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Abstract

The aim of this note is to present using an example that in certain

circumstances, while fitting finite exponential mixtures, solutions that are

considered as local maxima are due to false detection of convergence of the

EM algorithm. In this note, using a simulated example we demonstrate that all

the criteria proposed in the literature detect convergence early leading to a

solution that it is not the global maximum. If we let the algorithm to run for a

large number of further iterations the global maximum is obtained. This clearly

demonstrates the problematic behavior of the convergence criteria.

1. Introduction

Consider the simple k-finite exponential mixture model having density function of

the form
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1  and θ j  is the parameter of the exponential

distribution of the j-th  component. The p j ’s are called mixing proportions and they can

be regarded as the probability that a randomly selected observation belongs to the j-th

subpopulation. With P  we denote the mixing distribution, which is the distribution that

gives positive probability mass p j  at the points θ j ,  j=1, . . . ,k and zero elsewhere.  We

use the notation ),...,,,...,(),...,,( 1111221 kkk pp θθϕϕϕϕ −− ==  for the whole vector of

parameters.
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Seidel et al. (1997, 2000) demonstrated the high dependence of the solution

obtained from the EM algorithm to both the initial values and the stopping criterion. The

aim of the present report is to add upon these papers and to demonstrate further that all

the existing criteria for detecting the convergence of the algorithm may fail and stop the

algorithm quite early reporting local maxima that could be avoided if the algorithm run

for more iterations. To do so, a simulated example is used. Two sets of initial values for

starting the EM algorithm are used. The one set spends a large number of iterations

showing convergence (detected by all the methods) to a local maximum but in fact if the

algorithm run for more iterations it converges to the global maximum. The behavior of all

the stopping criteria is examined.

2. The EM Algorithm

Supposing that the number of components k is known the EM algorithm is a

standard technique for obtaining maximum likelihood estimates for finite mixtures. The

algorithm is very popular since it is easily programmable and satisfies a monotonic

convergence property.  However it has the annoying disadvantages that if there are

multiple maxima, the algorithm may locate a local maximum which is not a global one,

and it depends on the choice of good initial values. More details about the algorithm can

be found in McLachlan and Peel (2001).

The EM can briefly described as

Step 1 (E-step) Given the current values for old
jθ  ,  j = 1, . . ., k  and pj

old , j=1, . .

., k calculate the probability wij  that the observation Xi belongs to the j subpopulation

after observing it, i.e. the posterior probability of Xi belonging in the j subpopulation.
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Step 2 (M-step)   Update the estimates as
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Step 3 Check if some condition is satisfied in order to terminate the iterations,

otherwise go back to step 1, for more iterations.
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Due to the dependence of the solution on the initial values it is argued that several

initial values must be used in order to be sure that the global maximum has been

obtained.

3. Stopping Criteria

The criteria used for terminating the EM algorithm can be put in 4 different

categories. These are

•  Those based on the likelihood change between successive iterations (e.g.

Agha and Ibrahim, 1984). Since the absolute value of change is not useful as the values

of the loglikelihood depends on the sample size and thus an absolute change of the order
m−10  has different significance according to the sample size. To avoid this one may use

the relative change in the sense that we stop iterating if

tol
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where )(i!  is the value of the loglikelihood after the i-th iteration and tol is a small

number usually of the form m−10 .  However  criteria based on the change of the

loglikelihood indicate lack of progress and not actual convergence.

•  Those based on the relative change of the parameters between successive

iterations. The maximum over all the parameters is used as a criterion, so the criterion

takes the form
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This criterion does not involve the loglikelihood and hence one does not need to

calculate it. On the other hand the criterion indicates lack of progress and not actual

convergence and, in addition, the evaluation of the loglikelihood is cheap as one needs to

calculate the density for each data point for the E-step.

