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Monte Carlo Approximation

Suppose that the cdf F of the population is known. We want to calculate

µ(F ) =
∫

φ(y)dF (y)

We can approximate it by using

µ̂(F ) =
1
M

M∑
i=1

φ(yi)

where yi, i =, . . . , M random variables simulated from F (or just a sample from
F ).

We know that if M → ∞ then µ̂(F ) → µ(F ).
What about if F in not known?
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Motivating Bootstrap

Remedy: Why not use an estimate of F based on the sample (x1, . . . , xn) at
hand?

The most well known estimate of F is the empirical distribution function

F̂n(x) =
# observations ≤ x

n

or more formally

F̂n(x) =

n∑
i=1

I(xi ≤ x)

n

where I(A) is the indicator function and the subscript n reminds us that it is
based on sample of size n.
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Example: Empirical Distribution Function

Empirical Distribution Function
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Figure 1: Empirical distribution function from a random sample of size n from a
standard normal distribution
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Bootstrap Idea

Use as an estimate the quantity µ(F̂n) instead of µ(F ). Since F̂n is a consistent
estimate of F (i.e. F̂n → F if n → ∞) then µ(F̂n) → µ(F ).

Important: µ(F̂n) is an exact result. In practice it is not easy to find it, so we use
a Monte Carlo approximation of it.

So, the idea of bootstrap used in practice is the following:

Generate samples from F̂n and use as an estimate of µ(F ) the quantity the

µ̂(F ) =
1
M

M∑
i=1

φ(y∗
i )

where y∗
i , i =, . . . , M random variables simulated from F̂n.
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Simulation from F̂n

Simulating from F̂n is a relatively easy and straightforward task. The density
function f̂n associated with F̂n will be the one that gives probability 1/n to
all observed points xi, i = 1, . . . , n and 0 elsewhere.

Note: if some value occurs more than one time then it is given probability larger
than 1/n.

So we sample by selecting randomly with replacement observations from the
original sample.

A value can occur more than one in the bootstrap sample! Some other values
may not occur in the bootstrap sample
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A quick view of Bootstrap (1)

• Appeared in 1979 by the seminal paper of Efron. Predecessors existed for a
long time

• Popularized in 80’s due to the introduction of computers in statistical practice

• It has a strong mathematical background (though not treated here).

• In practice, it is based on simulation but for some few examples there are
exact solutions without need of simulation

• While it is a method for improving estimators, it is well known as a method
for estimating standard errors, bias and constructing confidence intervals for
parameters
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A quick view of Bootstrap (2)

• It has minimum assumptions. It is merely based on the assumption that the
sample is a good representation of the unknown population

• It is not a black box method. It works for the majority of problems but it
may be problematic for some others

• In practice it is computationally demanding, but the progress on computer
speed makes it easily available in everyday practice
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Types of Bootstrap

• Parametric Bootstrap: We know that F belongs to a parametric family of
distributions and we just estimate its parameters from the sample. We
generate samples from F using the estimated parameters.

• Non-parametric Bootstrap: We do not know the form of F and we estimate it
by F̂ the empirical distribution obtained from the data
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The general bootstrap algorithm

1. Generate a sample x∗ of size n from F̂n.

2. Compute θ̂∗ for this bootstrap sample

3. Repeat steps 1 and 2, B time.

By this procedure we end up with bootstrap values θ̂∗ = (θ̂∗1 , θ̂∗2 , . . . , θ̂∗B). We will
use these bootstrap values for calculating all the quantities of interest.

Note that θ̂∗ is a sample from the unknown distribution of θ̂ and thus it contains
all the information related to θ̂!
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An example: Median

Consider data x = (x1, . . . , xn). We want to find the standard error of the sample
median. Asymptotic arguments exist but they refer to huge sample sizes, not
applicable in our case if n small. We use bootstrap.

• We generate a sample x1
∗ by sampling with replacement from x. This is our

first bootstrap sample

• For this sample we calculate the sample median, denote it as θ̂∗1

• Repeat steps 1 and 2, B times.

