poisson BINAR(1) model with respect to θ = [α1, α2, λ1, λ2, φ]′:

�̈θ =

⎡
⎢⎢⎢⎢⎢⎣

�̈α1α1 �̈α1α2 �̈α1λ1 �̈α1λ2 �̈α1φ

�̈α2α2 �̈α2λ1 �̈α2λ2 �̈α2φ

�̈λ1λ1 �̈λ1λ2 �̈λ1φ

�̈λ2λ2 �̈λ2φ

�̈φφ

⎤
⎥⎥⎥⎥⎥⎦
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Through ordinary algebra it can be shown that

�̈α1α1 =
1

(1 − α1)2

T∑
t=1

{
2x1,t−1P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)
− x1,t−1

+
x1,t−1(x1,t−1 − 1)P (x1t − 2, x2t|x1,t−1 − 2, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)

−
(

x1,t−1P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)

)2
}

�̈α2α2 =
1

(1 − α2)2

T∑
t=1

{
2x2,t−1P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)

P (x1t, x2t|x1,t−1, x2,t−1)
− x2,t−1

+
x2,t−1(x2,t−1 − 1)P (x1t, x2t − 2|x1,t−1, x2,t−1 − 2)

P (x1t, x2t|x1,t−1, x2,t−1)

−
(

x2,t−1P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)

P (x1t, x2t|x1,t−1, x2,t−1)

)2
}

�̈λ1λ1 =
T∑

t=1

{
P (x1t − 2, x2t|x1,t−1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)
−
(

P (x1t − 1, x2t|x1,t−1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)

)2
}

�̈λ2λ2 =
T∑

t=1

{
P (x1t, x2t − 2|x1,t−1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)
−
(

P (x1t, x2t − 1|x1,t−1, x2,t−1)

P (x1t, x2t|x1,t−1, x2,t−1)

)2
}

28



�̈φφ =
T∑

t=1

{
1

P (x1t, x2t|x1,t−1, x2,t−1)
×

× {2P (x1t − 1, x2t − 1|x1,t−1, x2,t−1) − 2P (x1t − 2, x2t − 1|x1,t−1, x2,t−1)

− 2P (x1t − 1, x2t − 2|x1,t−1, x2,t−1) + P (x1t − 2, x2t − 2|x1,t−1, x2,t−1)

+ P (x1t − 2, x2t|x1,t−1, x2,t−1) + P (x1t, x2t − 2|x1,t−1, x2,t−1)}
+

1

P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {2P (x1t − 1, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

+ 2P (x1t, x2t − 1|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− 2P (x1t − 1, x2t|x1,t−1, x2,t−1)P (x1t, x2t − 1|x1,t−1, x2,t−1)

− P 2(x1t − 1, x2t − 1|x1,t−1, x2,t−1) − P 2(x1t − 1, x2t|x1,t−1, x2,t−1)

− P 2(x1t, x2t − 1|x1,t−1, x2,t−1)
}}

�̈α1α2 =
T∑

t=1

{
x1,t−1x2,t−1

(1 − α1)(1 − α2)P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {P (x1t, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1 − 1, x2,t−1 − 1)

− P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1) P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)}
}

�̈α1λ1 =
T∑

t=1

{
x1,t−1

(1 − α1)P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {P (x1t, x2t|x1,t−1, x2,t−1)P (x1t − 2, x2t|x1,t−1 − 1, x2,t−1)

− P (x1t − 1, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1)}
}

�̈α2λ2 =
T∑

t=1

{
x2,t−1

(1 − α2)P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {P (x1t, x2t|x1,t−1, x2,t−1)P (x1t, x2t − 2|x1,t−1, x2,t−1 − 1)

− P (x1t, x2t − 1|x1,t−1, x2,t−1)P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)}
}
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�̈α1λ2 =
T∑

t=1

{
x1,t−1

(1 − α1)P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {P (x1t, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1 − 1, x2,t−1)

