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Outline
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• INAR Model
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Caution: This presentations includes a number of equations!
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Count Data

Count Data are encountered in:

• Accident analysis, epidemiology, sports, marketing, environmetrics, economy,
finance, ecology, physics, biostatistics etc.

• Certain continuous data can be transformed to count data (e.g. rainfall data,
threshold models etc)

• In many cases continuous data are truly measured as counts (e.g. time to
unemployment)
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Why time series models?

• In many circumstances the data are really time series (e.g daily or hourly or
monthly number of crashes)

• Preliminary analysis has shown that in many datasets there is
autocorrelation present, time series models can account for this

• Ignoring this autocorrelation the derived effects (coefficients of the model)
may not be correct and thus the reported effect can be wrong (or at least we
may report larger effects than those really exist)

• Note that autocorrelation can be in many cases due to the fact that our
observations share the same conditions (e.g. environmental or weather
conditions)
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Why not standard time series models?

Standard time series models are based on an assumption of normal and related
distributions which, while reasonable for continuous data, fail substantially for
count data.

They fail for one or more of the following reasons:

• Low counts, small mean

• A lot of zeros

• Symmetry not present

• Probabilities hard to compute and interpret

Normal approximations exist and work well for large values (so, usually in
aggregated data).



Time Series models for count data TRB 2006

'

&

$

%

time

x

0 100 200 300

0
2

4
6

8
10

12

time

x

0 100 200 300

0
1

2
3

4
5

6

0 2 4 6 8 10 12

0
20

40
60

80
10

0

x

0 2 4 6 8 10 12

0
50

10
0

15
0

20
0

25
0

xFigure 1: Example of discrete-valued time series
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Time Series Models for Count Data

• Parameter driven

Yt | εt, xt ∼ Poisson(εt exp(x′tβ))

εt is a latent process usually of a standard form as in classical time series, e.g

εt = ρεt−1 + wt, wt iid N(0, σ2)

• Observation driven

Yt | Yt−1, xt ∼ Poisson(exp(x′tβ + f(Yt−1)))

where f(y) can be any function

• Hidden Markov models : there is a hidden process that changes the state of
the series and adds autocorrelation

• Integer Autoregressive Models: They mimic standard autoregressive models
suitably defined for integers

• Other models
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Integer Autoregressive

We mimic the classical AR model for normally distributed data. The process is
defined as

Yt = a ◦ Yt−1 + Rt

where Rt is a sequence of uncorrelated non-negative integer-valued random
variables having mean µ and finite variance σ2 and X0 represents an initial value
of the process while the operator ” ◦ ” denotes the binomial thinning operator.

The operator ” ◦ ” is defined by

α ◦X =
X∑

t=1

Yt,

where Yt are Bernoulli random variables with P (Yt = 1) = α = 1− P (Yt = 0),
α ∈ [0, 1] and is called the binomial thinning operator.
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Properties

The mean and variance of a stationary INAR(1) process (i.e. 0 < α < 1) are
constants given by the formulae

µX = E (Xt) =
µR

1− α
and σ2

X = V ar (Xt) =
αµR + σ2

R

1− α2
, (1)

where µR and σ2
R are respectively the (assumed finite) mean and variance of the

i.i.d. innovations. The auto-covariance function of a stationary INAR(1) process
{Xt}t∈Z is given by the formula

γX(k) = Cov (Xt, Xt−k) = α|k|σ2
X , k ∈ Z. (2)

From the auto-covariance function, it is easy to obtain the autocorrelation
function ρ(k) as follows:

ρ(k) =
γ(k)
γ(0)

= α|k|.

Thus, the autocorrelation function ρ(k) decays exponentially with lag k.
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Poisson Models

Yt = a ◦ Yt−1 + Rt

Rt ∼ Poisson(λt)

log λt = x′tβ

where x′t are covariates associated with the t observation and β, as usual, the
coefficients to be estimated. The autocorrelation in lag 1 is α.

A serious limitation is that marginally the data follow a Poisson distribution
which is not so realistic. We may add covariates by assuming

log
(

αt

1− αt

)
= w′

tγ,

but this might cause problems in the interpretability of the model!
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How to estimate the model?

Despite the complicated form of the model an easily programmable EM algorithm
is available.

E-step: Using the current values of the estimates, say θold = (βold, γold), calculate

st = E(Rt | xt, xt−1, θ
old) =

∞∑
z=0

z
P (Rt = z)P (Yt = xt − z)

P (xt|xt−1, αold
t , λold

t )

for t = 1, . . . , T , where P (Rt = z) and P (Yt = xt − z) are the probability
functions of a Poisson and a binomial distribution respectively and
λold

t = exp
(
ztβ

old
)

and αold
t = exp(wtγ

old)/(1 + exp(wtγ
old)) .

The conditional expectation of Yt given the data and the current values of the
estimates can be determined by simple subtraction, as

ct = E(Yt|xt, xt−1, θ
old) = xt − st.
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M-Step: Update the parameters in θ by fitting two GLM models. Namely, update
β by fitting a Poisson regression model with response variables ct and design
matrix z, while γ can be updated by fitting a binomial logit model with response
st and design matrix w.

Stop iterating when some convergence criterion is satisfied, otherwise, go back to
the E-step.

Remark: The algorithm just described, ignoring the time series structure is in
fact an algorithm that fits a Poisson-Binomial regression model.
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Overdispersion

Poisson INAR model assumes that marginally the densities are Poisson which is
too restrictive. We need to generalize so as to cover overdispersion. The situation
becomes more complicated. It can be seen that the overdispersion of the series
relates to the overdispersion of the innovation by

ID (Yt) =
a + ID (Rt)

1 + a

Hence, we need an overdispersed distribution for the innovations!