•  Those based on the gradient function. The gradient function for mixtures is

defined as
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It holds (see Lindsay, 1983,1995) that the gradient function evaluated at the points of the

ML estimate ought to be 0 and, hence, one can check if the maximum is obtained by
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looking at the values of the gradient function. In fact, since due to numerical

perturbations the gradient function may have a value close to 0 and hence again the

convergence criterion is of the form

tolPD ii
jj <),(max )()(θ

where )(i
jθ , )(iP  denotes the value of the parameter θ j  and the corresponding estimated

mixing distribution after the i-th iteration.  And  tol is a small number usually of the form
m−10 . It can be seen that this corresponds to the system of estimating equations, and

hence zero values of the gradient function indicate that the maximum has been obtained.

•  Aitken acceleration: Bohning  et al. (1994) proposed the use of Aitken

acceleration as a convergence criterion. Since the convergence of the EM algorithm for

finite mixtures is linear, near the convergence one can obtain a projected loglikelihood

after the i-th iteration using
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!! . Values of  ci  near 1 do not necessarily indicate convergence. Now

the stopping criterion is based on the change of the projected loglikelihood and thus one

stops iterating whenever  tolii <− ∞
−

∞
1!!

We aim to illustrate the bad behavior of all the above criteria using a

counterexample.

4. The Data

Consider the data of Table 1. They are 100 values simulated from a 2 finite

exponential mixture with equal mixing proportions and mixing parameter values 11 =θ ,

22 =θ . Then, I used 2 different and rather distinct initial values for running the EM

algorithm described above. The first set of initial values were 5.01 =p , 11 =θ , 22 =θ

(note that the data were generated with these parameters), while the second set was

1.01 =p , 2.01 =θ , 52 =θ . Using a common criterion, that of stop iterating when the

relative change of the likelihood was smaller than 10-8 (this is a rather strict criterion) we

found the solutions of Table 2.
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Table 1
Data generated from a 2-finite exponential mixture with equal mixing proportions and
mixing parameters 1 and 2 respectively. 100 values were generated

3.46158645890 7.794575130 0.40217924666 2.73704113600
3.19323128910 1.9413970310 0.48619371253 0.17782662119
0.39801132881 7.66311288650 0.29072421156 1.15554743790
1.82142230150 9.2818026130 2.4907488330 0.73557288203
0.8540823018 0.85954333936 0.4637596901 2.28738218960
0.74487411707 0.6903226049 0.13103775463 1.21578963800
0.17333671989 3.1594664830 1.29759396960 0.60080189693
1.2265799140 1.04562349050 0.07999417118 0.64705698113
1.9998531420 0.8799456011 1.85106676850 0.61238381960
2.22993744240 2.82297412210 1.72902519150 0.25447366541
0.338846894 2.43685331880 1.39368475910 4.37147139300

2.36415320510 0.2583544366 1.85825354180 0.90719194482
1.11018968690 0.12592177756 0.60304830671 2.92097750990
1.3997716460 1.11261329740 5.04268694340 0.79078322746
2.55287565470 0.75715823536 2.8170539260 0.08148563531
1.90256856950 4.8786183510 0.22876584648 0.76716226585
2.49449698180 0.02224887114 1.92675762580 2.56554838950
0.04764321023 0.5765043225 1.65640875110 0.6171613682
0.11885560619 1.94039572170 1.41075256690 0.40980316829
0.16157692188 1.25018569870 0.1998214167 1.46961980890
3.4254136510 0.81548120388 3.91238842560 2.01613585640
1.41221165590 2.11582544460 2.70058382520 0.01317356698
0.11386621808 0.71784627210 1.64032269940 2.91008999030
1.57241686590 0.47285531452 2.96138658960 0.14307613664
1.06409787490 1.23025851780 1.1716749970 0.72148614247

Table 2.

Obtained solution using two different starting values. The terminating condition was that

the relative change in the loglikelihood was smaller than 10-8

Initial Values Iterations 1p 1λ 2λ loglikelihood

5.01 =p , 11 =θ , 22 =θ 81 0.4878 1.45638 1.75448 -147.5616475615

1.01 =p , 2.01 =λ , 52 =λ 96 0.0397 1.39515 1.61791 -147.5652474851
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Table 3.

