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Abstract

We consider the problem of sensitivity analysis of functionals of Gaussian processes with
respect to perturbations in the mean and the covariance function. The approach taken to sensi-
tivity analysis is essentially via anticipating versions of the Girsanov theorem. A representation
of the Gaussian process via a Gaussian measure on a Hilbert space is used together with the
Feldman-Hajek theorem on the equivalence of Gaussian measures in order to obtain the de-
sired sensitivity estimators. As expected, a necessary condition for such an approach is that
the perturbations lie in the Cameron-Martin space of the covariance operator of the Gaussian
process.

1 Introduction

In this paper we consider the problem of obtaining sensitivity estimators for functionals of Gaussian
processes. Suppose that {Xt, t ∈ [0, T ]} is a real-valued gaussian process defined in [0, T ], and
suppose in general that its mean, m(t), and its covariance, R(s, t) := Cov(Xs, Xt), depend on a
real parameter θ ∈ I (where I is an appropriate interval). We will assume that {Xt} has continuous
paths with probability 1 and consider a bounded, measurable functional F : C[0, T ]→ R. Suppose
that the mean m(t) of the process is a continuous function of time and that its dependence on the
parameter θ is smooth in the sense that ∂

∂θm(t) = α(t) for all t ∈ [0, T ]. We will also assume that
the covariance function R(s, t) depends on the parameter θ smoothly so that ∂

∂θR(s, t) = V (s, t).
Consider the performance criterion J(θ) := E[F (X)]. In order to obtain an efficient estimate for
the sensitivity of d

dθJ(θ) with respect to the parameter θ, one possible approach is to use a change
of measure argument. By considering a Hilbert space representation of the Gaussian process and
using known results on the equivalence of Gaussian measures in Hilbert space and in particular
the Feldman-Hajek theorem [4] we will examine the conditions under which the measures induced
in Hilbert space by the processes Xt(θ) and Xt(θ + ε) are equivalent. Provided that they are the
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corresponding Radon-Nikodým derivative dµθ+ε

dµθ
will be used to obtain an efficient estimate of the

sensitivity as follows. Setting

H := lim
ε→0

1

ε

(
dµθ+ε

dµθ
− 1

)
(1)

we may obtain

J ′(θ) = lim
ε→0

Eθ+ε[F (X)]− E[F (X)]

ε
= Eθ

[
F (X) lim

ε→0

1

ε

(
dµθ+ε

dµθ
− 1

)]
= E[F (X)H] (2)

provided that the interchange between the limit and the expectation above is justified.

2 Sensitivity via the Likelihood Ratio for Cylindrical Functionals of a
Gaussian Process

We begin with the relatively trivial case where the functional F is cylindrical namely F (X) =
f(Xt1 , Xt2 , . . . , Xtn) where 0 < t1 < t2 . . . < tn < T and f : Rn → R is a bounded Borel
function. Denote by Rn the n × n symmetric matrix with elements [Rn]ij = Cov(Xti , Xtj ) and
by µn ∈ Rn the vector (EXt1 , . . . ,EXtn)>. Both Rn and µn are differentiable functions of the
underlying parameter θ. We then have the following

Theorem 1. If J(θ) = E[f(Xt1 , . . . , Xtn)], under the above assumptions for the Gaussian process
{Xt}, and assuming that Rn has full rank,

J ′(θ) = E[f(Xt1 , . . . , Xtn)H]

where

H = ∂θµ
>
nR
−1
n (Xn − µn)

+
1

2

(
(Xn − µn)>R−1

n (∂θRn)R−1
n (Xn − µn) − tr(R−1

n ∂θRn)
)

(3)

where, in the above expression, X = (Xt1 , Xt2 , . . . , Xtn)>.

We point out for future reference that if only the mean depends on the parameter θ

Hmean = ∂θµ
>
nR
−1
n (Xn − µn) (4)

and if only the covariance depends on θ

Hcov =
1

2
(Xn − µn)>R−1

n (∂θRn)R−1
n (Xn − µn) − 1

2
tr(R−1

n ∂θRn). (5)

Extending the above technique to more general functionals F is not trivial. We will consider
gaussian processes which have continuous sample paths with probability 1. It is rather easy to see
that a necessary and sufficient condition for a centered gaussian process {Xt; t ∈ [0, T ]} to be
continuous in the mean square sense is that its covariance function R be continuous at the diagonal
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(and therefore continuous on [0, T ] × [0, T ]). The conditions under which the sample paths of a
gaussian process are continuous with probability 1 are more complicated (see [1]). A sufficient
condition that ensures the a.s. continuity for the sample paths is that ([1, p.14]) E(Xt − Xs)

2 is
sufficiently small for |t− s| in the following sense:

for some C > 0 and α, η > 0 sup
|s−t|<η

E(Xt −Xs)
2 ≤ C

| log |t− s||1+α
.

3 Symmetric Operators in Hilbert Spaces and Mercer’s Theorem

Here we present some standard results in functional analysis. For further background and proofs
we refer the reader to [24] and [19]. Let H be a real separable Hilbert space and denote by L(H)
the Banach algebra of all continuous linear operators T : H → H . An operator T ∈ L(H) is
called compact if, for every bounded sequence {xn} in H , {Txn} contains a converging subse-
quence. T is called symmetric or self-adjoint if, for any x, y ∈ H , 〈Tx, y〉 = 〈x, Ty〉. T ∈ L(H)
is called Hilbert-Schmidt if there exists a complete orthonormal sequence {en} in H such that∑∞

n=1 ‖Ten‖2 <∞. If T is Hilbert-Schmidt then it is compact.