At the end we have B values θ̂∗ = (θ̂∗1 , θ̂∗2 , . . . , θ̂∗B). This is a random sample from
the distribution of the sample median and hence we can use it to approximate
every quantity of interest (e.g. mean, standard deviation, percentiles etc).
Moreover, a histogram is an estimate of the unknown density of the sample
median. We can study skewness etc.
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Bootstrap Standard Errors

Denote θ∗i the bootstrap value from the i−th sample, i = 1, . . . , B. The bootstrap
estimate of the standard error of θ̂ is calculated as

seB(θ̂) =

√
1
B

B∑
i=1

(
θ̂∗i − θ̂∗

)2

where

θ̂∗ =
1
B

B∑
i=1

θ̂∗i

This is merely the standard deviation of the bootstrap values.
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Bootstrap Estimate of Bias

Similarly an estimate of the bias of θ̂ is obtained as

Bias(θ̂) = θ̂∗ − θ̂

Note that even if θ̂ is an unbiased estimate, since the above is merely an estimate
it can be non-zero. So, this estimate must be seen in connection with the
standard errors.
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Bootstrap Estimate of Covariance

In a similar manner with the standard errors for one parameter we can obtain
bootstrap estimates for the covariance of two parameters. Suppose that θ̂1 and θ̂2

are two estimates of interest (e.g. in the normal distribution they can be the
mean and the variance, in regression setting two of the regression coefficients).
Then the bootstrap estimate of covariance is given by

CovB(θ̂1, θ̂2) =
1
M

M∑
i=1

(
θ̂∗1i − θ̂∗1

)(
θ̂∗2i − θ̂∗2

)

where (θ̂∗1i, θ̂
∗
2i) are the bootstrap values for the two parameters taken from the

i-th bootstrap sample
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Example: Covariance between sample mean and variance

Parametric bootstrap. Samples of sizes n = 20, 200 were generated from N(1, 1)
and Gamma(1, 1) densities. Both have µ = 1 and σ2 = 1. suppose that θ̂1 = x̄

and θ̂2 = s2. Based on B = 1000 replications we estimated the covariance
between θ̂1 and θ̂2.

Distribution

Normal Gamma

n=20 0.00031 0.0998

n=200 0.0007 0.0104

Table 1: Estimated covariance for sample mean and variance based on parametric
bootstrap (B = 1000). From theory, for the normal distribution the covariance is
0.
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Figure 2: Scatterplot of sample mean and variance based on B = 1000 replications.
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Simple Bootstrap CI

Use the bootstrap estimate of the standard error and a normality assumption
(arbitrary in many circumstances) to construct an interval of the form

(θ̂ − Z1−a/2seB(θ̂), θ̂ − Z1−a/2seB(θ̂))

where Za denotes the a-th quantile of the standard normal distribution. This is a
(1 − a) confidence Interval for θ. It implies that we assume that θ̂ follows a
Normal distribution.
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Percentile CI

The confidence interval is given as(
κa/2, κ1−a/2

)
where κa denotes the a-th empirical quantile of the bootstrap values θ̂∗i .

This is clearly non-symmetric and takes into account the distributional form of
estimate.
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Percentile-t CI

Improves the simple bootstrap CI in the sense that we do not need the normality
assumption. The interval has the form

(θ̂ − ζ1−a/2seB(θ̂), θ̂ − ζa/2seB(θ̂))

where ζa is the a-th quantile of the values ξi, where

ξi =
θ̂∗i − θ̂

se(θ̂∗i )

Note that for the ξi’s we need the quantities se(θ̂∗i ). If we do not know them in
closed forms (e.g. asymptotic standard errors) we can use bootstrap to estimate
them. The computational burden is double!

Note that ξi are studentized values of θ̂∗i .



Intro to Bootstrap April 2004

’

&

$

%

Bias Corrected CI

Improves the Percentile bootstrap ci in the sense that we take into account the
bias

The bootstrap bias-corrected percentile interval (BC):

(κp1 , κp2)

where p1 = Φ(zα/2 + 2b0) and p2 = Φ(z1−α/2 + 2b0) with Φ(·) the standard
normal distribution function,

κa is the a−quantile of the distribution of the bootstrap values (similar to the
notation for the percentile CI)

b0 = Φ−1

(
1
B

B∑
i=1

I(θ̂∗i ≤ θ̂)

)

If the distribution of θ̂∗i is symmetric, then b0 = 0 and p1 = a/2 and p2 = 1− a/2,
therefore the simple percentile CI are obtained.
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Comparison of CI

Which interval to use? things to take into account:

• Percentile CI are easily applicable in many situations

• Percentile-t intervals need to know se(θ̂).