Obtained solution using several criteria and two different starting values

Initial Values 5.01 =p , 11 =θ , 22 =θ
Criterion Iterations 1p 1λ 2λ loglikelihood

10-4 84 0.4879 1.45683 1.7541 -147.5616436868
10-5 10872 0.90806 1.53374 2.35304 -147.5515229502
10-6 13274 0.91311 1.53613 2.37559 -147.5515039065
10-7 15591 0.91358 1.53636 2.37774 -147.5510373095

Max relative
change of the
parameters

10-8 17900 0.91363 1.53638 2.37796 -147.5515037292

10-6 29 0.48576 1.42495 1.78299 -147.5628156291
10-7 50 0.48668 1.44651 1.76318 -147.5618021407
10-8 81 0.4878 1.45638 1.75448 -147.5616475615
10-9 10064 0.90159 1.53084 2.32572 -147.5515877005

Relative
Loglikelihood

change
10-10 11355 0.91015 1.53471 2.36225 -147.5515113927

10-5 12752 0.91276 1.53596 2.37397 -147.5515042278
10-6 15078 0.91355 1.53634 2.37759 -147.5515037340
10-7 17388 0.91363 1.53638 2.37794 -147.5515037292
10-8 19697 0.91364 1.53638 2.37798 -147.5515037291
10-9 22006 0.91364 1.53638 2.37798 -147.5515037291

Maximum
Absolute
Gradient
Function

10-10 24314 0.91364 1.53638 2.37798 -147.5515037291

Initial Values 1.01 =p , 2.01 =λ , 52 =λ
Criterion Iterations 1p 1λ 2λ Loglikelihood

10-4 166 0.03983 1.42019 1.6169 -147.5652224155
10-5 58426 0.90805 1.53373 2.35301 -147.5515229562
10-6 60828 0.91311 1.53613 2.37559 -147.5515039065
10-7 63145 0.91358 1.53636 2.37774 -147.5515037309

Max relative
change of the
parameters

10-8 65455 0.91363 1.53638 2.37796 -147.5515037292

10-6 42 0.03972 1.26432 1.62332 -147.5663939029
10-7 63 0.03966 1.34903 1.61981 -147.5654118523
10-8 96 0.0397 1.39515 1.61791 -147.5652474851
10-9 140 0.03979 1.41542 1.61709 -147.5652246865

Relative
Loglikelihood

change
10-10 216 0.03993 1.42449 0.61674 -147.5652211117

10-5 60 0.03966 1.33865 1.62023 -147.5654585896
10-6 62632 0.91355 1.53634 2.37759 -147.5515037341
10-7 64942 0.91363 1.53638 2.37794 -147.5515037292
10-8 67251 0.91364 1.53638 2.37798 -147.5515037292
10-9 69560 0.91364 1.53638 2.37798 -147.5515037292

Maximum
Absolute
Gradient
Function

10-10 71868 0.91364 1.53638 2.37798 -147.5515037292

Global Maximum 0.91364 1.53638 2.37798 -147.551503729192
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From the above table one can argue that there are multiple maxima. The first set

of initial values gave a better likelihood, but the solutions are very different.

5. The Truth

But what about if we leave the algorithm to run for a larger number of iterations?

The criterion used was rather strict and in many applications found in the literature the

criteria used were less severe.

I run the EM algorithm for the two sets of initial values using several criteria

based on all the three different approaches. The full history can be found in Table 3. I

have also plotted the entire history with respect the estimates, the loglikelihood, the

relative improvement of the loglikelihood, the maximum relative difference in the

parameters and the gradient function for both the mixing parameters in Figures 1-4. The

interesting findings are

•  After a quite large number of iterations both the initial values converged at the

same solution, and hence no multiple maxima exist. The algorithm  run with some other

initial values and the same maximum was obtained. Note that since the true global

maximum was far from the values found in Table 2, one could use several other initial

values and when stop iterating he could report multiple maxima.

•  Looking at the graphs we have plotted for both initial values the whole history

over all the iterations. As far as the first set of initial values the convergence occurred

after more than 20000 iterations. For the first 10000 iterations the algorithm approached

quite slowly the true solution but since the improvement from iteration to iteration was

quite small perhaps a less severe criterion could detect small improvement and stop the

algorithm.