Theorem 2 (Spectral Theorem). Let K be a compact symmetric operator in L(H). Then there
exists a finite or infinite sequence of orthonormal eigenvectors of K, {φk} with corresponding real
eigenvalues µk such that

Kx =
∑
k

µk〈φk, x〉φk for all x ∈ H.

A symmetric operatorK is called positive iff 〈Kx, x〉 > 0 for all x 6= 0. In this case the spectral
theorem ensures that µk > 0 i.e. all eigenvalues are positive and that the corresponding normalized
eigenvector sequence is a complete orthonormal system in H .

Suppose that a symmetric operator K is also Hilbert-Schmidt with normalized eigenvectros
{φk} and corresponding eigenvalues µk. Denoting by W the range of K it holds that the φk that
correspond to non-zero eigenvalues span W . The orthogonal complement of W , W> is the kernel
of K (since K is symmetric) and we can choose an orthornormal set {φl}, orthogonal to W , which
spans W>. Thus we have an complete orthonormal sequence {φn} which spans H . Hence, if a
symmetric operator K is also Hilbert-Schmidt,

∞∑
k=1

µ2
k =

∞∑
k=1

〈Kφk,Kφk〉 =
∞∑
k=1

‖Kφk‖2 <∞.

Given a complete orthonormal sequence (ek), k = 1, 2, . . . in H , the trace of a self-adjoint,
non-negative operator T ∈ L(H) is defined as

Tr(T ) =

∞∑
k=1

〈Tek, ek〉 =
∑
k

λk

where λk are the eigenvalues of T , provided that the series converges. (Note that the series either
converges or diverges to +∞ since the eigenvalues are non-negative.) If the trace of a self-adjoint,
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non-negative operator is finite then it is called a trace class or nuclear operator. Trace class operators
are of course also Hilbert-Schmidt but the converse does not hold.

Let us now identify the real Hilbert space H with L2[0, T ], the space of square integrable real
functions defined on [0, T ]. Thus the inner product in H is defined as 〈x, y〉 =

∫ T
0 x(t)y(t)dt.

Suppose that R : [0, T ] × [0, T ] → R is a continuous, positive definite, symmetric kernel, i.e.
R(s, t) = R(t, s) for all s, t ∈ [0, T ] and

〈Rf, g〉 =

∫ T

0

∫ T

0
R(s, t)f(s)g(t) > 0 for all f, g ∈ L2[0, T ].

Then the following theorem due to Mercer holds [19, p.245]

Theorem 3 (Mercer). If the transformationR generated by the continuous symmetric kernelR(x, y)
is positive, that is, if (Rf, f) ≥ 0 for all f , or equivalently, if all the characteristic values µi 6= 0
are positive, the development

R(x, y) =
∑
i

µiφi(x)φi(y)

is uniformly and absolutely convergent and the eigenfunctions φi are continuous.

The covarianceR : [0, T ]×[0, T ]→ R of the Gaussian process is a kernel satisfying the assump-
tions of Mercer’s theorem. Let {ek}, k = 1, 2, . . . denote the sequence of normalized eigenfunctions
of the covariance kernel R and λk, k = 1, 2, . . . the corresponding eigenvalues which are of course
positive since R is positive definite. A well known direct consequence of Mercer’s theorem (since
the eigenfunctions are normalized) is that

∑∞
k=1 λk =

∫ T
0 R(t, t)dt < ∞ (the boundedness of the

integral following from the continuity of R) and therefore the covariance operator is a trace class
operator. We will also assume for ease of exposition that the kernel of the operator R is trivial, i.e.
that Rf = 0 implies f = 0 (as an element of H). The above imply of course that limk→∞ λk = 0
and thus, without loss of generality we may assume that the eigenvalues have been ordered, namely
λ1 ≥ λ2 ≥ . . . > 0.

4 Gaussian Measures on Hilbert Spaces

Let L+(H) denote the subset of L(H) consisting of symmetric positive operators: T ∈ L+(H)
if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H and 〈Tx, x〉 ≥ 0 for all x ∈ H . Also let L+

1 (H) denote
the subset of L+(H) such that if (ek) is a complete orthonormal system in H then Tr(Q) :=∑∞

k=1〈Qek, ek〉 <∞. Thus L+
1 (H) denotes the set of trace class positive symmetric operators.

Let µ be a probability measure on (H,B(H)) where H is a real (separable) Hilbert space H and
B(H) the Borel σ−field on H .

Definition 4. A measure µ defined on (H,B(H)) is Gaussian if there exists m ∈ H and Q ∈
L+

1 (H) such that ∫
H
ei〈h,x〉µ(dx) = ei〈m,h〉−

1
2
〈Qh,h〉, ∀h ∈ H. (6)

Theorem 5. An elementm ∈ H and an operatorQ ∈ L+
1 (H) defines uniquely a Gaussian measure

µ on (H,B(H)). The converse also holds. Every Gaussian measure µ on (H,B(H)) determines
an element m ∈ H , the mean, and a covariance operator Q ∈ L+

1 (H) so that (6) holds.
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Proof. Denote by Na,σ2 the normal law on R with mean a and variance σ2 which has density with
respect to the Lebesgue measure

g(x) =
1√
2πσ

e−
(x−a)2

2σ2 , x ∈ R.