• In order to estimate consistently extreme percentiles we need to increase B.

• Resulting CI not symmetric (except for the simple CI, which is the less
intuitive)

• Note the connection between CI and hypothesis testing!
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Example 1: Correlation Coefficient

Consider data (xi, yi), i = 1, . . . , n Pearson’s correlation coefficient is given by

θ̂ =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

Inference is not so easy, results exist only under the assumption of a bivariate
normal population. Bootstrap might be a solution
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American Elections

The data refer to n = 24 counties in America. They are related to the American
presidential elections in 1844. The two variables are: the participation proportion
in the election for this county and the difference between the two candidates. The
question is whether there is correlation between the two variables. The observed
correlation coefficient is θ̂ = −0.369
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Figure 3: The data for the American Elections
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American Elections: Results

From B = 1000 replications we found θ̂∗ = −0.3656, seB(θ̂) = 0.1801. The
asymptotic standard error given by normal theory as seN (θ̂) = 1−θ̂2√

n−3
= 0.1881.

Bias(θ̂) = 0.0042

simple bootstrap CI (-0.7228, -0.0167)

Percentile (-0.6901, 0.0019)

Percentile-t (-0.6731, 0.1420)

Bias Corrected (-0.6806, 0.0175)

Table 2: 95% bootstrap confidence intervals for I
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More details in the Percentile-t intervals

In this case and since we have an estimate of the standard error of the correlation
coefficient (though it is an asymptotic estimate) we can use percentile-t intervals
without need to reiterate bootstrap. To do so, from the bootstrap values θ̂∗i ,
i = 1, . . . , B, we calculate

ξi =
θ̂∗i − θ̂

se(θ̂∗i )

where

se(θ̂∗i ) =
1 − θ̂∗2i√

n − 3
Then we found the quantiles of ξ. Note that the distribution of ξ is skewed, this
explains the different left limit of the percentile-t confidence intervals.
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Figure 4: Histogram of the bootstrapped values and the ξi’s. Skewness is evident
in both plots, especially the one for ξi’s

Intro to Bootstrap April 2004

’

&

$

%

Example 2: Index of Dispersion

For count data a quantity of interest is I = s2/x̄. For data from a Poisson
distribution this quantity is, theoretically, 1. We have accidents for n = 20
crossroads in one year period. We want to built confidence intervals for I. The
data values are: (1,2,5,0,3,1,0,1,1,2,0,1,8,0,5,0,2,1,2,3).

We use bootstrap by resampling from the observed values. Using θ̂ = I we found

(B = 1000): θ̂ = 2.2659, θ̂∗ = 2.105, ˆ
Bias(θ̂) = 0.206, seB(θ̂) = 0.6929.

simple bootstrap CI (0.9077, 3.6241)

Percentile (0.8981, 3.4961)

Percentile-t (0.8762, 3.4742)

Bias Corrected (1.0456, 3.7858)

Table 3: 95% bootstrap confidence intervals for I
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Figure 5: Histogram and boxplot for the index of dispersion. A small skewness is
apparent
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Some comments

• Asymptotic theory for I is not available; bootstrap is an easy approach to
estimate standard errors

• The CI are not the same. This is due to the small skewness of the bootstrap
values.

• The sample estimate is biased.

• For the percentile-t intervals we used bootstrap to estimate standard errors
for each bootstrap sample.
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Hypothesis Tests

Parametric Bootstrap very suitable for hypothesis testing.

Example: We have independent data (x1, . . . , xn), and we know that their
distribution is Gamma with some parameters. We wish to test a certain value of
the population mean µ: H0: µ = 1 versus H1: µ �= 1.

Standard t-test applicable only via the Central Limit Theorem implying a large
sample size. For smaller size the situation is not so easy. The idea is to construct
the distribution of the test statistic using bootstrap (parametric).

So, the general algorithm is the following
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Hypothesis Tests

• Set the two hypotheses.

• Choose a test statistic T that can discriminate between the two hypotheses.
Important: We do not care that our statistic has a known distribution
under the null hypothesis

• Calculate the observed value tobs of the statistic for the sample

• Generate B samples from the distribution implied by the null hypothesis.

• For each sample calculate the value ti of the statistic, i = 1, . . . , B.

• Find the proportion of times the sampled values are more extreme than the
observed. ”Extreme” depends on th form of the alternative.