•  The second set of initial values is more illustrative. The initial values were far

away from the solution. Again one can see at all the graphs that the algorithm proceeds

quite slowly at the first 4000 iterations and then suddenly it jumps towards the solution.

We could say that there were a valley where the algorithm climbed very slowly and the

improvement was very large and finally the algorithm converged in another valley where

the true maximum is located
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•  Criteria based on the relative improvement of the loglikelihood or the relative

change of the parameters must be used with caution. The reason is that even if they detect

non-improvement they cannot say anything if the maximum is obtained. And since in

mixture models it is quite often the likelihood to be flat, lack of improvement does not

mean convergence. Our example is quite illustrative.  If one monitor the gradient function

(we have plotted the 103 times the gradient) then deviations from zero, attributed to

numerical perturbation can be significant. An interesting feature of Table 3 is that the

relative change of the loglikelihood was less than 10-10 for the second set of initial values

but the algorithm speed up much later.

•  The use of the gradient function cannot solve the problem, since we must use

some numerical constant to indicate that a zero value has been reached. But,

unfortunately the gradient function is flat and thus one needs to increase the accuracy in

order to be sure that the gradient function is actually zero and the difference to the zero

values is not just numerical perturbation.

•  The behavior of Aitken acceleration can be seen in Figures 5-6. In figure 5 we

have plotted the actual loglikelihood and the projected loglikelihood. As Bohning  et al.

(1994) explain the projected loglikelihood  is not necessarily larger than the actual

loglikelihood. This is due to the fact that ci can take values larger than 1 (the history of

values for  ci  can be seen in Figure 6). So, for the second set of initial values the Aitken

acceleration criterion would have detected convergence after a 20000 iterations reporting

a local maximum. In fact one can see that the method estimates the slope of the

loglikelihood at every point and projects to infinity. Thus, in some sense, tries to identify

if the loglikelihood stopped increasing and hence the criterion can be trapped in areas

where the loglikelihood is flat, as in our case.

6. The message

It is clear that the above example is simply a caution that the EM must be used

with care. Further investigation is needed. The lessons we learned are

•  It takes quite a large number of iteration until the EM truly converges

•  Initial values far away from the solution can locate the maximum if we let

them iterating. So, be careful for the stopping criterion
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•  Prefer using a true convergence criterion rather than a lack of progress

criterion.

•  Since it takes a lot of iteration for the EM to truly converge we need method

to speed it up, like Newton Raphson acceleration or others

From a practical point of view it is not a good idea to leave the algorithm run for a large

number of iterations so as to eliminate the possibility that we stopped the algorithm early

due to a bad stopping rule. A better strategy would be to use several initial points and a

relatively simpler convergence criterion, since it is highly possible that this simpler

criterion would allow locating the maximum after much less iteration. So, instead of

spending the computer recourses to run from one initial set with a large number of

iteration, it seems preferable to run several set of initial values for fewer iterations and

finally, for the best solution to run the algorithm with a much severe criterion in order to

find the maximum with greater accuracy.
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 Figure 1. The history of certain convergence criteria for the first set of initial values. (a. relative likelihood difference, b.
maximum absolute difference of the parameters, c and d the gradient function).
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Figure 2. The history of the parameters and the loglikelihood for the first  data set

0 10000 20000

0.5

0.6

0.7

0.8

0.9

iter

p1

0 10000 20000

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

iter

l2

0 10000 20000

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

iter

l1

0 10000 20000

-147.562

-147.560

-147.558

-147.556

-147.554

-147.552

-147.550

iter

lo
gl

ik



13

 Figure 3. The  history of certain convergence criteria for the second set of initial values. (a. relative likelihood
difference, b. maximum absolute difference of the parameters, c and d the gradient function).
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Figure 4. The history of the parameters and the loglikelihood for the second data set
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Figure 5. The history of the loglikelihood (S)  and the projected loglikelihood using the Aitken accelaration method (A). Aitken accelaration

would have detected convergence at the early iterations where it is much more stable than the actual loglikelihood.
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Figure 6. The history of the values of c. The instability after the 55000th iteration can be attributed to numerical perturbations since the

progress of the loglikelihood was quite small.