Assume that Ker(Q) = {0} and let {ek} be the complete orthonormal sequence of eigenvectors of
Q, i.e. Qek = λkek, k = 1, 2, . . .. Also set mk = 〈ek,m〉 for k = 1, 2, . . . and note that, since {ek}
is complete m =

∑∞
k=1mkek.

Consider now the measurable space (R∞,B(R∞)) of all real sequences x = (x1, x2, . . .) with
the product measure µ :=

⊗∞
k=1Nmk,λk on (R∞,B(R∞)). Using a monotone convergence argu-

ment (see [5, p.11]) we have∫
R∞

( ∞∑
k=1

x2
k

)
µ(dx) =

∞∑
k=1

(m2
k + λk) <∞,

which implies that µ(x ∈ R∞ :
∑∞

k=1 x
2
k < ∞) = 1 i.e. that the measure µ is concentrated on

`2, the subspace of all square-summable real sequences. Using the natural isomorphism between `2

and H , γ : H → `2, (where `2 =
{

(xk)k∈N :
∑∞

k=1 |xk|2 <∞
}

) by γ(x) = (xk) we have thus
constructed a measure on H (which we will again denote by µ).

To show the converse suppose that µ is a gaussian probability measure onH . Then
∫
H |x|µ(dx) <

∞. Consider the linear functional F : H → R defined by F (h) :=
∫
H〈x, h〉µ(dx) for any h ∈ H .

The continuity of F can be seen from the fact that 〈x, h〉 ≤ |x| |h| and hence

|F (h)| ≤
∫
H
|〈x, h〉|µ(dx) ≤ |h|

∫
H
|x|µ(dx).

By the Riesz representation theorem there exists m ∈ H such that 〈h,m〉 =
∫
H〈h, x〉µ(dx) for all

h ∈ H . Furthermore,
∫
H |x|

2µ(dx) <∞. Define the bilinear form G : H ×H → R

G(h, k) =

∫
H
〈h, x−m〉〈k, x−m〉µ(dx).

By the Riesz representation theorem there exists a unique bounded operator Q such that

〈Qh, k〉 =

∫
H
〈h, x−m〉〈k, x−m〉µ(dx) for all h, k ∈ H. (7)

Q is the covariance operator. Q ∈ L+
1 (H). Then there exists a complete orthonormal sequence

(ek) in H such that Qek = λkek, k ∈ N. For any x ∈ H we set xk = 〈x, ek〉.

4.1 The Cameron-Martin Space of an L+
1 (H) Operator

IfQ is a symmetric, positive definite, trace class operator there exists a unique operator T ∈ L+(H)
such that T 2 = Q. We will denote T by Q1/2 and, of course,

Q1/2x =

∞∑
k=1

√
λk〈ek, x〉ek, x ∈ H.
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It is clear that Q1/2 is a Hilbert Schmidt (and therefore compact), positive definite linear operator.
It is clearly injective since Q1/2x = 0 implies 〈Q1/2x,Q1/2x〉 = 0. This in turn implies that
〈Qx, x〉 = 0 and hence x = 0 since kerQ = {0}.

The image of H under Q1/2 is a subspace which we will denote by Q1/2(H). It is called the
Cameron-Martin space of Q. One can see that Q1/2(H) is dense in H . Indeed, suppose that for
some x0 ∈ H and for all y ∈ H , 〈Q1/2y, x0〉 = 0. Take y = Q1/2x0. Then 〈Q1/2Q1/2x0, x0〉 = 0
or 〈Qx0, x0〉 = 0 and hence x0 = 0.

Proposition 6. The Cameron-Martin space is a dense subspace of H . Furthermore it holds that
µ(Q1/2(H)) = 0.

For the proof the reader is referred to [3].

For each z ∈ Q1/2(H) we define a linear mapping Wz : H → L2(H,µ) via x 7→ 〈Q−1/2z, x〉.
Note that Wz is a centered Gaussian random variable. If z1, . . . , zn ∈ Q1/2(H) consider the linear
functionals Wzi(x) = 〈Q−1/2zi, x〉, i = 1, . . . , n then the law of the Rn-valued random vector
(Wz1 , . . . ,Wzn) is N(〈zi,zj〉)i,j=1,...,n

.

Consider z1, z2 ∈ Q1/2(H). Then∫
H
Wz1(x)Wz2(x)µ(dx) =

∫
H
〈Q−1/2z1, x〉〈Q−1/2z2, x〉µ(dx)

= 〈QQ−1/2z1, Q
−1/2z2〉 = 〈z1, z2〉.

The above shows that the mapping Q1/2(H) → L2(H,µ) defined by z 7→ Wz(·) is an isometry
which, in view of the fact that Q1/2(H) is dense in H , can be uniquely extended into a map from
the whole of H into L2(H,µ). We will use the same notation for the extension so that we have now
defined Wy(·) for any y ∈ H . By an abuse of notation we will still write Wy(x) = 〈Q−1/2y, x〉
for x, y ∈ H even though, interpreted literally, the expression Q−1/2y does not make sense when
y /∈ Q1/2(H). The random variables Wy(·) are known as white noise functions and will play an
important rôle in the sequel.