• Accept or reject according to the significance level.
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Hypothesis Tests (2)

More formally, let us assume that we reject the null hypothesis at the right tail of
the distribution. Then an approximate p-value is given by

p̂ =

B∑
i=1

I(ti ≥ tobs) + 1

B + 1

p̂ is an estimate of the true p-value, we can build confidence intervals for this. A
good strategy can be to increase B if p̂ is close to the significance level.

Note that some researchers advocate the use of the simpler estimate of the
p-value, namely

p̃ =

B∑
i=1

I(ti ≥ tobs)

B

p̂ has better properties than p̃.
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Hypothesis Tests (Non-parametric Bootstrap)

The only difficulty is that we do not know the population density. Thus the
samples must be taken from F̂n. According to standard hypothesis testing theory,
we need the distribution of the test statistic under the null hypothesis. The data
are not from the null hypothesis, thus F̂n is not appropriate. A remedy can be to
rescale F̂n so as to fulfill the null hypothesis. then we take the bootstrap samples
from this distribution and we built the distribution of the selected test statistic.
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Example

Consider the following data

x = (−0.89,−0.47, 0.05, 0.155, 0.279, 0.775, 1.0016, 1.23, 1.89, 1.96).

We want to test H0 : µ = 1, vs H1 : µ �= 1. We select as a test statistic
T = |x̄ − 1|. Several other statistic could be used. Since x̄ = 0.598 we find
Tobs = 0.402. In order F̂10 to represent the null hypothesis we rescale our data so
as to have a mean equal to 1. Thus we add in each observation 0.402. The the
new sample is xnull = x + 0.402. We resample with replacement from F̂ (xnull).

Taking B = 100 samples we found p̂ = 0.18.

Important: Rescaling is not obvious in certain hypotheses.
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Permutation test

Hypothesis testing via parametric bootstrap is also known as Monte Carlo tests.
Alternative testing procedures are the so-called permutation or randomization
tests. The idea is applicable when the null hypothesis implies that the data do
not have any structure and thus, every permutation of the sample data, under the
null hypothesis is equally probable. Then we test whether the observed value is
extreme relative to the totality of the permutations. In practice since the
permutations are huge we take a random sample from them and we built the
distribution of the test statistic under the null hypothesis from them. The main
difference from permutation test to bootstrap tests is that in permutation tests
we sample without replacement in order to take a permutation of the data.
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Permutation test- Example

Consider the data about the American elections in 1844. We want to test the
hypothesis that H0 : ρ = 0, vs H1 : ρ < 0. We use as a test statistic r, i.e. the
sample correlation coefficient. The observed value is −0.3698. We take B = 999
random permutations of the data by fixing the one variable and taking
permutations of the other (sampling without replacement). We estimate the
p-values as right tail of the distribution. Then an approximate p-value is given by

p̂ =

B∑
i=1

I(ti ≤ tobs) + 1

B + 1
=

B∑
i=1

I(ti ≤ −0.3698) + 1

1000
=

39 + 1
1000

= 0.04

This is an estimate of the true p-value, we can built confidence intervals for this,
either via asymptotic results or bootstrap etc. Note that in this case it is not so
easy to construct a bootstrap test. Sampling from the null hypothesis is not so
easy because we need to transform F̂n to reflect the null hypothesis! Therefore,
permutation tests are complementary to the bootstrap tests.
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Figure 6: Density estimation for the bootstrapped values. The shadowed area is
the area where we reject the null hypothesis
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Non-Parametric Bootstrap Hypothesis Tests

Suppose two samples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym). We wish to
test the hypothesis that they have the same mean, i.e. H0 : µx = µy versus
H1 : µx �= µy. Use as a test statistic T = |x̄ − ȳ|. Under the null hypothesis a
good estimate of the population distribution is the combined sample
z = (x1, . . . , xn, y1, . . . , ym). Thus, sample with replacement from z. For each of
the B bootstrap samples calculate T ∗

i , i = 1, . . . B Estimate the p-value of the
test as

p̂ =

B∑
i=1

I(Ti ≥ tobs) + 1

B + 1
Other test statistics are applicable, as for example the well known two-sample
t-statistic. A general warning for selecting test statistics is the following: we
would like to select a ”pivotal” test statistic, i.e. a test statistic for which the
distribution does not vary. For example the t-statistic has this property as it is
standardized.