− P (x1t, x2t − 1|x1,t−1, x2,t−1)P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1)}
}

�̈α2λ1 =
T∑

t=1

{
x2,t−1

(1 − α2)P 2(x1t, x2t|x1,t−1, x2,t−1)
×

× {P (x1t, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1, x2,t−1 − 1)

− P (x1t − 1, x2t|x1,t−1, x2,t−1)P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)}
}

�̈α1φ =
T∑

t=1

{
x1,t−1

(1 − α1)

{
1

P (x1t, x2t|x1,t−1, x2,t−1)
[P (x1t − 2, x2t − 1|x1,t−1 − 1, x2,t−1)

− P (x1t − 2, x2t|x1,t−1 − 1, x2,t−1) − P (x1t − 1, x2t − 1|x1,t−1 − 1, x2,t−1)]

− P (x1t − 1, x2t|x1,t−1 − 1, x2,t−1)

P 2(x1t, x2t|x1,t−1, x2,t−1)
[P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− P (x1t − 1, x2t|x1,t−1, x2,t−1) − P (x1t, x2t − 1|x1,t−1, x2,t−1)]

}}

�̈α2φ =
T∑

t=1

{
x2,t−1

(1 − α2)

{
1

P (x1t, x2t|x1,t−1, x2,t−1)
[P (x1t − 1, x2t − 2|x1,t−1, x2,t−1 − 1)

− P (x1t, x2t − 2|x1,t−1, x2,t−1 − 1) − P (x1t − 1, x2t − 1|x1,t−1, x2,t−1 − 1)]

− P (x1t, x2t − 1|x1,t−1, x2,t−1 − 1)

P 2(x1t, x2t|x1,t−1, x2,t−1)
[P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− P (x1t, x2t − 1|x1,t−1, x2,t−1) − P (x1t − 1, x2t|x1,t−1, x2,t−1)]

}}

�̈λ1λ2 =
T∑

t=1

{
1

P 2(x1t, x2t|x1,t−1, x2,t−1)
{P (x1t, x2t|x1,t−1, x2,t−1)P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− P (x1t, x2t − 1|x1,t−1, x2,t−1)P (x1t − 1, x2t|x1,t−1, x2,t−1)}
}
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�̈λ1φ =
T∑

t=1

{
1

P (x1t, x2t|x1,t−1, x2,t−1)
{P (x1t − 2, x2t − 1|x1,t−1, x2,t−1)

− P (x1t − 2, x2t|x1,t−1, x2,t−1) − P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)}
− P (x1t − 1, x2t|x1,t−1, x2,t−1)

P 2(x1t, x2t|x1,t−1, x2,t−1)
{P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− P (x1t − 1, x2t|x1,t−1, x2,t−1) − P (x1t, x2t − 1|x1,t−1, x2,t−1)}
}

�̈λ2φ =
T∑

t=1

{
1

P (x1t, x2t|x1,t−1, x2,t−1)
{P (x1t − 1, x2t − 2|x1,t−1, x2,t−1)

− P (x1t, x2t − 2|x1,t−1, x2,t−1) − P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)}
− P (x1t, x2t − 1|x1,t−1, x2,t−1)

P 2(x1t, x2t|x1,t−1, x2,t−1)
{P (x1t − 1, x2t − 1|x1,t−1, x2,t−1)

− P (x1t − 1, x2t|x1,t−1, x2,t−1) − P (x1t, x2t − 1|x1,t−1, x2,t−1)}
}

Note that, in contrast to the univariate case, the information (as well
as the scores) of the Poisson BINAR(1) model cannot be decomposed into
quantities associated with each component of the model seperately. This
barrier is just due to the model’s structure, i.e. to its bivariate nature.

The Fisher information matrix i can then be calculated as usual:

i = −E

[
∂2�(θ)

∂θ2
|θ
]

= −E
[
�̈θ|θ

]
where �(θ) is the log-likelihood of the Poisson BINAR(1) model.
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