An explicit expression for Wy(x) may be obtained as follows. Given the complete orthonormal
basis {ek} of eigenvectors of Q, consider the projection operators Pn : H → H defined by Pnx =∑n

k=1〈ek, x〉ek for all x ∈ H and all n ∈ N. It is easy to see that, for any y ∈ H , Pny ∈ Q1/2(H).
Furthermore Q1/2Pny =

∑n
k=1 λ

1/2
k 〈ek, y〉ek. Then we may define

Wy(x) = lim
n→∞

〈Q1/2Pny, x〉 = lim
n→∞

n∑
k=1

λ
1/2
k 〈y, ek〉〈x, ek〉

=

∞∑
k=1

λ
1/2
k 〈y, ek〉〈x, ek〉. (8)

4.2 Equivalence and Singularity of Gaussian Measures on a Hilbert Space

Suppose that H is a finite dimensional linear space and µ, ν, are two Gaussian measures, NQ,a,
NR,b with mean vectors a and b respectively and Q, R, the corresponding covariance operators. If
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both Q and R are of full rank then it is well known and easy to see that the measures µ and ν are
equivalent.

The situation is of course different if H is an infinite dimensional, separable Hilbert space. Let
us consider the simplest case first where Q and R have the same eigenvectors. Thus we will make
the following

Assumption 4.1. Suppose that {ek}, k = 1, 2, . . . is a complete orthonormal sequence of elements
in H such that Qek = λkek and Rek = ρkek, k = 1, 2, . . ., λk > 0, ρk > 0, and

∑∞
k=1 λk < ∞,∑∞

k=1 ρk <∞. (Both Q and R are trace class operators.)

The following theorem is essentially due to Kakutani (see [5, p.32]).

Theorem 7. Suppose that µ, ν are two centered Gaussian measuresNQ,NR, onH with covariance
operators satisfying Assumption 4.1. Then

If
∞∑
k=1

(
λk − ρk
λk + ρk

)2

<∞, µ and ν are equivalent and

dν

dµ
(x) =

∞∏
k=1

exp

(
−(λk − ρk)

2λkρk
x2
k

)
(9)

with xk := 〈x, ek〉.

If
∞∑
k=1

(
λk − ρk
λk + ρk

)2

=∞, µ and ν are singular. (10)

One particular direct implication is that if R = γQ for some γ > 0, then clearly R and Q have
the same eigenvectors and ρk = γλk, k = 1, 2, . . .. It is then clear that the series in (10) diverges
and the corresponding Gaussian measures are singular.

Theorem 8. Assume that µ, ν, are two Gaussian measures on H that are not singular. Then there
exists a symmetric Hilbert-Schmidt operator S on H such that

R = Q1/2(I − S)Q1/2.

The converse is also true:

Theorem 9. Assume that there exists a symmetric Hilbert-Schmidt operator such thatR = Q1/2(I−
S)Q1/2. Then µ and ν are equivalent.

The theorems (8) and (9) together constitute the Hajek-Feldman theorem (see [3, p.55]).

Finally we state the following fundamental theorem which extends the classical Cameron-
Martin theorem to general gaussian processes.

Theorem 10 (Cameron-Martin). Suppose that µ = NQ,a and ν = NQ,b. Then µ and ν are equiva-
lent if a− b ∈ Q1/2(H) and singular if not. In the first case

dµ

dν
(x) = exp

(
−1

2
‖Q−1/2(a− b)‖2 + 〈Q−1/2(a− b), Q−1/2x〉

)
, x ∈ H. (11)
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4.3 Karhunen-Loève Representation of Gaussian Process

Suppose that {Xt; t ∈ [0, T ]} is a centered gaussian process defined on a probability space (Ω,F ,P)
with covariance function R(s, t) := E[XsXt] = R(s, t). Suppose that H is the Hilbert space
L2[0, T ] with inner product defined for square integrable functions, φ, ψ ∈ L2[0, T ] via 〈φ, ψ〉 =∫ T

0 φ(s)ψ(s)ds. Denoting byR both the kernel of the integral operator and the operator itself, since
no confusion can arise,

Rf(t) :=

∫ T

0
R(s, t)f(s)ds

for any f ∈ L2[0, T ]. R is a symmetric bounded, positive definite operator. Let {ek} be a sequence
of normalized eigenfunctions associated with R. We then have Rek = λkek, k = 1, 2, . . . with
λk > 0 and we shall assume that the kernel of R is trivial. Mercer’s theorem implies that

R(s, t) =

∞∑
k=1

λkek(s)ek(t).

The convergence is uniform and it holds that the trace of the operator R is

trR :=
∞∑
k=1

λk =

∫ T

0
R(t, t)dt.

If {Zk} is an i.i.d. sequence of standard normal random variables then the following representation
holds

Xt =
∞∑
k=1

λ
1/2
k Zkek(t). (12)

This is known as the Karhunen-Loève representation of a Gaussian process.

If the process {Xt} is not centered, let m(t) = EXt, t ∈ [0, T ], denote the mean function of the
process which we assume to be continuous on [0, T ]. Hencem(t) belongs to L2[0, T ] and therefore,
since the eigenfunctions of the kernel R form a complete base of L2[0, T ], we have the expansion

m(t) =
∞∑
k=1

mkek(t)

with

mk = 〈m, ek〉 =

∫ T

0
m(t)ek(t)dt, k = 1, 2, . . . .