Intro to Bootstrap April 2004

’

&

$

%

Goodness of Fit test using Bootstrap

Parametric Bootstrap suitable for Goodness of fit tests. We wish to test
normality, i.e. H0 : F = N(µ, σ2) versus H1 : F �= N(µ, σ2). A well known test
statistic is the Kolmogorov - Smirnov test statistic D = max(|F̂n(x) − F (x)|).
This has asymptotically and under the null hypothesis a known and tabulated
distribution. Bootstrap based test do not use the asymptotic arguments but we
take samples from the normal distribution in H0 (if the parameters are not
known, we need to estimate them). For each sample we obtain the value of the
test statistic and we construct the distribution of the test statistic. There is no
need to use D. Other ”distances” can be also use to measure deviations from
normality! The test can be used for any distribution!
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Failures of Bootstrap

• Small Data sets (because F̂n is not a good approximation of F )

• Infinite moments (e.g. the mean of the Cauchy distribution).

• Dependence structures (e..g time series, spatial problems). Bootstrap is
based on the assumption of independence. Remedies exist

• Estimate extreme values (e.g. 99.99% percentile or max(Xi)). The problem
is the non-smoothness of the functional under consideration

• Dirty Data: If outliers exist in our sample, clearly we do not sample from a
good estimate of F and we add variability in our estimates.

• Unsmooth quantities: There are plenty of theoretical results that relate the
success of bootstrap with the smoothness of the functional under
consideration

• Multivariate data: When the dimensions of the problem are large, then F̂n

becomes less good as an estimate of F . This may cause problems.
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Choice of B

Choice of B depends on

• Computer availability

• Type of the problem: while B = 1000 suffices for estimating standard errors,
perhaps it is not enough for confidence intervals.

• Complexity of the problem
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Variants of Bootstrap

• Smoothed Bootstrap: Instead of using f̂n we may use a smoothed estimate of
it for simulating the bootstrap samples. Such an estimate might be the
Kernel Density estimate

• Iterated Bootstrap: For non-smooth functionals (e.g. the median), we
perform another bootstrap round using at the bootstrap values θ̂∗i

• Bayesian Bootstrap: We generate from F̂ but the probabilities associated
with each observation are not exactly 1/n for each bootstrap sample but they
vary around this value.
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Other Resampling Schemes: The Jackknife

The method was initially introduced as a bias-reduction technique. It is quite
useful for estimating standard errors. Let θ̂(i), denotes the estimate when all the
observations except the i-th are used for estimation. Define

θ̂J = nθ̂ − (n − 1)θ̂(·)

where

θ̂(·) =
1
n

θ̂(i)

θ̂J is called the jackknifed version of θ̂ and usually it has less bias than θ̂. It holds
that

se(θ̂J) =

√√√√n − 1
n

n∑
i=1

(
θ̂(i) − θ̂(·)

)2

This is a good approximation of se(θ̂) as well.
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Other Resampling Schemes: Subsampling

In jackknife we ignore one observation at each time. The samples are created
without replacement. Thus, we have n − 1 different samples. Generalize the idea
by ignoring b ≥ 1 observations at each time. Similar formulas can be derived.
Complete enumeration is now difficult: use Monte Carlo methods by taking a
sample of them.

This is the idea of subsampling. Subsamples are in fact samples from F and not
from F̂n. It can remedy the failure of bootstrap in some cases. Subsamples are of
smaller size and thus we need to rescale them (recall the factor n − 1 in the se of
the jackknife version.

Split the entire sample in subsamples of equal size.
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Bootstrap in Linear Regression

There are two different approaches:

1. Resample with replacement from the observations. Now each observation is
the entire vector associated with the original observation. For each

2. Apply bootstrap on the residuals of the model fitted to the original data

The second one is preferable, since the first approach violates the assumption for
constant design matrix

Bootstrapping in linear regression removes any distributional assumptions on the
residuals and hence allows for inference even if the errors do not follow normal
distribution.
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Bootstrapping the residuals

Consider the model Y = βX + ε using the standard notation.

The bootstrap algorithm is the following

• Fit the model to the original data. Obtain the estimates β̂ and the residuals
form the fitted model ε̂i, i = 1, . . . , n.

• Take a bootstrap sample ε∗ = (ε∗1, . . . , ε∗n) from the residuals by sampling
with replacement.