A simple idea is to use the negative binomial distribution but this leads to very
complicated likelihood. Another idea is to use a finite mixture of Poisson
distributions (Pavlopoulos and Karlis, 2006 hopefully). Estimation is feasible.
There is a trade off between the descriptive and the predictive power of such a
model.
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Extensions

• Not constant α. Flexible but it allows for limited overdispersion.

• Define INAR(p) models of the form

Yt =
p∑

i=1

ai ◦ Yt−i + Rt

• Other distributional choices for Rt so as to provide tractable likelihoods!

• Dependence between Yt−1 and Rt.
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Zeger’s Model

We assume

Yt ∼ Poisson(µtεt)

log(µt) = x′tβ

εt = φεt−1 + Rt

Rt ∼ N(0, σ2)

Note that we asume that εt has an AR(1) process. We may use any other process
to replace it.

Pros: Overdispersion and correlation are imposed together by εt.

Cons: Hard to be estimated
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Properties

ρ(k) =
ρε(k)

[(1 + (σ2µt)−1)(1 + (σ2µt+k)−1)]1/2

where ρε(k) is the autocorrelation of the process assumed for ε, hence,
autocorrelation from the innovation process. Stationarity is not guaranteed.
Important things

• Good news: Since the correlation properties are coming from the innovation
one can use any of the models for continuous time series to create a similar
model for count data.

• Bad news: Estimation quite complicated: Use a GEE approach or an MCEM
approach.
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Hidden Markov Models

Consider that there are two states. The series can be in one of the states.
Conditionally on these states the observations are independent. But since we
cannot know the states the series is at each time point and because the states are
correlated we observe data that are correlated because there is the latent process
that changes the states at each time point!

Usually the states are connected through a Markov Process with some transition
probabilities, we may allow for higher order Markovian properties etc.
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Properties

Pros

• Easy interpretation

• Markovian and well understood properties

Cons

• Estimation is difficult

• The number of states is another thing that we have to take into account and
estimate.

• Being Markovian we cannot have a large range of correlation structure
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More Models

There are several other models proposed in the literature

• Models based on mixing - ARMA type models

• Dynamic Ordered Probit models for count data

• Composite models

• ...
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Application - Summary

Aim: Examining effect of weather conditions on accident counts.

Data: Yearly crash count data on the major road network surrounding 3 major
cities in the Netherlands. Weather data from nearby meteorological stations

Model: INAR model, with model selection technique to select variables.

Things to be considered: Explanatory weather variables are correlated. For
each characteristic more than one variable available (causes multicollinearity).
Transformations needed to avoid linear relationships. Day is used as a driver for
different traffic volumes.

Limitations: Data are aggregated within days, so weather effects are somewhat
smoothed out.
More details in Brijs, Karlis and Wets, (2006+)
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Figure 2: Accident counts for the three sites (daily data for 2001)
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site mean variance autocorrelation variance/mean

Utrecht 2.747 4.227 0.0276 1.54

Dordrecht 0.950 1.239 0.0956 1.30

Haarlemmermeer 12.819 21.950 0.222 1.71

Table 1: Descriptive measures for the 3 series
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Figure 3: Plot of some of the weather variables for the three sites. There
are notably different weather conditions
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Results

coefficient Std. err t-value p-value

Constant 1.70479 0.10718 15.905 0.000

Utrecht -1.38973 0.06835 -20.331 0.000

Dordrecht -2.51865 0.08515 -29.578 0.000

Temperature 23.926 < 0.001

< 0 0.52376 0.11347 4.615 < 0.001

[0, 10] 0.321407 0.08256 3.892 < 0.001

[10, 20] 0.251626 0.07979 3.153 0.000

> 20 0 - - -

Dev of mean temp 0.00098 0.00057 1.703 0.081

Precipitation duration 0.00268 0.00050 5.344 0.000

Precipitation Intensity 0.00320 0.01430 2.240 0.025

Sun dazzle 0.19477 0.07903 2.464 0.013

% of max. possible sunshine duration 0.00116 0.00063 1.823 0.068

Continued
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Day of the week 108.95 0.000

Monday 0.34479 0.05856 5.887 0.000

Tuesday 0.44668 0.05742 7.778 0.000

Wednesday 0.26593 0.05901 4.506 0.000

Thursday 0.28859 0.05866 4.919 0.000

Friday 0.43635 0.05698 7.657 0.000

Saturday 0.08122 0.06225 1.304 0.192

Sunday 0 - - -

Autocorrelation parameters

Utrecht 0 0.03751 0 1

Dordrecht 0.07586 0.04317 1.757 0.078

Haarlemmermeer 0.14032 0.03912 3.586 0.003

Table 2: Results based on the fitted model INAR regression model
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Model Log-likelihood

Poisson regression -2246.496

Negative Binomial Regression -2243.034

Poisson INAR regression (INAR1) -2242.629

Poisson INAR regression with covariates on α (INAR2) -2238.961

Table 3: Comparison of different competing models
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Ongoing Work

• Data from more routes and stations are now examined.

• Data cover different time spans (even hourly data).

• Weather data contain more info.

• More models are fitted and compared to verify the effects.

• Meta-analysis is used to combine the results.
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Figure 4: Intensity of precipitation
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Concluding Remarks

• The literature of appropriate models increases.

• There is no need any more to use approximations based on continuous data.

• There are several models not treated here.

• Computational techniques can make the models easily available to the
research community.
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Work in Progress

• Overdispersed INAR models

• Bayesian estimation

• Define time series via the fahsionable copula models

• Compare different models: do they agree? or why do they disagree?
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THE END

or just a beginning?