Thus, for a non-central gaussian process with mean function m(t),

Xt =

∞∑
k=1

(
λ

1/2
k Zk +mk

)
ek(t). (13)

5 Sensitivity Analysis for Gaussian Processes

In section 5.2 we sketched briefly the problem of obtaining sensitivity estimators for cylindrical
functionals of Gaussian processes. Since the problem is essentially finite dimensional, the approach
is well known and can be carried out entirely using elementary arguments. The situation is different
when we examine more general functionals of a Gaussian process.
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5.1 Perturbation of the Mean of a Gaussian Process

In the above framework we consider a Gaussian measure on the Hilbert space H with covariance
operator R. If (ek) is a complete orthonormal sequence of eigenvectors or R and x ∈ H , then,
if xk := 〈x, ek〉, {xk} are independent normal random variables N (0, λk). We will assume that
Ker R = {0}.

Suppose that Xt is a Gaussian process with covariance kernel R. We will assume without
loss of generality that its mean is zero. (With trivial modifications, the analysis below will apply
to a process with given mean function m(t).) Let α(t) be a continuous function on [0, T ] and
define the family of processes Xε

t := Xt + εα(t). Finally let F be a bounded Borel functional
F : C[0, T ]→ R.

Theorem 11. Suppose that Xε
t = Xt + εα(t). If α ∈ R1/2(H), the reproducing kernel Hilbert

space associated with R, then

lim
ε→0

ε−1 (E(F (Xε))− E[F (X)]) = E[F (X)Hmean]

with
Hmean = 〈R−1/2α,R−1/2x〉. (14)

Proof. Let µ denote the measure on H corresponding to Xt and µε the measure corresponding to
Xε
t . Then from Theorem 10 µ and µε are absolutely continuous if and only if α ∈ R1/2(H). In this

case, the likelihood ratio is

ρε(x) = exp

(
ε〈R−1/2α,R−1/2x〉 − ε2

2
‖R−1/2α‖2

)
. (15)

If J(ε) := E[F (Xε)] then
J ′(0) = lim

ε→0
ε−1E[F (X)(ρε − 1)]. (16)

In order to prove the result it suffices to interchange the expectation and the limiting operation, a
procedure that here requires care because of the fact that, as we have seen 〈R−1/2α,R−1/2x〉 has
been defined via an isometry. For this reason we will establish the result in two steps.

Step 1. Suppose first that α belongs in R(H). Then

〈R−1/2α,R−1/2x〉 = 〈R−1α, x〉

where the right hand side of the above equation has “literal meaning” for all x ∈ H . Thus from
(15), using the inequality |eθ − 1| ≤ |θ|e|θ| which holds for all θ ∈ R and other similar elementary
arguments we have that for some C > 0 and all ε ∈ (0, ε0)

ε−1|ρε(x)− 1| ≤ C
∣∣〈R−1α, x〉

∣∣ eε|〈R−1α,x〉| +
ε

2
‖R−1/2α‖2 for all x ∈ H. (17)

(The whole point of performing step 1 is to be able to claim in fact that the above inequality holds
for all x ∈ H and not just for x ∈ R1/2(H).) Since∫

H
eiu〈R

−1α,x〉µ(dx) = e−
u2

2
〈R(R−1)α,R−1α〉

= e−
u2

2
‖R−1/2α‖2 for all u ∈ R
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we conclude that 〈R−1α, x〉 is a centered normal random variable, say ξ, with variance ‖R−1/2α‖2
and hence

∫
H

∣∣〈R−1α, x〉
∣∣ eε|〈R−1α,x〉|µ(dx) = E[|ξ|eεξ] < ∞ by an elementary argument. This

implies that the random variable on the right hand side of (17) has finite expectation. Thus we can
use the fact that

lim
ε→0

ε−1[ρε(x)− 1] = 〈R−1α, x〉 = 〈R−1/2α,R−1/2x〉 (18)

together with the dominated convergence theorem to establish (14) when a ∈ R(H).

Step 2. To establish the result forα ∈ R1/2(H), the Cameron-Martin space ofH , we use the fact that
R(H), is dense in H and therefore in R1/2(H) as well. Hence we can pick a sequence of elements
of R(H), say {αn} such that ‖αn−α‖ → 0 as n→∞. In fact we will use the family of projection
operators {Pn} with respect to the complete orthonormal basis {en} defined in §5.4.1 to obtain the
sequence αn := Pna, n = 1, 2, . . . which converges in H to α. Obviously αn ∈ Pn(H) ⊂ R(H)
for all n ∈ N. Also note that

‖R−1/2αn‖2 =

n∑
k=1

〈α, ek〉2

λk

and thus the sequence {‖R−1/2αn‖} is a non-negative increasing sequence which converges to
‖R−1/2α‖.