• Using the design matrix, create the bootstrap values for the response using

Y ∗ = β̂X + ε∗

• Fit the model using as response Y ∗ and the design matrix X.

• Keep all the quantities of interest from fitting the model (e.g. MSE,
F -statistic, coefficients etc)

• Repeat the procedure B times.
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Example

n = 12 observations, Y is the wing length of a bird, X is the age of the bird. We
want to fit a simple linear regression Y = α + βX.
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Figure 7: The data and the fitted line
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Figure 8: The fitted lines for all the B = 200 bootstrap samples
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Results

θ mean std. err. 95% CI sample value

α̂ 0.774 0.106 (0.572 , 0.963) 0.778

β̂ 0.266 0.009 (0.249 , 0.286) 0.266

σ̂ 0.159 0.023 (0.106 , 0.200) 0.178

F -statistic 717.536 288.291 ( 406.493 , 1566.891) 523.78

R2 0.984 0.0044 (0.975 , 0.993) 0.9812

Table 4: Bootstrap values for certain quantities. The correlation between α̂ and β̂

was −0.89.
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Figure 9: Histogram of the B = 200 bootstrap values and a scatterplot for the
bootstrap values of α̂ and β̂.
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Parametric Bootstrap in Regression

Instead of non-parametric bootstrap we can use parametric bootstrap in a similar
fashion. This implies that we assume that the errors follow some distribution
(e.g. t or a mixture of normals). Then full inference is available based on
bootstrap, while this is very difficult when using classical approaches.

The only change is that the errors for each bootstrap sample are generated from
the assumed distribution.
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Bootstrap in Principal Components Analysis

Principal Components Analysis is a dimension reduction technique that starts
with correlated variables and ends with uncorrelated variables, the principal
components, which are in descending order of importance and preserve the total
variability. If X is the vector with the original variables the PC are derived as
Y = XA, where A is a matrix that contains the normalized eigenvectors from
the spectral decomposition of the covariance matrix of X. In order the PCA to
me meaningful we need to keep PC less than the original variables. While
working with standardized data, a criterion is to select so many components that
correspond to eigenvalues greater than 1. A problem of major interest with
sample data is how to measure the sampling variability in the eigenvalues of the
sample covariance matrix. Bootstrap can be a solution.
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Bootstrap in PCA - Example

The data represent the performance of 26 athletes in heptathlon in the Olympic
Games of Sidney, 2000. We proceed with PCA based on the correlation matrix.
We resample observations with replacement. We used B = 1000.

Note: Our approach is non-parametric bootstrap. However we could use
parametric bootstrap by assuming a multivariate normal density for the
populations and sampling from this multivariate normal model with parameters
estimated from the data.
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order mean st.dev 95% CI observed value

1 3.0558 0.4403 (2.2548, 3.9391) 2.9601

2 1.6324 0.2041 (1.2331, 2.0196) 1.5199

3 1.0459 0.1830 (0.6833, 1.3818) 1.0505

4 0.6251 0.1477 (0.3733, 0.9416) 0.6464

5 0.3497 0.0938 (0.1884, 0.5441) 0.3860

6 0.1958 0.0658 (0.0846, 0.3401) 0.2778

7 0.0950 0.0413 (0.0306, 0.1867) 0.1592

log-determinant -4.1194 0.9847 (-6.2859, -2.4292) -2.9532

Table 5: Bootstrap estimates,standard error and CI, based on B = 1000 replica-
tions. An idea of the sample variability can be easily deduced.
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Figure 10: Histogram of the eigenvlaues, the logarithm of the determinant and a
boxplot representing all the eigenvalues, based on B = 1000 replications
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Bootstrap in Kernel Density Estimation (1)

Kernel Density Estimation is a useful tool for estimating probability density
functions. Namely we obtain an estimate of the unknown density f(y) as f̂(y)
based on a sample (x1, . . . , xn)

f̂(x) =
1
n

n∑
i=1

1
h

K

(
x − xi

h

)

where K(·) is the kernel function and h is the bandwidth which makes the
estimate more smooth (h → ∞) or less smooth (h → 0). There are several choices
for the kernel, the standard normal density is the common one. For h we can
select it in an optimal way. For certain examples it suffices to use

hopt = 1.059n−1/5min

(
Q3 − Q1

1.345
, s

)
,

where Q1 and Q3 the first and third quartile and s the sample standard deviation.