Set

ρnε (x) = exp

(
ε〈R−1/2αn, R

−1/2x〉 − ε2

2
‖R−1/2αn‖2

)
= exp

(
ε〈R−1αn, x〉 −

ε2

2
‖R−1/2αn‖2

)
and

φn(ε) := ε−1E[F (X)(ρnε − 1)]. (19)

Then, since |F | ≤ K for some K > 0

|φn(ε)− φm(ε)| = ε−1|E[F (X)(ρnε − ρmε )]| ≤ Kε−1E|ρnε − ρmε |. (20)

Adding and subtracting a term we can write

ρnε (x)− ρmε (x) = eε〈R
−1αn,x〉− ε

2

2
‖R−1/2αn‖2 − eε〈R−1αm,x〉− ε

2

2
‖R−1/2αn‖2

+eε〈R
−1αm,x〉− ε

2

2
‖R−1/2αn‖2 − eε〈R−1αm,x〉− ε

2

2
‖R−1/2αm‖2

whence we obtain

ρnε (x)− ρmε (x) =
(
eε〈R

−1αn,x〉 − eε〈R−1αm,x〉
)
e−

ε2

2
‖R−1/2αn‖2

+eε〈R
−1αm,x〉

(
e−

ε2

2
‖R−1/2αn‖2 − e−

ε2

2
‖R−1/2αm‖2

)
Supposing that m < n and taking into account the fact that ‖R−1/2αn‖ is an increasing sequence
we obtain

ε−1|ρnε − ρmε | ≤
ε

2

(
eε〈R

−1αn,x〉 + eε〈R
−1αm,x〉

)(
‖R−1/2αn‖2 − ‖R−1/2αm‖2

)
+|〈R−1(αn − αm), x〉|eε〈R−1αm,x〉

10



Thus, using the Cauchy-Schwarz inequality,

ε−1E|ρnε − ρmε | ≤
ε

2

∫
H

(
eε〈R

−1αn,x〉 + eε〈R
−1αm,x〉

)
µ(dx)

(
‖R−1/2αn‖2 − ‖R−1/2αm‖2

)
+

(∫
H
〈R−1(αn − αm), x〉2µ(dx)

)1/2(∫
H
e2ε〈R−1αm,x〉µ(dx)

)1/2

Thus, from (6) and (7)∫
H
〈R−1(αn − αm), x〉2µ(dx) = 〈RR−1(αn − αm), R−1(αn − αm)〉

= 〈R−1/2(αn − αm), R−1/2(αn − αm)〉 = ‖R−1/2(αn − αm)‖2,

∫
H
eε〈R

−1αn,x〉µ(dx) = e
1
2
ε2‖R−1/2αn‖2 ≤ e

1
2
ε2‖R−1/2α‖2 .

Therefore we have the bound

ε−1E|ρnε − ρmε | ≤ ε e
1
2
ε2‖R−1/2α‖2

(
‖R−1/2αn‖2 − ‖R−1/2αm‖2

)
+‖R−1/2(αn − αm)‖2e2ε2‖R−1/2α‖2 . (21)

As m,n → ∞ both ‖R−1/2αn‖2 − ‖R−1/2αm‖2 and ‖R−1/2(αn − αm)‖2 converge to 0 and
therefore we can see that for each δ > 0 there exists n0 ∈ N such that for all ε ∈ [−ε0, ε0] and all
m,n ≥ n0, ε−1E|ρnε −ρmε | < δ. From (20) we conclude that φn(ε) converges uniformly in [−ε0, ε0]
and hence

lim
ε→0

lim
n→∞

φn(ε) = lim
n→∞

lim
ε→0

φn(ε) . (22)

Since 〈R−1/2αn, R
−1/2x〉 → 〈R−1/2α,R−1/2x〉 and ‖R−1/2αn‖ → ‖R−1/2α‖ → ‖R−1/2α‖

as n → ∞ the left hand side of (22) is equal to J ′(0) whereas the right hand side is equal to
E[F 〈R−1/2α,R−1/2x] thus completing the proof.

It is interesting to compare (14) with the corresponding finite-dimensional result in (4) provided
the latter is written in the form ∂θµ

>R
−1/2
n R

−1/2
n x. Of course the principal difference is that, while

for a full rank matrixRn in the finite dimensional case the range ofR1/2 is the whole n-dimensional
Euclidean space, in H it is the much smaller Cameron-Martin space.

To cast (14) in a form that is useful in simulation we begin with the representation of the per-
turbing function α(t) in terms of the eigenfunctions of R to obtain

α(t) =

∞∑
k=1

αkek(t)

where αk :=
∫ T

0 a(t)ek(t)dt, k = 1, 2, . . .. Hence

R−1/2α =

∞∑
k=1

αkλ
−1/2
k ek(t).

11



The above expression is well defined because α ∈ R1/2(H). Also,

Xt :=
∞∑
k=1

xkek(t) with xk =

∫ T

0
Xtek(t)dt.

R−1/2x =

∞∑
k=1

λ
−1/2
k xkek(t) =

∞∑
k=1

Zkek(t).

This does not converge in any sense unless x belongs to R1/2(H). Hence

〈R−1/2α,R−1/2x〉 =
∞∑
k=1

αkλ
−1/2
k Zk.

This random variable has finite variance, provided that α ∈ R1/2(H) since

Var(〈R−1/2α,R−1/2x〉) =

∞∑
k=1

α2
k

λk
< ∞.

Implementation Issues. While the expression (14) provides in theory the appropriate weightH the
implementation in practice provides numerical challenges since evaluating the expression

〈R−1/2α,R−1/2x〉 =

∞∑
k=1

〈a, ek〉〈x, ek〉
λk

in terms of the sample paths of the process would require the numerical evaluation of the expression
∞∑
k=1

1

λk

∫ T

0
α(t)ek(t)dt

∫ T

0
Xtek(t)dt.

In most situations this may not be practicable and the errors introduced in the truncation of the
infinite series may be significant. The following alternative approach provides a solution which has
better numerical properties.

Proposition 12. Given a ∈ R(H) let β ∈ H be the unique solution of the Fredholm equation of the
first type

α(t) =

∫ T

0
R(s, t)β(s)ds. (23)

Then

Hmean =

∫ T

0
β(t)Xtdt. (24)

Proof. Note that (23) implies that

αk = 〈α, ek〉 = 〈Rβ, ek〉 = 〈β,Rek〉 = λkβk

and hence

Hmean = 〈R−1/2α,R−1/2x〉 =

∞∑
k=1

αkxk
λk

=

∞∑
k=1

βkxk =

∞∑
k=1

〈β, ek〉〈x, ek〉

= 〈β, x〉 =

∫ T

0
Xtβ(t)dt.

12



5.2 Perturbation of the Covariance of a Gaussian Process

In this section we will consider perturbations of the covariance operatorR. LetRε := R+εV where
V is also an L+

1 (H) operator. Denote by µ and µε respectively the Gaussian measures onH induced
by R and Rε. Then it follows from Theorems 8 and 9 that µ and µε are equivalent if and only if
V = R1/2SR1/2 where S is a Hilbert-Schmidt operator. We will make the stronger assumption that
S is in trace class. The following theorem is a direct consequence of the Feldman-Hajek theorem.
(see also [4, p.26]).

Theorem 13. If R,Q ∈ L+
1 (H) and Q = R1/2(I + S)R1/2, S ∈ L1(H) (i.e. if S is trace class)

and ‖S‖ < 1 then, denoting by µ the measure NR and by ν the measure NQ on H ,

dν

dµ
(x) =

1

(det(I + S))1/2
exp

(
1

2
〈S(I + S)−1R−1/2x,R−1/2x〉

)
, x ∈ H. (25)

In the above theorem, if S ∈ L+
1 (H), denoting by γk, k = 1, 2, . . . the eigenvalues of S then

the determinant of the operator I + S is defined as

det(I + S) =
∏
k∈K

(1 + γk). (26)

If the set of eigenvalues is finite then this is a finite product. Otherwise, if K is a countable set of
indices, the infinite product det(I + S) =

∏∞
k=1(1 + γk) converges because the series

∑∞
k=1 γk

converges due to the assumption that S is trace class.

The following theorem of Varberg [23] will be useful in the sequel.

Theorem 14 (Varberg). Let {Zi}, i = 1, 2, . . . be a sequence of independent, identically distributed
random variables with EZi = 0 and Var(Zi) = 1. Suppose that {aij}, i, j = 1, . . . , a double
array of real numbers and set SN :=

∑N
i=1

∑N
j=1 aijZiZj . Then, if

∑∞
j=1

∑∞
k=1 a

2
jk < ∞ and∑∞

k=1 |akk| <∞ the sequence SN converges almost surely to a finite random variable.

Suppose again that {Xt, t ∈ [0, T ]} is a gaussian process which, without loss of generality,
we will assume to be centered. Suppose that R(s, t) = E[XsXt] is the covariance function of the
process and F : C[0, T ]→ R a bounded Borel functional. We would like to estimate the sensitivity
of the performance criterion E[F (X)] when the covariance function is perturbed by a non-negative,
symmetric kernel V . Thus we will consider the family of processes Xε

t , t ∈ [0, T ], with covariance
Rε = R+εV . We will suppose that the perturbing kernel V is such that the measure µ of the original
process and µε of the perturbed process are equivalent. In view of Theorem 13 we will assume in
fact that V = R1/2SR1/2 where S is in fact a symmetric, non-negative trace class operator.

Denote the eigenvectors of S by χk, with Sχk = γkχk k = 1, 2, . . . and assume without loss
of generality that γ1 ≥ γ2 ≥ · · · ≥ 0. Starting with the elementary inequality log(1 + x) ≥ x

1+x
which holds for all x > −1 we note that

log

n∏
k=1

(1 + xγk)
−1/2 ≤ −1

2

n∑
k=1

xγk
1 + xγk

≤ −Cx
n∑
k=1

γk

for some C > 0 and all x ≥ B > − 1
γ1

. Hence (
∏n
k=1(1 + xγk))

−1/2 ≤ e−Cx
∑n
k=1 γk ≤ e−Cxγ1

and hence
(det(I − εS)) ≤ e−Cγ1ε for ε sufficiently small.

13



Theorem 15. Under the above assumptions

J ′ :=
d

dε
Eµε [F (Xε)]

∣∣∣∣
ε=0

= Eµ[F (X)Hcov] (27)

with

Hcov =
1

2

∞∑
k=1

∞∑
l=1

〈Sek, el〉〈ek, R−1/2x〉〈el, R−1/2x〉 − 1

2
Tr(S) . (28)

Proof. Set

ρε(x) :=
dµε
dµ

(x) =
1

(det(I + εS))1/2
exp

(
1

2
〈εS(I + εS)−1R−1/2x,R−1/2x〉

)
Set for convenience Tε := S(I + εS)−1 and note that Tε is trace class with eigenvectors χk and
eigenvalues γk

1+εγk
. Set 〈ek, x〉 = λkZk. {Zk} is a sequence of independent standard normal random

variables. Noting that R−1/2x =
∑∞

k=1
〈x,ek〉
λ
1/2
k

ek

〈TεR−1/2x,R−1/2x〉 =

〈
Tε

∞∑
k=1

〈x, ek〉
λ

1/2
k

ek,

∞∑
l=1

〈x, el〉
λ

1/2
l

el

〉

=

∞∑
k=1

∞∑
l=1

〈Tεek, el〉
〈x, ek〉〈x, el〉
λ

1/2
k λ

1/2
l

.