We want to create confidence intervals for f̂(x).
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Bootstrap in Kernel Density Estimation (2)

We apply bootstrap:

Take B bootstrap samples from the original data. For each sample find f̂i(x), the
subscript denotes the bootstrap sample. Use these values to create confidence
intervals for each value of x. This will create a band around f̂(x), which is in fact
a componentwise confidence interval and give us information about the curve.

Example: 130 simulated values
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Figure 11: Estimated f̂(x) for the data of our example
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Figure 12: The B = 100 bootstrap replicated estimated of f̂(x) for the data of our
example
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Figure 13: Componentwise 95% confidence intervals based on the percentile boot-
strap approach (B = 100)
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Bootstrap in Time Series

Consider the AR(2) model

Yt = β1Yt−1 + β2Yt−2 + εt

In the classical case we assume normality for the residuals. If the assumption is
not made we can use bootstrap for inference
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The algorithm

1. Fit the AR(2) model to the data (y1, . . . , yT ). Find β̂1, β̂2.

2. Obtain the residuals ε̂i from the fitted model

3. Create the empirical distribution F̂T of the residuals

4. Start Bootstrap. Simulate a new series by

• Set y∗
i = yi , i = 1, 2, i.e. use as starting points the original observations

at that time

• Construct the entire series using the recursion

y∗
t = β̂1y

∗
t−1 + β̂2y

∗
t−2 + ε∗t ,

where ε∗t is drawn from F̂T .

• Fit the AR(2) model to the bootstrapped series and obtain the parameters

• Repeat the steps above B times
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Example: Annual Peak flows

The data consist of n = 100 observations about the annual peak flows in a specific
area in the Missouri river in cm3/sec. The time period examined is 1898-1997.

Index

an
nu

al
 p

ee
k 

flo
w

0 20 40 60 80 100

2
4

6
8

Figure 14: The original series
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Example: Annual Peak flows

θ mean std. err. 95% CI sample value

β̂1 0.155 0.0964 ( -0.032, 0.333) 0.112

β̂1 0.042 0.0923 (-0.118, 0.226) 0.063

σ̂2 1.669 0.415 (1.087, 2.533) 1.579

Table 6: Bootstrap values for certain quantities. The correlation between α̂ and β̂

was −0.16.
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Figure 15: Histogram of the bootstrap values for the parameters (B = 200)
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Figure 16: Histogram of the fitted residuals in the sample data and scatterplot of
the bootstrap values for the parameters
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Figure 17: Some plots of the bootstrap series
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Bootstrap with dependent Data

Bootstrap is based on independent sampling from F̂n. For dependent data
standard bootstrap cannot be applied. The idea is that we need to mimic the
dependence of the data.

Remedies

• Moving Block Bootstrap: For example consider the data (x1, x2, . . . , x12). We
construct 4 blocks of 3 observations in each one, namely y1 = (x1, x2, x3),
y2 = (x4, x5, x6), y3 = (x7, x8, x9), and y4 = (x10, x11, x12). Then we
resample blocks yi instead of the original observation. We keep some part of
the dependence, but we loose it when connecting blocks. In some sense we
add white noise to the series. Note that dependence for lags ≥ 3 vanishes.

• Overlapping blocks: We built the blocks overlapping, i.e. we define
y1 = (x1, x2, x3), y2 = (x2, x3, x4), . . . , y11 = (x11, x12, x1), y12 = (x12, x1, x2).
This adds less white noise but still there is missing dependence
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Bootstrap with dependent Data (2)

• Parametric Bootstrap: We apply a parametric model to catch the dependence
structure. For example, for linear relationships, by theory, we can find an
appropriate AR model that approximates quite well the dependence structure
of the series. Or we combine parametric ideas with block bootstrapping, by
fitting a model and using block bootstrap to the residuals of that model.

• There are several other most complicated methods suitable for certain types
of data (i.e. spatial dependence etc)
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More Applications

There are several more applications of bootstrap not treated here. Bootstrap is
suitable for a variety of statistical problems like

• Censored Data

• Missing Data problems

• Finite populations

• etc

However before applying bootstrap one must be sure that the bootstrap samples
are drawn from a good estimator of the unknown population density. Otherwise
bootstrap does not work!
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THE END