This is equal to
∞∑
k=1

∞∑
l=1

〈Tεek, el〉ZkZl.

The convergence of this series is guaranteed from Varberg’s theorem because Tε is a trace class
operator. Further, note that 〈Tεek, el〉 = 〈Tε

∑∞
i=1〈ek, χi〉χi,

∑∞
j=1〈el, χj〉ej whence we obtain

〈Tεek, el〉 =

∞∑
i=1

γi
1 + εγi

〈ek, χi〉〈el, χi〉

Hence

Θε :=
∞∑
k=1

∞∑
l=1

〈Tεek, el〉ZkZl =
∞∑
k=1

∞∑
l=1

ZkZl

∞∑
i=1

γi
1 + εγi

〈ek, χi〉〈el, χi〉

=
∞∑
i=1

γi
1 + εγi

∞∑
k=1

∞∑
l=1

ZkZl〈ek, χi〉〈el, χi〉

=

∞∑
i=1

γi
1 + εγi

( ∞∑
k=1

Zk〈ek, χi〉

)2

. (29)

Set Yi :=
∑∞

k=1 Zk〈ek, χi〉, i = 1, 2, . . . and note that the Yi’s are standard normal random variable
since by Parseval’s identity

∑∞
k=1〈ek, χi〉2 = ‖χk‖2 = 1. Furthermore they are independent since

E[YiYj ] = E

[ ∞∑
k=1

Zk〈ek, χi〉
∞∑
l=1

Zl〈el, χj〉

]
=

∞∑
k=1

∞∑
l=1

E[ZkZl]〈ek, χi〉〈el, χj〉

=

∞∑
k=1

〈ek, χi〉〈ek, χj〉 = 〈χi, χj〉 = δij .
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Hence, since γi ≥ 0 for all i we have with probability 1 that

0 < Θε ≤ Θ0 :=
∞∑
i=1

γi

( ∞∑
k=1

Zk〈ek, χi〉

)2

<∞ w.p. 1 for 0 ≤ ε ≤ ε0.

Also, obviously the determinant
∏∞
i=1(1 + εγi) is an increasing function of ε (since all the eigen-

values γi are non-negative).

0 <
1

ε
(ρε − 1) ≤ 1

ε

(
e
ε
2

Θ0

(det(I + Sε))1/2
− 1

)
≤ 1

ε

(
e
ε
2

Θ0 − 1
)

≤ e
ε
2

Θ0
1

2
Θ0. (30)

From a standard computation,

E[etΘ0 ] = E
∞∏
i=1

etγiYi =
∞∏
i=1

1

(1− 2tγi)1/2
for t < 1/(2γ1).

Thus, for ε < 1/γ1, E[e
ε
2

Θ0 1
2Θ0]∞ and we can use the Dominated Convergence Theorem to obtain

J ′(0) = lim
ε→0

E[F (X)ε−1(ρε − 1)] = E[F (X) lim ε→ 0ε−1(ρε − 1)].

Since

lim
ε→0

1

ε

(
det(I + εS)−1/2 − 1

)
= −1

2

∞∑
k=1

γk = −1

2
Tr(S) (31)

and

lim
ε→0

1

ε

(
exp

( ε
2
〈S(I + εS)−1R−1/2x,R−1/2x〉

)
− 1

)
=

1

2
〈SR−1/2x,R−1/2x〉 (32)

it follows that

Hcov := lim
ε→0

ε−1(ρε − 1) =
1

2
〈SR−1/2x,R−1/2x〉 − 1

2
Tr(S). (33)

The inner product on the right hand side of (32) is

〈SR−1/2x,R−1/2x〉 =

〈
S
∞∑
k=1

λ
−1/2
k 〈ek, x〉 ek ,

∞∑
l=1

λ
−1/2
k 〈el, x〉 el

〉

=
∞∑
k=1

∞∑
l=1

(λkλl)
−1/2〈Sek, el〉 〈ek, x〉 〈el, x〉

=
∞∑
k=1

∞∑
l=1

〈Sek, el〉 〈R−1/2ek, x〉 〈R−1/2el, x〉. (34)

Thus (33) and (34) establish the proof of the theorem.

Again it is interesting to compare the expression for Hcov in (28) and, better yet, in the alter-
native form obtained in (33), with the finite-dimensional version of (5). One would have to take
of course the mean µn = 0 in (5) since we have assumed here the process to be centered. Also
the counterpart of ∂θRn in (5) is V := R1/2SR1/2 here. Finally note that the trace term in (5)
can be written as tr(R−1/2

n R
−1/2
n ∂θRn) = tr(R−1/2

n (∂θRn)R
−1/2
n ) in view of the well known iden-

tity tr(AB) = tr(BA) (where A,B are any two matrices for which the products AB and BA are
defined).
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6 Conclusion and Further Work

Hilbert space techniques have been extremely fruitful in the analysis of Gaussian processes for over
five decades. In recent years there has been renewed interest in reproducing kernel Hilbert space
techniques in relation to functional data analysis. Such techniques are also very useful in sensitivity
analysis as the preliminary results obtained in this section indicate. We intend to further clarify the
theoretical questions arising in this respect and in applying these techniques to the simulation of
Gaussian processes in connection with applications.
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